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Course Logistics

* Instructor: Jiaxin Huang (jiaxinh@wustl.edu)

* Teaching Assistant:
e Chengsong Huang (chengsong@wustl.edu)

* Course meeting times: 2:30pm — 3:50pm Tuesday / Thursday
e Location: Crow / 206



Course Logistics

* Course Syllabus: https://teapot123.github.io/CSE561A 2024fl/

e Canvas: https://wustl.instructure.com/courses/133999 (will be
published soon)

* We will be using Canvas for announcements, and project report
submissions, and Piazza for discussions.


https://teapot123.github.io/CSE561A_2024fl/
https://wustl.instructure.com/courses/133999

Course Structure

 Advanced Research-Oriented Course

Pre-requisites: Students are expected to understand concepts in machine learning
(CSE 417T/517A)

We will be teaching and discussing state-of-the-art papers about large language
models

Lectures of fundamentals of Large Language Models (language model architecture
and training framework)

Lectures of Large Language Model Capabilities, Applications and Issues

» This part consists of a list of frontier research papers (will be released later), from which
students will choose their interested papers to present in the class

» Students who are not presenters are expected to participate in discussion and submit 4
preview guestions

Guest lectures on frontier research topics



Grading

* 15% Class Participation
» Regular class participation and discussion (10%)
* Preview question submissions (5%)

e 30% Class Presentation

* 55% Final Project
* 10% Project Proposal
10% Mid-term Report
10% Final Course Presentation (Group-Based)
5% Feedbacks for other groups’ final project presentations
20% Final Project Report



In Class Presentation

 Starting from Week 3, each lecture will consist of one research topic of large language
models, with 4 state-of-the-art papers. Each lecture will be covered by two students.

* Each student is required to do a 30-min presentation in class to cover two papers,
followed by a 5-min Q&A/discussion session.

* Sign-up sheet for paper presentation will be released later this week.

« Remember to send over your slides to the instructor (and cc the TA) before your
presentation:
* For Tuesday classes, send over your slides before the previous Friday 12:00PM
* For Thursday classes, send over your slides before the previous Monday 12:00PM

 When it is not your turn to present, you can preview the paper in advance. Each
student is required to submit 4 preview questions for 4 times (need to be on 4
different dates). Each preview question is submitted for a paper one day before the
presentation. You are also encouraged to raise that question in class.

* Preview questions cannot be simple ones like “what is the aim of the paper?”



In Class Presentation

* How to present a paper?

* Think about the context of the research: introduce the background of the
research topic

What is the challenge and contribution of this paper, given the research
background?

The method: from framework to technical details

What are some interesting experiment results and observations?
What could be done in the future?

e Summarize the takeaways/highlights of this paper



In Class Presentation

* More tips to do presentations
* Get familiar with your material. Don't read scripts for the whole time.
* Make eye contact with audiences.
* Make your voice loud enough so that everyone can hear you clearly

* Please control your time(30min)! We will give you notice when your time is
nearly used up.



Final Project

e Students need to form groups of 2-3 people to do a large language
model research project.

* Project proposal deadline: 9/16 11:59PM
* Midterm project report deadline: 10/21 11:59PM
* Final project presentation deadline: 12/2 11:59PM

* We will use two lectures for project presentation: 12/3, 12/5

* Final project report deadline: 12/13 11:59PM



Final Project

* There are typically two types of projects.

* 1) Designing a novel algorithm to train a medium-sized language
model: BERT, GPT-2 for problems that you are interested in.

* https://huggingface.co/models

 2) Designing a novel algorithm to do inference on large language
models (white box models such as LLaMA2 models, or black box
models such as GPT-4, CLAUDE, etc.) to solve some type of complex
problems, and analyze their limitations. (We may not be able to
reimburse for the API costs)
e https://platform.openai.com/docs/introduction
e https://docs.anthropic.com/claude/reference/getting-started-with-the-api



https://huggingface.co/models
https://platform.openai.com/docs/introduction
https://docs.anthropic.com/claude/reference/getting-started-with-the-api

Final Project Presentation

* Near the end of the semester, we will create a signup sheet for the
final project presentation.

* We anticipate to distribute project presentations into two lectures
(12/3, 12/5), and you will need to signup for a time slot.

* Length of project presentation: 5-8min depending on the number of
groups

 Students will need to submit feedback scores for other groups’
presentation (through Google Form).
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Collect demonstration data,
and train a supervised policy.
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Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.
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Step 3

arge Language Model Pre-training

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

e

Write a story
about frogs




Language Model Architectures (will be

covered in the next course)

Encoder Models

Decoder Models

Encoder-Decoder Models
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Topics: Language Model Reasoning

) . Question: Assume that the variance of the Question: For every a, b, b # a prove that
® Google S M INnerva first n natural numbers is 10, and the vari- 2 b\ 2
ance of the first m even natural numbers is 16. e > (a + ) .
MOdEI Compute m + n. 2 2
Model output: Let o2 be the variance of the Model output:
first m even natural numbers, and 72 be the -
variance of the first n natural numbers. Then, a0 > (‘“2”’)2
2 2
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Therefore, n = |[11|and m = , SO
n+m=/[18] which is true, because the square of a real
number is positive.




Zero-shot Injection of
Expressions of Uncertainty

Topics: Language Model Calibration
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Topics: Efficient Fine-Tuning
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Topics: Multimodal Language Model

Output: text
. Pretrained and frozen

Trained from scratch a very serious cat.
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Topics: Language Model as Agents

gReVianipyauon PaLM-E: An Embodied Multimodal Language Model LsnangioliomEianAing

Given <emb> Q: How
to grasp blue block?
A: First grasp yellow
block and place it on
the table, then grasp
the blue block.

Given <emb> ... <img> Q: How to grasp blue block? A: First, grasp yellow block

? ViT

Large Language Model (PaLM)
Human: Bring me the rice chips from the Tabletop Manipulation

drawer. Robot: 1. Go to the drawers, 2. Open
top drawer. | see <img>. 3. Pick the green rice

Given <img> Task: Sort
colors into corners.

chip bag from the drawer and place it on the Control <————  A:First, grasp yellow block and ... Step 1. Push the green
Eounier star to the bottom left.
Visual Q&A, Captioning ... | Language Only Tasks BlEpZaFushinogicen
Describe the circle to the green star.
Given <img>. Q: What's in the following <img>: Here is a Haiku about
image? Answer in emojis. A dog jumping embodied language models:  Q: Miami Beach borders which ocean? A: Atlantic.
J>#000 & over a hurdle at a Embodied language Q: What is 372 x 18?7 A: 6696.
dog show. models are the future of Language models trained on robot sensor data can

natural language be used to guide a robot’s actions.



Topics: Bias of Language Models

* Different language models may have different political views.

[OPTIONAL CONTEXT W/ PERSONA]

Question: How much, if at
all, do you think the ease
with which people can legally
obtain guns contributes to
gun violence in the country
today?

A. A great deal

B. A fair amount

C. Not too much

D. Not at all

E. Refused

Answer:

= LM =
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"C"1-13.4
“D" |-14.8
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What are language models?



Language models

* The classic definition of a language model (LM) is a probability
distribution over each token sequence [wy, w,, ..., w, ], whether it’s a
good or bad one.

e Sally fed my cat with meat: P(Sally, fed, my, cat, with, meat) = 0.03,
* My cat fed Sally with meat: P(My, cat, fed, Sally, with, meat) = 0.005,
 fed cat Sally meat my with: P(fed, cat, Sally, meat, my, with) = 0.0001



Autoregressive language models

* The chain rule of probability:
e P(Sally, fed, my, cat, with, meat) = P(Sally)
* P(fed | Sally)
*P(my | Sally, fed)
* P(cat | Sally, fed, my)
* P(with | Sally, fed, my, cat)
* P(meat | Sally, fed, my, cat, with)

Conditional probability

p(wi, wo, w3, ...,wy) = /

p(w1) p(wa|wy) p(ws|wy, wa) X ... x p(wn|wy, wa, ... wy_1)



Sequence generation with language model

* If we already have a good language model, a given text prompt wy; .,
and we want the model to generate a good sentence completion with
the length of L: How to find w4 1.,4+1] With the highest probability?

* Enumerate over all possible combinations?

* Next token prediction: generating the next token step by step,
starting from w,,, ; using p(wn+1 ‘W[lm])

* To select the next token with p(wn+1 ‘W[lm]), there are also different
decoding approaches.



Different Decoding Approaches

* Greedy decoding: At each step, always select w; with the highest
p(Wt|W[1:t—1]) :

 Beam Search: Keep track of k possible paths at each step instead of
just one. Reasonable beam size k: 5-10.
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Different Decoding Approaches

| Y weViep, Plw|“The”) = 0.94

* Top-k sampling: At each step, randomly sample the
next token from p(Wt|W 1:-t—1 ) but restrict to only
the k most probable tokens

* Allows you to control diversity: | l B
* Increase k glyes you more creative / risky outputs. - | ﬂ T H J ﬂ r 0o
* Decrease k gives you safer outputs. e O SIS I T D,

s Pl “The”, “car”) = 0.97
* Top-p sampling: At each step, randomly sample the gy -
F_/%
next token from p(Wt|W 1:-t—1 ) but restrict to the set -
of tokens with a cumulatlve probablllty of p |
e throw away long-tailed tokens
* Top-k and Top-p can be used together! H 5

rives IS tums sto
P(w|“The”, “car”)



Q: How to train a good language model?



Q: How to train a good language model?

A: Maximizing the language model probability of an observed large corpus.



N-gram Language Models

* Bigram models

i want to eat chinese food Ilunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

i want to eat chinese food lunch spend

2533 927 2417 746 158 1093 341 278

P(i | <s>) —0.25 P(english | Want) —0.0011 <s> is the starting token of a sentence.

P(food | english) —=0.5 P(</s> | food) — 0.68 </s> is the ending token of a sentence.



Curse of Dimensionality

* Limitation of N-gram models

* Limited Context Length: N-grams have a finite context window of length N,
which means they cannot capture long-range dependencies or context
beyond the previous N-1 words

e Sparsity: As N increases, the number of possible N-grams grows exponentially,
leading to sparse data and increased computational demands
* Suppose vocabulary size is V, the number of possible N-grams increases to VAN.

e Usually V (vocabulary size) could be more than ten thousand. Representing
each word as a one-hot vector is inefficient.

* “Dogs” and “cats” are more similar, compared to “dogs” and “rectangular”.



How to represent text more efficiently?

* Word Embedding: A milestone in NLP and ML

* Unsupervised learning of text representations—No supervision needed

Embed one-hot vectors into lower-dimensional space—Address “curse of
dimensionality”

Word embedding captures useful properties of word semantics
Word similarity: Words with similar meanings are embedded closer
Word analogy: Linear relationships between words (e.g. king - qgueen = man -
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Distributed Representations: Word2Vec

* Assumption: If two words have similar contexts, then
they have similar semantic meanings!

Input projection  output

(Ve feed

* Word2Vec Training objective:

* To learn word vector representations that are good
at predicting the nearby words.

== e cat we -
I Co-occurred words in a local context window |
b e e e : « w1 with
LS Y ogpfuiund e (Vi v )
— , .
/4 o PRl p(wolwr) = 144 T w(t+2) meat
t=1 —c<j<c,j#0 Y w1 XD (U{U va) W

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their
Compositionality. NIPS.



Considering subwords: fastText

» fastText improves upon Word2Vec by incorporating subword information into word
embedding

Tri-gram extraction

<where> | > <wh, whe, her, ere, re>

» fastText allows sharing subword representations across words, since words are represented
by the aggregation of their n-grams

Word2Vec probability expression

I 1

| pulort=" 1 1

TN I Represent a word by the sum of the !

exp: U;UOT’UUJI} """""""" > EZ{ iv(f’ : g - Y ‘. :

p(wolwy) = —————===>== == 9€G. T i vector representations of its n-grams i
w=1 exXp (,U':U 'le) __________ \ A _______I- ---------------------------------------

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, 5, 135-146.



Limitations of Word2Vec embeddings

* 1) They are context-free embeddings: each word is mapped to only
one vector regardless of its context!

* E.g. “bank” is a polysemy, but only has one representation

Share representation

 2) It does not consider the order of words
 3) It treats the words in the context window equally



Next Lecture: Self-Attention and Transformers



