
CSE 561A: Large Language
Models

Fall 2024

Lecture 1: Course Overview
Jiaxin Huang

Content

• Course Logistics
• Language Model Basics
• Covered Topics Preview

Course Logistics

• Instructor: Jiaxin Huang (jiaxinh@wustl.edu)
• Teaching Assistant:
• Chengsong Huang (chengsong@wustl.edu)

• Course meeting times: 2:30pm – 3:50pm Tuesday / Thursday
• Location: Crow / 206

Course Logistics

• Course Syllabus: https://teapot123.github.io/CSE561A_2024fl/
• Canvas: https://wustl.instructure.com/courses/133999 (will be

published soon)
• We will be using Canvas for announcements, and project report

submissions, and Piazza for discussions.

https://teapot123.github.io/CSE561A_2024fl/
https://wustl.instructure.com/courses/133999

Course Structure

• Advanced Research-Oriented Course
• Pre-requisites: Students are expected to understand concepts in machine learning

(CSE 417T/517A)

• We will be teaching and discussing state-of-the-art papers about large language
models

• Lectures of fundamentals of Large Language Models (language model architecture
and training framework)

• Lectures of Large Language Model Capabilities, Applications and Issues
• This part consists of a list of frontier research papers (will be released later), from which

students will choose their interested papers to present in the class
• Students who are not presenters are expected to participate in discussion and submit 4

preview questions

• Guest lectures on frontier research topics

Grading

• 15% Class Participation
• Regular class participation and discussion (10%)
• Preview question submissions (5%)

• 30% Class Presentation
• 55% Final Project
• 10% Project Proposal
• 10% Mid-term Report
• 10% Final Course Presentation (Group-Based)
• 5% Feedbacks for other groups’ final project presentations
• 20% Final Project Report

In Class Presentation
• Starting from Week 3, each lecture will consist of one research topic of large language

models, with 4 state-of-the-art papers. Each lecture will be covered by two students.
• Each student is required to do a 30-min presentation in class to cover two papers,

followed by a 5-min Q&A/discussion session.
• Sign-up sheet for paper presentation will be released later this week.
• Remember to send over your slides to the instructor (and cc the TA) before your

presentation:
• For Tuesday classes, send over your slides before the previous Friday 12:00PM
• For Thursday classes, send over your slides before the previous Monday 12:00PM

• When it is not your turn to present, you can preview the paper in advance. Each
student is required to submit 4 preview questions for 4 times (need to be on 4
different dates). Each preview question is submitted for a paper one day before the
presentation. You are also encouraged to raise that question in class.
• Preview questions cannot be simple ones like “what is the aim of the paper?”

In Class Presentation

• How to present a paper?
• Think about the context of the research: introduce the background of the

research topic
• What is the challenge and contribution of this paper, given the research

background?
• The method: from framework to technical details
• What are some interesting experiment results and observations?
• What could be done in the future?
• Summarize the takeaways/highlights of this paper

In Class Presentation

• More tips to do presentations
• Get familiar with your material. Don't read scripts for the whole time.
• Make eye contact with audiences.
• Make your voice loud enough so that everyone can hear you clearly
• Please control your time(30min)! We will give you notice when your time is

nearly used up.

Final Project

• Students need to form groups of 2-3 people to do a large language
model research project.
• Project proposal deadline: 9/16 11:59PM
• Midterm project report deadline: 10/21 11:59PM
• Final project presentation deadline: 12/2 11:59PM
• We will use two lectures for project presentation: 12/3, 12/5

• Final project report deadline: 12/13 11:59PM

Final Project

• There are typically two types of projects.
• 1) Designing a novel algorithm to train a medium-sized language

model: BERT, GPT-2 for problems that you are interested in.
• https://huggingface.co/models

• 2) Designing a novel algorithm to do inference on large language
models (white box models such as LLaMA2 models, or black box
models such as GPT-4, CLAUDE, etc.) to solve some type of complex
problems, and analyze their limitations. (We may not be able to
reimburse for the API costs)
• https://platform.openai.com/docs/introduction
• https://docs.anthropic.com/claude/reference/getting-started-with-the-api

https://huggingface.co/models
https://platform.openai.com/docs/introduction
https://docs.anthropic.com/claude/reference/getting-started-with-the-api

Final Project Presentation

• Near the end of the semester, we will create a signup sheet for the
final project presentation.
• We anticipate to distribute project presentations into two lectures

(12/3, 12/5), and you will need to signup for a time slot.
• Length of project presentation: 5-8min depending on the number of

groups
• Students will need to submit feedback scores for other groups’

presentation (through Google Form).

Content

• Course Logistics
• Covered Topics Preview
• Language Model Basics

Large Language Model Pre-training
Framework

Language Model Architectures (will be
covered in the next course)

Encoder Models Decoder Models Encoder-Decoder Models

Topics: Language Model Reasoning

• Google’s Minerva
Model

Topics: Language Model Calibration

Topics: Efficient Fine-Tuning

Unsupervised/Self-supervised;
On large-scale general domain corpus

Task-specific supervision;
On target corpus

Topics: Multimodal Language Model

Topics: Language Model as Agents

Topics: Bias of Language Models

• Different language models may have different political views.

Content

• Course Logistics
• Covered Topics Preview
• Language Model Basics

What are language models?

Language models

• The classic definition of a language model (LM) is a probability
distribution over each token sequence 𝑤!, 𝑤", … , 𝑤# , whether it’s a
good or bad one.
• Sally fed my cat with meat: P(Sally, fed, my, cat, with, meat) = 0.03,
• My cat fed Sally with meat: P(My, cat, fed, Sally, with, meat) = 0.005,
• fed cat Sally meat my with: P(fed, cat, Sally, meat, my, with) = 0.0001

Autoregressive language models
• The chain rule of probability:
• P(Sally, fed, my, cat, with, meat) = P(Sally)
 * P(fed | Sally)
 * P(my | Sally, fed)
 * P(cat | Sally, fed, my)
 * P(with | Sally, fed, my, cat)
 * P(meat | Sally, fed, my, cat, with)

Sequence generation with language model

• If we already have a good language model, a given text prompt 𝑤 !:# ,
and we want the model to generate a good sentence completion with
the length of L: How to find 𝑤 #%!:#%& with the highest probability?
• Enumerate over all possible combinations?

• Next token prediction: generating the next token step by step,
starting from 𝑤#%! using 𝑝 𝑤#%! 𝑤 !:#

• To select the next token with 𝑝 𝑤#%! 𝑤 !:# , there are also different
decoding approaches.

Different Decoding Approaches

• Greedy decoding: At each step, always select 𝑤' with the highest
𝑝 𝑤' 𝑤 !:'(! .
• Beam Search: Keep track of k possible paths at each step instead of

just one. Reasonable beam size k: 5-10 .

Different Decoding Approaches

• Top-k sampling: At each step, randomly sample the
next token from 𝑝 𝑤! 𝑤 ":!$" , but restrict to only
the k most probable tokens.
• Allows you to control diversity:

• Increase k gives you more creative / risky outputs.
• Decrease k gives you safer outputs.

• Top-p sampling: At each step, randomly sample the
next token from 𝑝 𝑤! 𝑤 ":!$" , but restrict to the set
of tokens with a cumulative probability of p
• throw away long-tailed tokens

• Top-k and Top-p can be used together!

Q: How to train a good language model?

Q: How to train a good language model?

A: Maximizing the language model probability of an observed large corpus.

N-gram Language Models
• Bigram models

<s> is the starting token of a sentence.
</s> is the ending token of a sentence.

Curse of Dimensionality

• Limitation of N-gram models
• Limited Context Length: N-grams have a finite context window of length N,

which means they cannot capture long-range dependencies or context
beyond the previous N-1 words
• Sparsity: As N increases, the number of possible N-grams grows exponentially,

leading to sparse data and increased computational demands
• Suppose vocabulary size is V, the number of possible N-grams increases to V^N.

• Usually V (vocabulary size) could be more than ten thousand. Representing
each word as a one-hot vector is inefficient.
• “Dogs” and “cats” are more similar, compared to “dogs” and “rectangular”.

How to represent text more efficiently?
• Word Embedding: A milestone in NLP and ML
• Unsupervised learning of text representations—No supervision needed
• Embed one-hot vectors into lower-dimensional space—Address “curse of

dimensionality”
• Word embedding captures useful properties of word semantics
• Word similarity: Words with similar meanings are embedded closer
• Word analogy: Linear relationships between words (e.g. king - queen = man -

woman)

Word AnalogyWord Similarity

Distributed Representations: Word2Vec

• Assumption: If two words have similar contexts, then
they have similar semantic meanings!
• Word2Vec Training objective:
• To learn word vector representations that are good

at predicting the nearby words.

Co-occurred words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their
Compositionality. NIPS.

feed

my

cat

with

meat

Considering subwords: fastText
• fastText improves upon Word2Vec by incorporating subword information into word

embedding

• fastText allows sharing subword representations across words, since words are represented
by the aggregation of their n-grams

Tri-gram extraction

Represent a word by the sum of the
vector representations of its n-grams

N-gram embedding

Word2Vec probability expression

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, 5, 135-146.

Limitations of Word2Vec embeddings

• 1) They are context-free embeddings: each word is mapped to only
one vector regardless of its context!
• E.g. “bank” is a polysemy, but only has one representation

• 2) It does not consider the order of words
• 3) It treats the words in the context window equally

“Open a bank account” “On the river bank”

Share representation

Next Lecture: Self-Attention and Transformers

