

JAMES MCKELVEY School of Engineering

CSE 561A: Large Language Models

Fall 2024

Lecture 1: Course Overview Jiaxin Huang

Content

- Course Logistics
- Language Model Basics
- Covered Topics Preview

Course Logistics

- Instructor: Jiaxin Huang (jiaxinh@wustl.edu)
- Teaching Assistant:
 - Chengsong Huang (chengsong@wustl.edu)
- Course meeting times: 2:30pm 3:50pm Tuesday / Thursday
- Location: Crow / 206

Course Logistics

- Course Syllabus: https://teapot123.github.io/CSE561A_2024fl/
- Canvas: <u>https://wustl.instructure.com/courses/133999</u> (will be published soon)
- We will be using Canvas for announcements, and project report submissions, and Piazza for discussions.

Course Structure

- Advanced Research-Oriented Course
 - Pre-requisites: Students are expected to understand concepts in machine learning (CSE 417T/517A)
 - We will be teaching and discussing state-of-the-art papers about large language models
 - Lectures of fundamentals of Large Language Models (language model architecture and training framework)
 - Lectures of Large Language Model Capabilities, Applications and Issues
 - This part consists of a list of frontier research papers (will be released later), from which students will choose their interested papers to present in the class
 - Students who are not presenters are expected to participate in discussion and submit 4 preview questions
 - Guest lectures on frontier research topics

Grading

- 15% Class Participation
 - Regular class participation and discussion (10%)
 - Preview question submissions (5%)
- 30% Class Presentation
- 55% Final Project
 - 10% Project Proposal
 - 10% Mid-term Report
 - 10% Final Course Presentation (Group-Based)
 - 5% Feedbacks for other groups' final project presentations
 - 20% Final Project Report

In Class Presentation

- Starting from Week 3, each lecture will consist of one research topic of large language models, with 4 state-of-the-art papers. Each lecture will be covered by two students.
- Each student is required to do a 30-min presentation in class to cover two papers, followed by a 5-min Q&A/discussion session.
- Sign-up sheet for paper presentation will be released later this week.
- Remember to send over your slides to the instructor (and cc the TA) before your presentation:
 - For Tuesday classes, send over your slides before the previous Friday 12:00PM
 - For Thursday classes, send over your slides before the previous Monday 12:00PM
- When it is not your turn to present, you can preview the paper in advance. Each student is required to submit 4 preview questions for 4 times (need to be on 4 different dates). Each preview question is submitted for a paper one day before the presentation. You are also encouraged to raise that question in class.
 - Preview questions cannot be simple ones like "what is the aim of the paper?"

In Class Presentation

- How to present a paper?
 - Think about the context of the research: introduce the background of the research topic
 - What is the challenge and contribution of this paper, given the research background?
 - The method: from framework to technical details
 - What are some interesting experiment results and observations?
 - What could be done in the future?
 - Summarize the takeaways/highlights of this paper

In Class Presentation

- More tips to do presentations
 - Get familiar with your material. Don't read scripts for the whole time.
 - Make eye contact with audiences.
 - Make your voice loud enough so that everyone can hear you clearly
 - Please control your time(30min)! We will give you notice when your time is nearly used up.

Final Project

- Students need to form groups of 2-3 people to do a large language model research project.
- Project proposal deadline: 9/16 11:59PM
- Midterm project report deadline: 10/21 11:59PM
- Final project presentation deadline: 12/2 11:59PM
 - We will use two lectures for project presentation: 12/3, 12/5
- Final project report deadline: 12/13 11:59PM

Final Project

- There are typically two types of projects.
- 1) Designing a novel algorithm to train a medium-sized language model: BERT, GPT-2 for problems that you are interested in.
 - <u>https://huggingface.co/models</u>
- 2) Designing a novel algorithm to do inference on large language models (white box models such as LLaMA2 models, or black box models such as GPT-4, CLAUDE, etc.) to solve some type of complex problems, and analyze their limitations. (We may not be able to reimburse for the API costs)
 - <u>https://platform.openai.com/docs/introduction</u>
 - https://docs.anthropic.com/claude/reference/getting-started-with-the-api

Final Project Presentation

- Near the end of the semester, we will create a signup sheet for the final project presentation.
- We anticipate to distribute project presentations into two lectures (12/3, 12/5), and you will need to signup for a time slot.
- Length of project presentation: 5-8min depending on the number of groups
- Students will need to submit feedback scores for other groups' presentation (through Google Form).

Content

- Course Logistics
- Covered Topics Preview
- Language Model Basics

Large Language Model Pre-training Framework

Step 1 Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

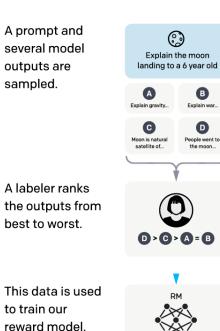
٢

Explain the moon

landing to a 6 year old

Step 2

Collect comparison data, and train a reward model.



D > C > A = B

Step 3

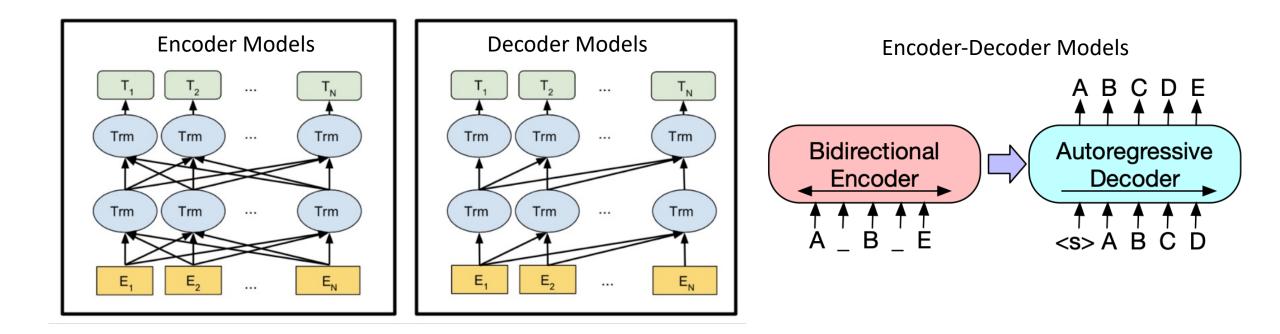
Optimize a policy against the reward model using reinforcement learning.



The reward is used to update the policy using PPO.

the output.

Language Model Architectures (will be covered in the next course)



Topics: Language Model Reasoning

 Google's Minerva Model

Minerva

Question: Assume that the variance of the first n natural numbers is 10, and the variance of the first m even natural numbers is 16. Compute m + n.

Model output: Let σ^2 be the variance of the first m even natural numbers, and τ^2 be the variance of the first n natural numbers. Then, we have $\tau^2 = \frac{n^2 - 1}{12}$ and $\sigma^2 = \frac{m^2 - 1}{3}$. We solve the system of equations:

$$\frac{n^2 - 1}{12} = 10$$
$$\frac{m^2 - 1}{3} = 16.$$

This translates into the system

$$n^2 = 121$$

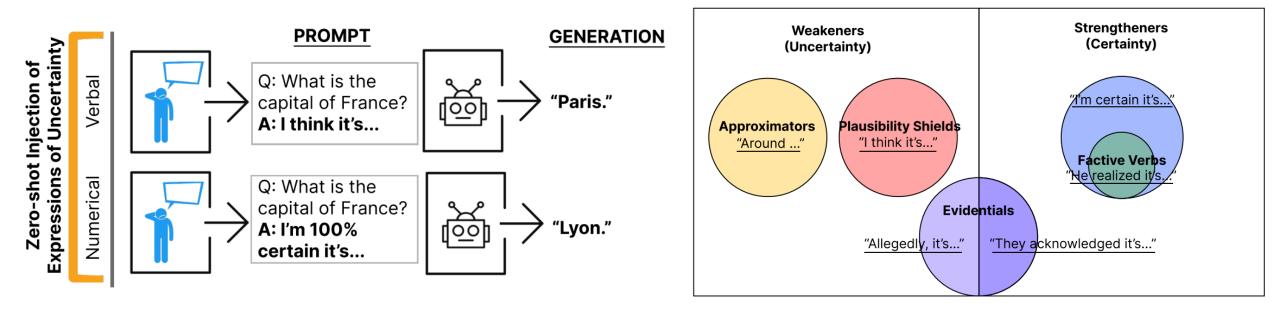
 $m^2 = 48 + 1 = 49.$

Therefore,
$$n = \lfloor 11 \rfloor$$
 and $m = \lfloor 7 \rfloor$, so $n + m = \lfloor 18 \rfloor$.

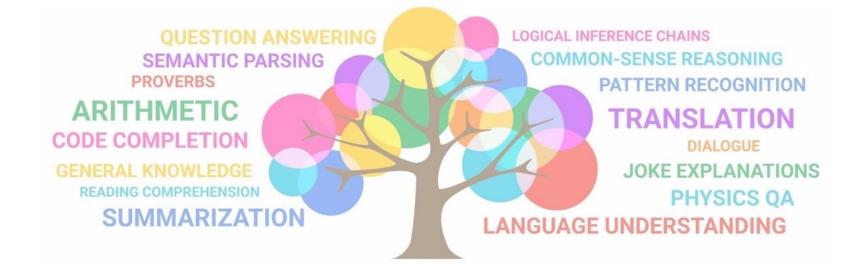
Question: For every $a, b, b \neq a$ prove that $\frac{a^2+b^2}{2} > \left(\frac{a+b}{2}\right)^2.$ **Model output:** $\frac{a^2+b^2}{2} > \left(\frac{a+b}{2}\right)^2$ $\iff \frac{a^2 + b^2}{2} > \frac{a^2 + b^2 + 2ab}{4}$ $\iff a^2 + b^2 > \frac{a^2 + b^2 + 2ab}{2}$ $\iff 2a^2 + 2b^2 > a^2 + b^2 + 2ab$ $\iff a^2 + b^2 > 2ab$ $\iff a^2 + b^2 - 2ab > 0$ $\iff (a-b)^2 > 0$

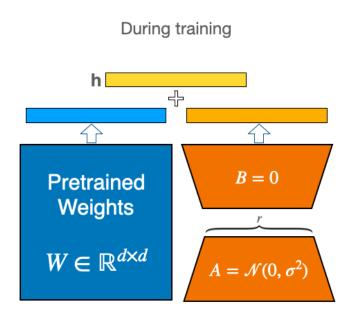
which is true, because the square of a real number is positive.

Topics: Language Model Calibration



Topics: Efficient Fine-Tuning

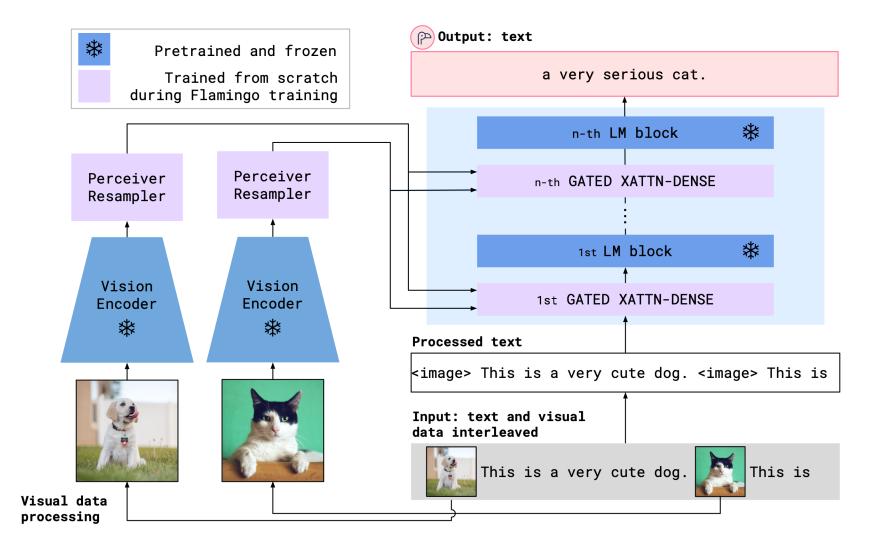




Х

Unsupervised/Self-supervised; On large-scale general domain corpus Task-specific supervision; On target corpus

Topics: Multimodal Language Model



Topics: Language Model as Agents

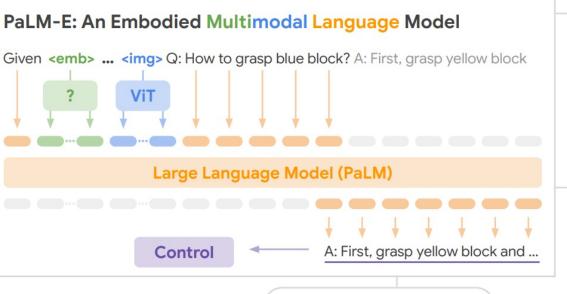
Mobile Manipulation

Human: Bring me the rice chips from the drawer. Robot: 1. Go to the drawers, 2. Open top drawer. | see . 3. Pick the green rice chip bag from the drawer and place it on the counter.

Visual Q&A, Captioning ...

Given ****. Q: What's in the image? Answer in emojis. A: 🍏 🍌 🍻 為 🍑 🛅 🛵.

Describe the following : A dog jumping over a hurdle at a dog show.



Language Only Tasks

Here is a Haiku about embodied language models: Embodied language models are the future of natural language

Q: Miami Beach borders which ocean? A: Atlantic.

Task and Motion Planning

to grasp blue block? A: First grasp yellow block and place it on the table, then grasp the blue block.

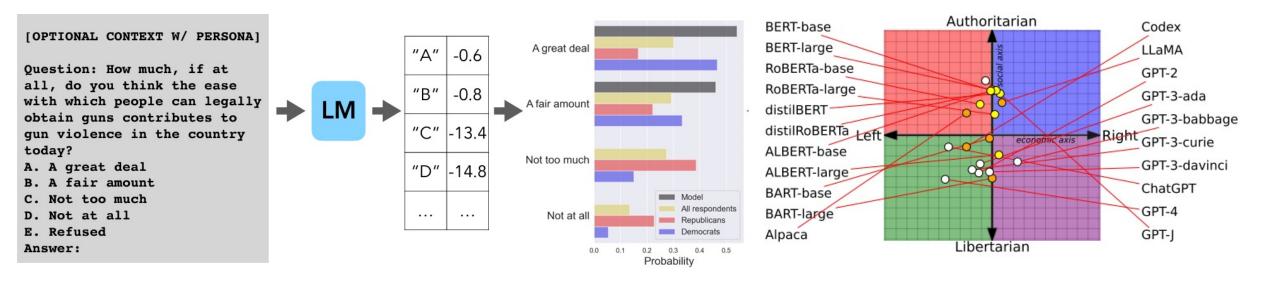
Tabletop Manipulation

Given Task: Sort colors into corners. Step 1. Push the green star to the bottom left. Step 2. Push the green circle to the green star.

Q: What is 372 x 18? A: 6696. Language models trained on robot sensor data can be used to guide a robot's actions.

Topics: Bias of Language Models

Different language models may have different political views.



Content

- Course Logistics
- Covered Topics Preview
- Language Model Basics

What are language models?

Language models

- The classic definition of a language model (LM) is a probability distribution over each token sequence $[w_1, w_2, ..., w_n]$, whether it's a good or bad one.
- Sally fed my cat with meat: P(Sally, fed, my, cat, with, meat) = 0.03,
- My cat fed Sally with meat: P(My, cat, fed, Sally, with, meat) = 0.005,
- fed cat Sally meat my with: P(fed, cat, Sally, meat, my, with) = 0.0001

Autoregressive language models

- The chain rule of probability:
- P(Sally, fed, my, cat, with, meat) = P(Sally)

* P(fed | Sally)

- * P(my | Sally, fed)
- * P(cat | Sally, fed, my)
- * P(with | Sally, fed, my, cat)
- * P(meat | Sally, fed, my, cat, with)

Conditional probability

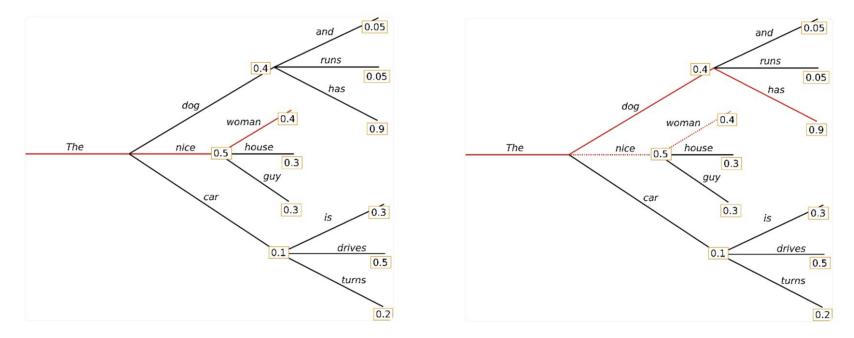
 $p(w_1, w_2, w_3, \dots, w_N) = p(w_1) p(w_2|w_1) p(w_3|w_1, w_2) \times \dots \times p(w_N|w_1, w_2, \dots, w_{N-1})$

Sequence generation with language model

- If we already have a good language model, a given text prompt $w_{[1:n]}$, and we want the model to generate a good sentence completion with the length of L: How to find $w_{[n+1:n+L]}$ with the highest probability?
- Enumerate over all possible combinations?
- Next token prediction: generating the next token step by step, starting from w_{n+1} using $p(w_{n+1}|w_{[1:n]})$
- To select the next token with $p(w_{n+1}|w_{[1:n]})$, there are also different decoding approaches.

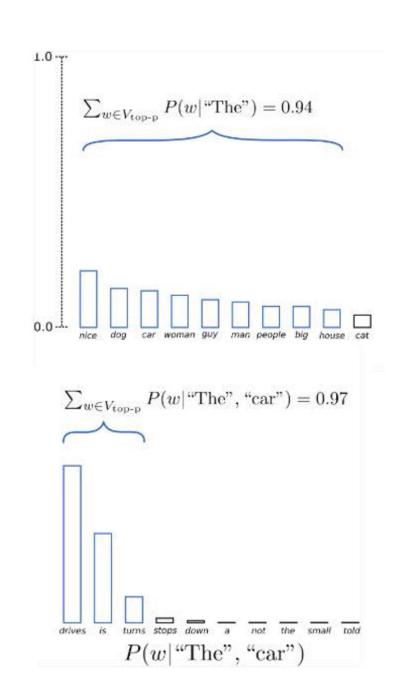
Different Decoding Approaches

- Greedy decoding: At each step, always select w_t with the highest $p(w_t | w_{[1:t-1]})$.
- Beam Search: Keep track of k possible paths at each step instead of just one. Reasonable beam size k: 5-10.



Different Decoding Approaches

- Top-k sampling: At each step, randomly sample the next token from $p(w_t | w_{[1:t-1]})$, but restrict to only the k most probable tokens.
- Allows you to control diversity:
 - Increase k gives you more creative / risky outputs.
 - Decrease k gives you safer outputs.
- Top-p sampling: At each step, randomly sample the next token from $p(w_t | w_{[1:t-1]})$, but restrict to the set of tokens with a cumulative probability of p
 - throw away long-tailed tokens
- Top-k and Top-p can be used together!



Q: How to train a good language model?

Q: How to train a good language model?

A: Maximizing the language model probability of an observed large corpus.

N-gram Language Models

• Bigram models

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

P(i|<s>) = 0.25P(english|want) = 0.0011P(food|english) = 0.5P(</s>|food) = 0.68

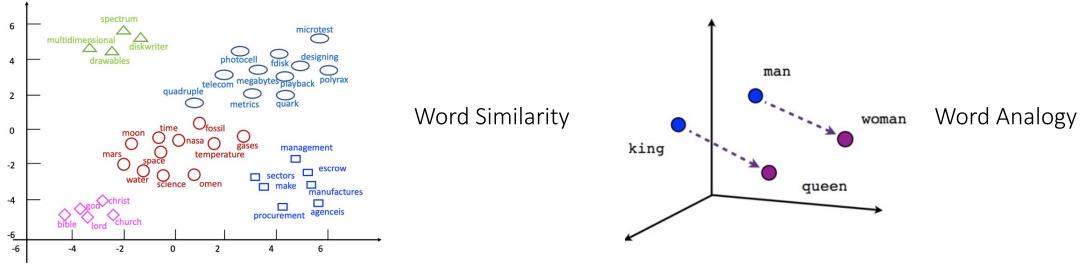
<s> is the starting token of a sentence. </s> is the ending token of a sentence.

Curse of Dimensionality

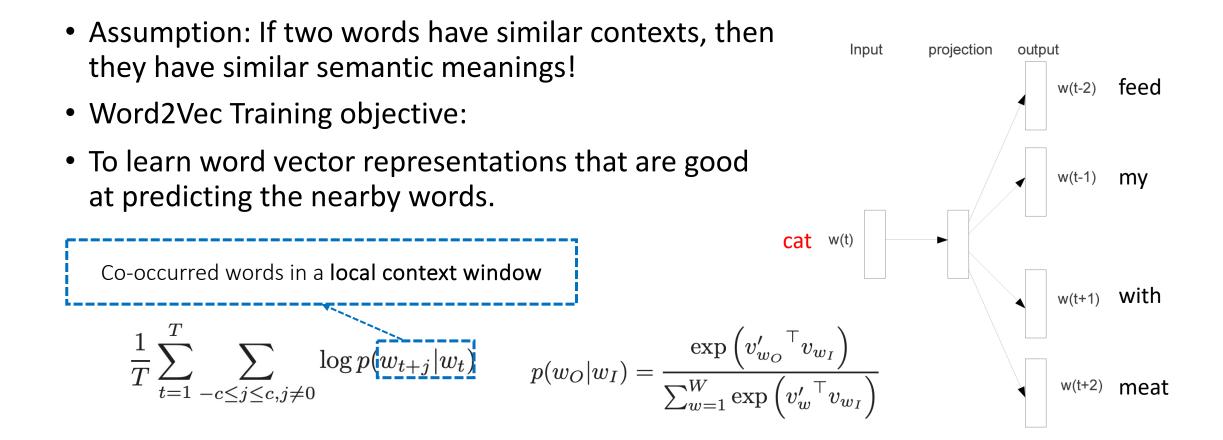
- Limitation of N-gram models
 - Limited Context Length: N-grams have a finite context window of length N, which means they cannot capture long-range dependencies or context beyond the previous N-1 words
 - Sparsity: As N increases, the number of possible N-grams grows exponentially, leading to sparse data and increased computational demands
 - Suppose vocabulary size is V, the number of possible N-grams increases to V^N.
 - Usually V (vocabulary size) could be more than ten thousand. Representing each word as a one-hot vector is inefficient.
 - "Dogs" and "cats" are more similar, compared to "dogs" and "rectangular".

How to represent text more efficiently?

- Word Embedding: A milestone in NLP and ML
 - Unsupervised learning of text representations—No supervision needed
 - Embed one-hot vectors into lower-dimensional space—Address "curse of dimensionality"
 - Word embedding captures useful properties of word semantics
 - Word similarity: Words with similar meanings are embedded closer
 - Word analogy: Linear relationships between words (e.g. king queen = man woman)



Distributed Representations: Word2Vec



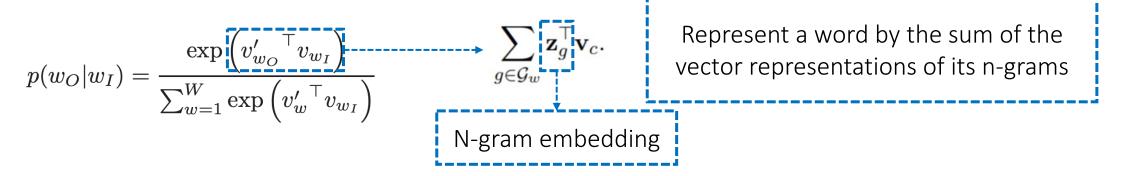
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS.

Considering subwords: fastText

 fastText improves upon Word2Vec by incorporating subword information into word embedding

 fastText allows sharing subword representations across words, since words are represented by the aggregation of their n-grams

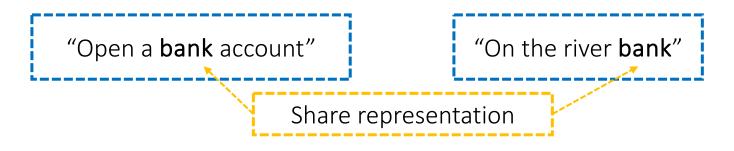
Word2Vec probability expression



Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, 5, 135-146.

Limitations of Word2Vec embeddings

- 1) They are **context-free** embeddings: each word is mapped to only one vector regardless of its context!
 - E.g. "bank" is a polysemy, but only has one representation



- 2) It does not consider the order of words
- 3) It treats the words in the context window equally

Next Lecture: Self-Attention and Transformers