
Efficient Fine-Tuning
of

Large Language Models

10/1/2024
Sally Lee, Chen Wang, Wanzhou Liu

Overview of Parameter-Efficient Fine-Tuning

• Prompt-based

● Prompt Tuning: Simple yet effective at learning soft prompts to condition frozen language models to
perform specific downstream tasks

• Adapter-based

● Adapter Modules: Small, trainable layers into a pre-trained model, allowing task-specific adjustments while
keeping the majority of the model's parameters frozen, reducing the number of parameters that need to be
trained.

• Reparametrization-based

● LoRA, DoRA: Apply low-rank decomposition to reduce the number of trainable parameters during fine-
tuning.

The Power of Scale for Parameter-
Efficient Prompt Tuning

9/2/2021
Brian Lester, Rami Al-Rfou, Noah Constant

https://arxiv.org/abs/2104.08691

How to adapt general-purpose models to downstream tasks

• Model tuning (fine tuning): adjust every weight in the network
○ Standard practice since GPT and BERT
○ Problem: impractical to store and serve tuned copy of model for each downstream task as model

becomes larger

• Prompt design: hand-craft text prompt with a description or examples of the task
○ Share a single frozen pre-trained language model (all weights fixed) across all downstream tasks
○ GPT-3 showed a frozen model can be conditioned to perform different tasks through “in-context”

learning
○ Example: condition a model for sentiment analysis

■ Attach the prompt “Is the following movie review positive or negative?” before the input
sequence “This movie was amazing!”

○ Pros: simplifies serving and allows for mixed-task inference
○ Cons: text prompts require manual effort to design; even well-designed prompts perform poorly

compared to model tuning

Prompt Tuning

• More efficient method for conditioning frozen models using tunable soft prompts
• Soft prompts:

○ like engineered text prompts, concatenated to input text
○ instead of selecting from existing vocabulary items, “tokens” of the soft prompt are learnable vectors
○ can be optimized end-to-end over training dataset
○ allows prompt to condense information from datasets with thousands / millions of examples

■ Huge improvement from discrete text prompts - usually limited to under 50 examples due to
model’s input length constraints

Creating Soft Prompts

1. Initialize prompt as fixed-length sequence of vectors

2. Attach vectors to beginning of each embedded input and feed combined sequence
into model

3. Calculate error between model’s prediction and target, back-propagate to calculate
gradients, but only apply updates to new learnable vectors, keeping core model frozen

Storage Cost Comparison

• Model tuning: requires making a task-specific
copy of entire pre-trained model for each
downstream task and performing inference in
separate batches

• Prompt tuning: only requires storing small task-
specific prompt for each task and enables mixed-
task inference using original pre-trained model

• Example with T5 XXL model:
◦ Each copy of tuned model requires 11

billion parameters
◦ Tuned prompt only requires 20K

parameters per task (prompt length = 5
tokens)
■ reduction of over 5 orders of

magnitude

Prompt Tuning becomes more competitive with scale

• Prompt Tuning significantly
outperforms prompt design

• As model size increases, prompt
tuning catches up with performance
of model tuning

Ablation Study

1. Prompt Length

2. Prompt Initialization

3. Pre-training method

4. LM adaptation steps

Prompt Length

• parameter cost of method: EP

• E: token embedding dimension

• P: prompt length

• shorter the prompt, fewer new parameters to tune, so want to find a minimal length
that still performs well

Prompt Length Results

• for most model sizes, longer the
prompt higher the performance

• XXL model still yields relatively strong
performance with single token prompt

• larger the model, the less
conditioning signal is needed to achieve
target behavior

T5 models pre-train on span corruption objective

• tasked with reconstructing masked spans in the input text, which are marked with
unique sentinel tokens

• ex. “Thank you <X> me to your party <Y> week

• target output text consists of all masked content, separated by sentinels, plus a final
sentinel

• ex. “<X> for inviting <Y> last <Z>”

Concerns around Span Corruption in Prompt Tuning

• never seen truly natural input text (free of sentinel tokens)

• never asked to predict truly natural targets

• every pre-training target will begin with a sentinel

• unlike fine-tuning, prompt alone might struggle to override unnatural tendency to
output sentinels since decoder priors cannot be adjusted

Experiment with T5 in 3 Settings

1. Span Corruption: use pre-trained T5 as frozen model, and test its ability to output the
expected text for downstream tasks

2. Span Corruption + sentinel: use the same model, but prepend all downstream targets
with a sentinel to more closely resemble targets seen in pre-training

3. LM adaptation: continue T5’s self-supervised training for a small number of additional
steps, but use LM objective

• given natural text prefix as input, model must produce natural text
continuation as output

• happens only once, producing a single frozen model to be reused for prompt
tuning across any number of downstream tasks

Pre-training methods

• T5’s default span corruption objective is
not well-suited for training frozen models
to be later conditioned by prompts

• even adding sentinel to downstream
targets shows little benefit

• LM adaptation adds value across all
model sizes

• XXL model size is most forgiving even
with span corruption

Span Corruption’s Instability across model sizes

• small model outperforms base, large, and XL
models

• for many tasks, mid-sized models never learn
to output a legal class label and thus score 0%

• 2 most common error modes: copying
subspans from input and predicting empty
string

• models pre-trained with span corruption
objective are unreliable: only 2 out of 5 models
work well

Prompt Initialization Methods

• random: sample uniformly from range [-0.5, 0.5]

• sampled vocabulary: restrict to 5000 most common tokens in T5’s sentence-piece
vocabulary, which is ordered by likelihood in pre-training corpus

• class label: use embeddings for string representations of each class in downstream task
to initialize a token in prompt

• multi-token: average token embeddings

• longer prompts: fall back to sampled vocab strategy to fill in prompt if
expended class labels before initializing all prompt tokens

Prompt Initialization Results

• class-based initialization performs best

• random initialization performs worst

• little difference for XXL size model

LM adaptation steps

• longer adaptation performs better

• transition from span corruption to
language modeling objective is not a trivial
change

• making an effective switch takes an
investment of training resources (10% of
the steps of the original T5 pre-training)

• again, little difference for XXL size model

Comparison to Similar Approaches

• Prefix Tuning:
○ learn sequence of prefixes that are

prepended at every transformer layer
○ like learning transformer activations that are

fixed across examples at every network layer
○ Prompt tuning uses single prompt

representation prepended to embedded
input

• WARP:
○ prompt parameters are added to input layer
○ Works with masked language models, relying

on a mask token and a learnable output layer
to project mask to class logits

○ Limited to classification
○ Prompt tuning does not require any changes

to input or task-specific head

Resilience to Domain Shift

Transfer between 2 paraphrase detection tasks

• train prompt tuning and model tuning
solutions on one task and evaluate zero-
shot on a closely related task

• Quora Question Pairs: detecting if two
questions are duplicates

• MRPC: detecting if 2 sentences from
news articles are paraphrases

• supports that model tuning may be
over-parameterized and more prone to
overfit the training task

Prompt Ensembling

• more efficient at ensembling multiple
adaptations of pre-trained language model

• storage: training N prompts on same task
creates N separate models for a task but
shares parameters

• inference: to process one example, execute
a single forward pass with batch size N,
replicating example across batch and varying
the prompt, rather than computing forward
passes of N different models

Interpretability of learned soft prompts

• compute nearest neighbors to each prompt token from frozen model’s vocabulary

• similarity metric: cosine distance between vocabulary embedding vector and
prompt token representation

• prompts are learning word-like representations

• top-5 nearest neighbors form tight semantic clusters

• {Technology, technology, Technologies, technologies}

• {entirely, completely, totally, altogether}

Prompt Tuning Key Takeaways

• simple but effective mechanism for learning “soft prompts” to condition frozen
language models to perform specific downstream tasks

• soft prompts are learned through back-propagation and can be tuned to incorporate
signals from any number of labeled examples

• as models exceed billions of parameters, prompt tuning closes the gap and matches the
strong performance of model tuning (where all model weights are tuned)

• robust to domain transfer and enables efficient prompt ensembling

Parameter-Efficient Transfer
Learning for NLP

Neil Houlsby 1 Andrei Giurgiu 1 * Stanisław Jastrze¸bski 2 * Bruna Morrone 1 Quentin de
Laroussilhe 1

Andrea Gesmundo 1 Mona Attariyan 1 Sylvain Gelly

https://arxiv.org/abs/1902.00751

Introduction: Transfer Learning in NLP

• Definition: Transfer learning is a technique where a model is first trained on a large dataset
(often for general purposes), and then fine-tuned on a smaller, task-specific dataset.

• Current Fine-Tuning Approach: Full Fine-Tuning: When adapting a pre-trained model to a
new task, all of the model’s parameters are fine-tuned for that task.

• Problem: parameter inefficient, large storage requirements, and redundant computations

• Goal: To develop a method that is parameter-efficient and can handle many downstream
tasks with minimal additional training, while maintaining competitive performance.

Adapter-Based Tuning Approach

• The authors propose a solution to the above challenges
using adapter modules, which are small, trainable
components added to a pre-trained model.

• Adapter modules allow the model to adapt to new tasks
with minimal additional parameters, making the approach
efficient in terms of both memory and computation.

• Only 3.6% of the model's parameters are newly trained!

What Are Adapter Modules?

• Definition: Adapter modules are small trainable layers that are inserted between the
layers of a pre-trained neural network.

• They allow the core model to remain frozen while only a small number of task-specific
parameters are trained.

• Key idea: these small modules “adapt” the pre-trained features to the specific
requirements of new tasks, hence the name "adapter."

How Adapter Modules work:

1) Placement 2) Training 3) Design

Adapter Module Architecture

• Bottleneck Design: The adapter module first projects
the high-dimensional features down to a smaller latent
space. After applying a nonlinearity, the features are
then projected back up to the original dimension.

• Skip Connection: Adapter modules include skip
connections across the layers.

• Adapter modules are added to the Transformer layers
at two specific points: After the multi-head attention
mechanism and After the feed-forward layer

Adapter Module Architecture

• Consider a neural network with parameters 𝒘: ϕ𝒘(𝒙).

• Feature-based transfer composes ϕ𝒘 with a new function, χ𝒗, to
yield χ𝒗(ϕ𝒘(𝒙)). Only the new, task-specific, parameters, 𝒗, are then
trained.

• Fine-tuning involves adjusting the original parameters, 𝒘, for
each new task.

• For adapter tuning, a new function, ψ𝒘,𝒗(𝒙), is defined. The initial
parameters 𝒗0 are set such that the new function resembles the
original: ψ𝒘,𝒗0(𝒙)≈ϕ𝒘(𝒙). During training, only 𝒗 are tuned. If one
chooses |𝒗|≪|𝒘|, the resulting model requires ∼|𝒘| parameters
for many tasks.

Experiments: GLUE Benchmark

• The authors evaluate the effectiveness of adapter-based tuning on the GLUE
benchmark by integrating adapter modules into the pre-trained BERT LARGE model

• The difference in accuracy between full fine-tuning and adapter-based tuning is within
0.4%, demonstrating that performance is preserved while drastically reducing the
parameter overhead.

Experiments: Additional Text Classification Tasks

• In addition to the GLUE benchmark, the
authors evaluated the adapter-based
tuning method on 17 publicly available
text classification tasks.

• Training examples: from 900 to
330,000+

• Classes: from 2 to 157

• Average text length ranges from 57 to
1,900 characters

Key Features of Adapter Modules

• Parameter Efficiency: Small Parameter Footprint, High Degree of Parameter Sharing

• Extensibility: Easily Scalable to New Tasks, No Interference with Previous Tasks

• Compactness: Bottleneck Architecture, Minimal Additional Overhead

• Near State-of-the-Art Performance: achieve within 0.4% of the full fine-tuned models’
performance

• Stability: Skip Connections, Identity Initialization

• Resource Efficiency: Reduced Computational Cost

• Flexibility in Architecture: Flexible Placement, Customizable Size

LoRA: Low-Rank Adaptation
of Large Language Models

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen

ICLR 2022

https://arxiv.org/abs/2106.09685

Background

• The idea behind Low-Rank Adaptation (LoRA) is built upon the observation that
the weights learned by Large Language Models after training often contain
redundancies.

• Therefore, instead of fine-tuning the entire set of weights in the LLM, we can
streamline the process by focusing on a low-rank approximation of the
weights — essentially, a smaller set of weights that eliminates these
redundancies.

Problem Statement
• During full fine-tuning, the model is initialized to pre-trained weights Φ! and

updated to Φ! + ∆Φ by repeatedly following the gradient to maximize the
conditional language modeling objective:

• In comparison, LoRA is a more parameter-efficient approach, where the task-
specific parameter increment ∆Φ = ∆Φ(Θ) is further encoded by a much
smaller-sized set of parameters Θ with |Θ| ≪ |Φ!|. The task of finding ∆Φ thus
becomes optimizing over Θ:

LoRA: Low-Rank Adaptation

• By freezing the weights of the pre-
trained model, LoRA performs a rank
decomposition of the matrices for the
incremental portion of the weights
learned during the fine-tuning phase,
and injects the rank-decomposed
matrices A & B into each layer of the
model's Transformer architecture.

Principle & Theoretical Foundation
• Suppose 𝑊! ∈ ℝ"×$ denotes the weight matrix in the neural network layer.

• We can constrain this update by representing the latter with a low-rank
decomposition

𝑊! + ∆𝑊 = 𝑊! + 𝐵𝐴, where 𝐵 ∈ ℝ"×% , 𝐴 ∈ ℝ%×$, and the rank 𝑟 ≪ min(𝑑, 𝑘).

• Using regular backpropagation, we can obtain the weight update ∆𝑊, which is
usually computed as the negative gradient of the loss multiplied by the learning
rate ∆𝑊 = 𝛼 −∇𝐿&! . T

• Then we can update 𝑊′ by 𝑊' = 𝑊! + ∆𝑊.

Advantages of LoRA

• A Generalization of Full Fine-tuning. A more general form of fine-tuning allows
the training of a subset of the pre-trained parameters. LoRA takes a step further
and does not require the accumulated gradient update to weight matrices to
have full-rank during adaptation.

• No Additional Inference Latency. When deployed in production, it can explicitly
compute and store W = 𝑊!𝑥 + 𝐵𝐴𝑥 and perform inference as usual. Note that
both 𝑊! and 𝐵𝐴 are in 𝑅"×$. When we need to switch to another downstream
task, we can recover 𝑊! by subtracting 𝐵𝐴 and then adding a different 𝐵′𝐴′ , a
quick operation with very little memory overhead.

Comparison Results

Comparison Results

Further Exploration

• Which weight matrices in transformers should we apply LoRA to?

Further Exploration

• What is the optimal rank r for LoRA?

DoRA: Weight-Decomposed
Low-Rank Adaptation
Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo

Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, Min-
Hung Chen

ICML 2024 (Oral)

https://arxiv.org/abs/2402.09353

Limitation of LoRA
• From the regression line for (∆D, ∆M) of both DoRA and FT, a distinct negative

slope characterizes DoRA and FT, instead of a clear positive correlation shown by
LoRA.

DoRA: Weight-
Decomposed Low-
Rank Adaptation

• Weight-Decomposed LowRank
Adaptation (DoRA) decomposes the
pre-trained weight into two
components, magnitude and
direction, for fine-tuning, specifically
employing LoRA for directional
updates to efficiently minimize the
number of trainable parameters.

Principle & Theoretical Foundation
• The core idea of DoRA is to apply updates that not only adjust the magnitude of

the model parameters but also carefully consider their direction.

• This is achieved by scaling the weight gradient and projecting it away from the
current weight matrix.

• The math behind this involves two concepts: scaling by the norm of the update
vector and a projection matrix that ensures orthogonality.

Principle & Theoretical Foundation
• The magnitude and directional variations between the pre-trained weight and

full fine-tuned weight can be defined as follows:

where 𝑀()
*,, and 𝑀!

* are the nth scalars in their respective magnitude vectors, 𝑉()
*,,

and 𝑊!
* are the nth columns in 𝑉(), and 𝑊!.

Principle & Theoretical Foundation

• Based on this, DoRA can be formulated as:

• Recall the LoRA equation of:

Comparison Results

Comparison Results

•DoRA outperforms LoRA in many different aspects across multiple tasks with different parameters.

Contribution
• 1. More detailed control: By targeting the magnitude and direction of the

weights separately, DoRA provides more detailed control over the model fine-
tuning process, which enables more accurate adaptation to specific task
requirements.

• 2. Enhanced learning capability: DoRA's weight decomposition strategy enhances
the model's ability to learn during the fine-tuning process, bringing its
performance on multiple downstream tasks closer to that of a full-parameter
fine-tuning approach.

Contribution
• 3. Maintaining efficiency: Despite its innovation in fine-tuning strategy, DoRA

maintains the efficiency of LoRA and avoids adding extra reasoning burden.

• 4. Improve training stability: DoRA improves the stability of the training process
by decomposing the weights and using low-rank adaptation specifically for the
directions, which helps avoid overfitting and other training problems.

Comparison in PEFT

• Avg. performance: FT > LR > AP > PF > PT
• Convergence rate: FT > AP ≈ LR > PF
• Prompt tuning lags far behind other methods

although easiest to implement

• FT: Fine Tuning
• LR: LoRA
• AP: Adapter
• PF: Prefix Tuning
• PT: Prompt Tuning

Ding et al. (2023) Parameter-efficient fine-tuning of large-scale
pre-trained language models

https://www.nature.com/articles/s42256-023-00626-4
https://www.nature.com/articles/s42256-023-00626-4

