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Overview of Parameter-Efficient Fine-Tuning 

• Prompt-based

● Prompt Tuning: Simple yet effective at learning soft prompts to condition frozen language models to 
perform specific downstream tasks

• Adapter-based

● Adapter Modules: Small, trainable layers into a pre-trained model, allowing task-specific adjustments while 
keeping the majority of the model's parameters frozen, reducing the number of parameters that need to be 
trained.

• Reparametrization-based

● LoRA, DoRA: Apply low-rank decomposition to reduce the number of trainable parameters during fine-
tuning.
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How to adapt general-purpose models to downstream tasks

• Model tuning (fine tuning): adjust every weight in the network
○ Standard practice since GPT and BERT
○ Problem: impractical to store and serve tuned copy of model for each downstream task as model 

becomes larger

• Prompt design: hand-craft text prompt with a description or examples of the task
○ Share a single frozen pre-trained language model (all weights fixed) across all downstream tasks
○ GPT-3 showed a frozen model can be conditioned to perform different tasks through “in-context” 

learning
○ Example: condition a model for sentiment analysis

■ Attach the prompt “Is the following movie review positive or negative?” before the input 
sequence “This movie was amazing!”

○ Pros: simplifies serving and allows for mixed-task inference
○ Cons: text prompts require manual effort to design; even well-designed prompts perform poorly 

compared to model tuning



Prompt Tuning

• More efficient method for conditioning frozen models using tunable soft prompts
• Soft prompts: 

○ like engineered text prompts, concatenated to input text 
○ instead of selecting from existing vocabulary items, “tokens” of the soft prompt are learnable vectors
○ can be optimized end-to-end over training dataset
○ allows prompt to condense information from datasets with thousands / millions of examples

■ Huge improvement from discrete text prompts - usually limited to under 50 examples due to 
model’s input length constraints



Creating Soft Prompts

1. Initialize prompt as fixed-length sequence of vectors

2. Attach vectors to beginning of each embedded input and feed combined sequence 
into model

3. Calculate error between model’s prediction and target, back-propagate to calculate 
gradients, but only apply updates to new learnable vectors, keeping core model frozen



Storage Cost Comparison

• Model tuning: requires making a task-specific 
copy of entire pre-trained model for each 
downstream task and performing inference in 
separate batches

• Prompt tuning: only requires storing small task-
specific prompt for each task and enables mixed-
task inference using original pre-trained model

• Example with T5 XXL model:
◦ Each copy of tuned model requires 11 

billion parameters
◦ Tuned prompt only requires 20K 

parameters per task (prompt length = 5 
tokens)
■ reduction of over 5 orders of 

magnitude 



Prompt Tuning becomes more competitive with scale

• Prompt Tuning significantly 
outperforms prompt design

• As model size increases, prompt 
tuning catches up with performance 
of model tuning



Ablation Study

1. Prompt Length

2. Prompt Initialization

3. Pre-training method

4. LM adaptation steps



Prompt Length

• parameter cost of method: EP

• E: token embedding dimension

• P: prompt length

• shorter the prompt, fewer new parameters to tune, so want to find a minimal length 
that still performs well



Prompt Length Results

• for most model sizes, longer the 
prompt higher the performance

• XXL model still yields relatively strong 
performance with single token prompt

• larger the model, the less 
conditioning signal is needed to achieve 
target behavior



T5 models pre-train on span corruption objective

• tasked with reconstructing masked spans in the input text, which are marked with 
unique sentinel tokens

• ex. “Thank you <X> me to your party <Y> week

• target output text consists of all masked content, separated by sentinels, plus a final 
sentinel

• ex. “<X> for inviting <Y> last <Z>”



Concerns around Span Corruption in Prompt Tuning

• never seen truly natural input text (free of sentinel tokens)

• never asked to predict truly natural targets

• every pre-training target will begin with a sentinel

• unlike fine-tuning, prompt alone might struggle to override unnatural tendency to 
output sentinels since decoder priors cannot be adjusted



Experiment with T5 in 3 Settings

1. Span Corruption: use pre-trained T5 as frozen model, and test its ability to output the 
expected text for downstream tasks

2. Span Corruption + sentinel: use the same model, but prepend all downstream targets 
with a sentinel to more closely resemble targets seen in pre-training

3. LM adaptation: continue T5’s self-supervised training for a small number of additional 
steps, but use LM objective

• given natural text prefix as input, model must produce natural text 
continuation as output

• happens only once, producing a single frozen model to be reused for prompt 
tuning across any number of downstream tasks



Pre-training methods

• T5’s default span corruption objective is 
not well-suited for training frozen models 
to be later conditioned by prompts

• even adding sentinel to downstream 
targets shows little benefit

• LM adaptation adds value across all 
model sizes

• XXL model size is most forgiving even 
with span corruption



Span Corruption’s Instability across model sizes

• small model outperforms base, large, and XL 
models

• for many tasks, mid-sized models never learn 
to output a legal class label and thus score 0%

• 2 most common error modes: copying 
subspans from input and predicting empty 
string

• models pre-trained with span corruption 
objective are unreliable: only 2 out of 5 models 
work well



Prompt Initialization Methods

• random: sample uniformly from range [-0.5, 0.5]

• sampled vocabulary: restrict to 5000 most common tokens in T5’s sentence-piece 
vocabulary, which is ordered by likelihood in pre-training corpus

• class label: use embeddings for string representations of each class in downstream task 
to initialize a token in prompt

• multi-token: average token embeddings

• longer prompts: fall back to sampled vocab strategy to fill in prompt if 
expended class labels before initializing all prompt tokens



Prompt Initialization Results

• class-based initialization performs best

• random initialization performs worst

• little difference for XXL size model 



LM adaptation steps

• longer adaptation performs better

• transition from span corruption to 
language modeling objective is not a trivial 
change

• making an effective switch takes an 
investment of training resources (10% of 
the steps of the original T5 pre-training)

• again, little difference for XXL size model



Comparison to Similar Approaches

• Prefix Tuning: 
○ learn sequence of prefixes that are 

prepended at every transformer layer
○ like learning transformer activations that are 

fixed across examples at every network layer
○ Prompt tuning uses single prompt 

representation prepended to embedded 
input

• WARP: 
○ prompt parameters are added to input layer
○ Works with masked language models, relying 

on a mask token and a learnable output layer 
to project mask to class logits

○ Limited to classification
○ Prompt tuning does not require any changes 

to input or task-specific head



Resilience to Domain Shift



Transfer between 2 paraphrase detection tasks

• train prompt tuning and model tuning 
solutions on one task and evaluate zero-
shot on a closely related task

• Quora Question Pairs: detecting if two 
questions are duplicates

• MRPC: detecting if 2 sentences from 
news articles are paraphrases

• supports that model tuning may be 
over-parameterized and more prone to 
overfit the training task



Prompt Ensembling

• more efficient at ensembling multiple 
adaptations of pre-trained language model

• storage: training N prompts on same task 
creates N separate models for a task but 
shares parameters

• inference: to process one example, execute 
a single forward pass with batch size N, 
replicating example across batch and varying 
the prompt, rather than computing forward 
passes of N different models



Interpretability of learned soft prompts

• compute nearest neighbors to each prompt token from frozen model’s vocabulary

• similarity metric: cosine distance between vocabulary embedding vector and 
prompt token representation

• prompts are learning word-like representations

• top-5 nearest neighbors form tight semantic clusters

• {Technology, technology, Technologies, technologies}

• {entirely, completely, totally, altogether}



Prompt Tuning Key Takeaways

• simple but effective mechanism for learning “soft prompts” to condition frozen 
language models to perform specific downstream tasks

• soft prompts are learned through back-propagation and can be tuned to incorporate 
signals from any number of labeled examples

• as models exceed billions of parameters, prompt tuning closes the gap and matches the 
strong performance of model tuning (where all model weights are tuned)

• robust to domain transfer and enables efficient prompt ensembling
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Introduction: Transfer Learning in NLP

• Definition: Transfer learning is a technique where a model is first trained on a large dataset 
(often for general purposes), and then fine-tuned on a smaller, task-specific dataset.

• Current Fine-Tuning Approach: Full Fine-Tuning: When adapting a pre-trained model to a 
new task, all of the model’s parameters are fine-tuned for that task.

• Problem: parameter inefficient, large storage requirements, and redundant computations

• Goal: To develop a method that is parameter-efficient and can handle many downstream 
tasks with minimal additional training, while maintaining competitive performance.



Adapter-Based Tuning Approach

• The authors propose a solution to the above challenges 
using adapter modules, which are small, trainable 
components added to a pre-trained model.

• Adapter modules allow the model to adapt to new tasks 
with minimal additional parameters, making the approach 
efficient in terms of both memory and computation. 

• Only 3.6% of the model's parameters are newly trained!



What Are Adapter Modules?

• Definition: Adapter modules are small trainable layers that are inserted between the 
layers of a pre-trained neural network. 

• They allow the core model to remain frozen while only a small number of task-specific 
parameters are trained.

• Key idea: these small modules “adapt” the pre-trained features to the specific 
requirements of new tasks, hence the name "adapter."

How Adapter Modules work:

1) Placement     2) Training     3) Design



Adapter Module Architecture

• Bottleneck Design: The adapter module first projects 
the high-dimensional features down to a smaller latent 
space. After applying a nonlinearity, the features are 
then projected back up to the original dimension. 

• Skip Connection: Adapter modules include skip 
connections across the layers. 

• Adapter modules are added to the Transformer layers 
at two specific points: After the multi-head attention 
mechanism and After the feed-forward layer



Adapter Module Architecture

• Consider a neural network with parameters 𝒘: ϕ𝒘(𝒙). 

• Feature-based transfer composes ϕ𝒘 with a new function, χ𝒗, to 
yield χ𝒗(ϕ𝒘(𝒙)). Only the new, task-specific, parameters, 𝒗, are then 
trained. 

• Fine-tuning involves adjusting the original parameters, 𝒘, for 
each new task. 

• For adapter tuning, a new function, ψ𝒘,𝒗(𝒙), is defined. The initial 
parameters 𝒗0 are set such that the new function resembles the 
original: ψ𝒘,𝒗0(𝒙)≈ϕ𝒘(𝒙). During training, only 𝒗 are tuned. If one 
chooses |𝒗|≪|𝒘|, the resulting model requires ∼|𝒘| parameters 
for many tasks. 



Experiments: GLUE Benchmark

• The authors evaluate the effectiveness of adapter-based tuning on the GLUE 
benchmark by integrating adapter modules into the pre-trained BERT LARGE model

• The difference in accuracy between full fine-tuning and adapter-based tuning is within 
0.4%, demonstrating that performance is preserved while drastically reducing the 
parameter overhead.



Experiments: Additional Text Classification Tasks

• In addition to the GLUE benchmark, the 
authors evaluated the adapter-based 
tuning method on 17 publicly available 
text classification tasks.

• Training examples: from 900 to 
330,000+

• Classes: from 2 to 157

• Average text length ranges from 57 to 
1,900 characters



Key Features of Adapter Modules

• Parameter Efficiency: Small Parameter Footprint, High Degree of Parameter Sharing

• Extensibility: Easily Scalable to New Tasks, No Interference with Previous Tasks

• Compactness: Bottleneck Architecture, Minimal Additional Overhead

• Near State-of-the-Art Performance: achieve within 0.4% of the full fine-tuned models’ 
performance

• Stability: Skip Connections, Identity Initialization

• Resource Efficiency: Reduced Computational Cost

• Flexibility in Architecture: Flexible Placement, Customizable Size



LoRA: Low-Rank Adaptation 
of Large Language Models

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen

ICLR 2022

https://arxiv.org/abs/2106.09685



Background

• The idea behind Low-Rank Adaptation (LoRA) is built upon the observation that 
the weights learned by Large Language Models after training often contain 
redundancies.

• Therefore, instead of fine-tuning the entire set of weights in the LLM, we can 
streamline the process by focusing on a low-rank approximation of the 
weights — essentially, a smaller set of weights that eliminates these 
redundancies.



Problem Statement
• During full fine-tuning, the model is initialized to pre-trained weights Φ! and 

updated to Φ! + ∆Φ by repeatedly following the gradient to maximize the 
conditional language modeling objective:

• In comparison, LoRA is a more parameter-efficient approach, where the task-
specific parameter increment ∆Φ = ∆Φ(Θ) is further encoded by a much 
smaller-sized set of parameters Θ with |Θ| ≪ |Φ!|. The task of finding ∆Φ thus 
becomes optimizing over Θ:



LoRA: Low-Rank Adaptation 

• By freezing the weights of the pre-
trained model, LoRA performs a rank 
decomposition of the matrices for the 
incremental portion of the weights 
learned during the fine-tuning phase, 
and injects the rank-decomposed 
matrices A & B into each layer of the 
model's Transformer architecture.



Principle & Theoretical Foundation
• Suppose 𝑊! ∈ ℝ"×$ denotes the weight matrix in the neural network layer.

• We can constrain this update by representing the latter with a low-rank 
decomposition 

𝑊! + ∆𝑊 = 𝑊! + 𝐵𝐴, where 𝐵 ∈ ℝ"×% , 𝐴 ∈ ℝ%×$ , and the rank 𝑟 ≪ min(𝑑, 𝑘).

• Using regular backpropagation, we can obtain the weight update ∆𝑊, which is 
usually computed as the negative gradient of the loss multiplied by the learning 
rate ∆𝑊 = 𝛼 −∇𝐿&! . T

• Then we can update 𝑊′ by 𝑊' = 𝑊! + ∆𝑊.



Advantages of LoRA

• A Generalization of Full Fine-tuning. A more general form of fine-tuning allows 
the training of a subset of the pre-trained parameters. LoRA takes a step further 
and does not require the accumulated gradient update to weight matrices to 
have full-rank during adaptation.

• No Additional Inference Latency. When deployed in production, it can explicitly 
compute and store W = 𝑊!𝑥 + 𝐵𝐴𝑥 and perform inference as usual. Note that 
both 𝑊! and 𝐵𝐴 are in 𝑅"×$. When we need to switch to another downstream 
task, we can recover 𝑊! by subtracting 𝐵𝐴 and then adding a different 𝐵′𝐴′ , a 
quick operation with very little memory overhead.



Comparison Results



Comparison Results



Further Exploration

• Which weight matrices in transformers should we apply LoRA to?



Further Exploration

• What is the optimal rank r for LoRA?
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Limitation of LoRA
• From the regression line for (∆D, ∆M) of both DoRA and FT, a distinct negative 

slope characterizes DoRA and FT, instead of a clear positive correlation shown by 
LoRA.



DoRA: Weight-
Decomposed Low-
Rank Adaptation

• Weight-Decomposed LowRank
Adaptation (DoRA) decomposes the 
pre-trained weight into two 
components, magnitude and 
direction, for fine-tuning, specifically 
employing LoRA for directional 
updates to efficiently minimize the 
number of trainable parameters.



Principle & Theoretical Foundation
• The core idea of DoRA is to apply updates that not only adjust the magnitude of 

the model parameters but also carefully consider their direction. 

• This is achieved by scaling the weight gradient and projecting it away from the 
current weight matrix. 

• The math behind this involves two concepts: scaling by the norm of the update 
vector and a projection matrix that ensures orthogonality.



Principle & Theoretical Foundation
• The magnitude and directional variations between the pre-trained weight and 

full fine-tuned weight can be defined as follows:

where 𝑀()
*,, and 𝑀!

* are the nth scalars in their respective magnitude vectors, 𝑉()
*,, 

and 𝑊!
* are the nth columns in 𝑉(),  and 𝑊!.



Principle & Theoretical Foundation

• Based on this, DoRA can be formulated as:

• Recall the LoRA equation of:



Comparison Results



Comparison Results

•DoRA outperforms LoRA in many different aspects across multiple tasks with different parameters.



Contribution
• 1. More detailed control: By targeting the magnitude and direction of the 

weights separately, DoRA provides more detailed control over the model fine-
tuning process, which enables more accurate adaptation to specific task 
requirements.

• 2. Enhanced learning capability: DoRA's weight decomposition strategy enhances 
the model's ability to learn during the fine-tuning process, bringing its 
performance on multiple downstream tasks closer to that of a full-parameter 
fine-tuning approach.



Contribution
• 3. Maintaining efficiency: Despite its innovation in fine-tuning strategy, DoRA

maintains the efficiency of LoRA and avoids adding extra reasoning burden.

• 4. Improve training stability: DoRA improves the stability of the training process 
by decomposing the weights and using low-rank adaptation specifically for the 
directions, which helps avoid overfitting and other training problems.



Comparison in PEFT

• Avg. performance: FT > LR > AP > PF > PT
• Convergence rate: FT > AP ≈ LR > PF
• Prompt tuning lags far behind other methods 

although easiest to implement

• FT: Fine Tuning
• LR: LoRA
• AP: Adapter
• PF: Prefix Tuning
• PT: Prompt Tuning

Ding et al. (2023) Parameter-efficient fine-tuning of large-scale 
pre-trained language models

https://www.nature.com/articles/s42256-023-00626-4
https://www.nature.com/articles/s42256-023-00626-4

