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Overview of Parameter-Efficient Fine-Tuning

e Prompt-based

® Prompt Tuning: Simple yet effective at learning soft prompts to condition frozen language models to
perform specific downstream tasks

e Adapter-based

e Adapter Modules: Small, trainable layers into a pre-trained model, allowing task-specific adjustments while

keeping the majority of the model's parameters frozen, reducing the number of parameters that need to be
trained.

e Reparametrization-based

® LoRA, DoRA: Apply low-rank decomposition to reduce the number of trainable parameters during fine-
tuning.
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How to adapt general-purpose models to downstream tasks

e Model tuning (fine tuning): adjust every weight in the network

O Standard practice since GPT and BERT
O Problem: impractical to store and serve tuned copy of model for each downstream task as model
becomes larger

e Prompt design: hand-craft text prompt with a description or examples of the task

O Share a single frozen pre-trained language model (all weights fixed) across all downstream tasks
O GPT-3 showed a frozen model can be conditioned to perform different tasks through “in-context”
learning
O Example: condition a model for sentiment analysis
m Attach the prompt “Is the following movie review positive or negative?” before the input
sequence “This movie was amazing!”
O Pros: simplifies serving and allows for mixed-task inference
o Cons: text prompts require manual effort to design; even well-designed prompts perform poorly

compared to model tuning



Prompt Tuning

e More efficient method for conditioning frozen models using tunable soft prompts
e Soft prompts:

o like engineered text prompts, concatenated to input text
O instead of selecting from existing vocabulary items, “tokens” of the soft prompt are learnable vectors
O can be optimized end-to-end over training dataset
o allows prompt to condense information from datasets with thousands / millions of examples
m Huge improvement from discrete text prompts - usually limited to under 50 examples due to
model’s input length constraints
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Creating Soft Prompts

1. Initialize prompt as fixed-length sequence of vectors

2. Attach vectors to beginning of each embedded input and feed combined sequence
into model

3. Calculate error between model’s prediction and target, back-propagate to calculate
gradients, but only apply updates to new learnable vectors, keeping core model frozen
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Storage Cost Comparison

e Model tuning: requires making a task-specific
copy of entire pre-trained model for each
downstream task and performing inference in
separate batches

e  Prompt tuning: only requires storing small task-
specific prompt for each task and enables mixed-
task inference using original pre-trained model

e Example with T5 XXL model:

o Each copy of tuned model requires 11
billion parameters
o Tuned prompt only requires 20K
parameters per task (prompt length =5
tokens)
m reduction of over 5 orders of
magnitude
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Prompt Tuning becomes more competitive with scale
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Ablation Study

1. Prompt Length
2. Prompt Initialization
3. Pre-training method

4. LM adaptation steps



Prompt Length

e parameter cost of method: EP
e E: token embedding dimension
e P: prompt length

e shorter the prompt, fewer new parameters to tune, so want to find a minimal length

that still performs well



Prompt Length Results

e for most model sizes, longer the
prompt higher the performance

e XXL model still yields relatively strong
performance with single token prompt

e larger the model, the less
conditioning signal is needed to achieve
target behavior
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T5 models pre-train on span corruption objective
e tasked with reconstructing masked spans in the input text, which are marked with
unique sentinel tokens
e ex. “Thank you <X> me to your party <Y> week

e target output text consists of all masked content, separated by sentinels, plus a final
sentinel

e ex. “<X> for inviting <Y> last <Z2>”



Concerns around Span Corruption in Prompt Tuning

e never seen truly natural input text (free of sentinel tokens)
e never asked to predict truly natural targets

e every pre-training target will begin with a sentinel

e unlike fine-tuning, prompt alone might struggle to override unnatural tendency to
output sentinels since decoder priors cannot be adjusted



Experiment with T5 in 3 Settings

1. Span Corruption: use pre-trained T5 as frozen model, and test its ability to output the
expected text for downstream tasks

2. Span Corruption + sentinel: use the same model, but prepend all downstream targets
with a sentinel to more closely resemble targets seen in pre-training

3. LM adaptation: continue T5’s self-supervised training for a small number of additional
steps, but use LM objective

e given natural text prefix as input, model must produce natural text
continuation as output

e happens only once, producing a single frozen model to be reused for prompt
tuning across any number of downstream tasks



Pre-training methods

e T5’s default span corruption objective is
not well-suited for training frozen models
to be later conditioned by prompts

e even adding sentinel to downstream
targets shows little benefit

e LM adaptation adds value across all
model sizes

e XXL model size is most forgiving even
with span corruption
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Span Corruption’s Instability across model sizes

e small model outperforms base, large, and XL +00
models %0
80

e for many tasks, mid-sized models never learn Y 70
to output a legal class label and thus score 0% L”j 60
2 50

e 2 most common error modes: copying 0 20
subspans from input and predicting empty 5’? 20
string 2o
e models pre-trained with span corruption 10

objective are unreliable: only 2 out of 5 models
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Prompt Initialization Methods

e random: sample uniformly from range [-0.5, 0.5]

e sampled vocabulary: restrict to 5000 most common tokens in T5’s sentence-piece
vocabulary, which is ordered by likelihood in pre-training corpus

e class label: use embeddings for string representations of each class in downstream task
to initialize a token in prompt

e multi-token: average token embeddings

e longer prompts: fall back to sampled vocab strategy to fill in prompt if
expended class labels before initializing all prompt tokens



Prompt Initialization Results
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LM adaptation steps

e longer adaptation performs better

e transition from span corruption to
language modeling objective is not a trivial
change

e making an effective switch takes an
investment of training resources (10% of
the steps of the original T5 pre-training)

e again, little difference for XXL size model
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Comparison to Similar Approaches

e Prefix Tuning:

o learn sequence of prefixes that are
prepended at every transformer layer

o like learning transformer activations that are
fixed across examples at every network layer

O Prompt tuning uses single prompt
representation prepended to embedded
input

e WARP:

O prompt parameters are added to input layer
o Works with masked language models, relying
on a mask token and a learnable output layer

to project mask to class logits
O Limited to classification

O Prompt tuning does not require any changes
to input or task-specific head
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Resilience to Domain Shift

Dataset Domain Model Prompt A
SQuAD Wiki 949 +0.2 948 +£0.1 —-0.1
TextbookQA  Book 543 +£3.7 66.8 £2.9 +12.5
BioASQ Bio 779 £04 79.1 £0.3 +1.2
RACE Exam 59.8 £0.6 60.7 +0.5 +0.9
RE Wiki 88.4 +0.1 88.8 0.2 +0.4
DuoRC Movie 68.9 +0.7 67.7+1.1 —-1.2
DROP Wiki 689 +1.7 67.1 19 —1.8

Table 1: F1 mean and stddev for models trained on
SQuAD and evaluated on out-of-domain datasets from
the MRQA 2019 shared task. Prompt tuning tends to

give stronger zero-shot performance than model tun-

ing, especially on datasets with large domain shifts like

TextbookQA.



Transfer between 2 paraphrase detection tasks

e train prompt tuning and model tuning
solutions on one task and evaluate zero-

shot on a closely related task

e Quora Question Pairs: detecting if two
guestions are duplicates

e MRPC: detecting if 2 sentences from
news articles are paraphrases

e supports that model tuning may be
over-parameterized and more prone to
overfit the training task

Train Eval Tuning | Accuracy F1

QQP MRPC Model | 73.1 £0.9 81.2 £2.1
Prompt | 76.3 £0.1 84.3 0.3

MRPC QQP Model | 749 £1.3 709 1.2
Prompt | 75.4 £0.8 69.7 0.3




Prompt Ensembling

e more efficient at ensembling multiple
adaptations of pre-trained language model

e storage: training N prompts on same task
creates N separate models for a task but

shares parameters

e inference: to process one example, execute
a single forward pass with batch size N,
replicating example across batch and varying
the prompt, rather than computing forward

passes of N different models

Dataset Metric | Average Best Ensemble
BoolQ acc. 91.1 91.3 91.7

CB acc./F1 | 99.3/99.0 100.00/100.00 100.0/100.0
COPA acc. 98.8 100.0 100.0
MultiRC EM/F1, | 65.7/ 88.7 66.3 / 89.0 67.1/89.4
ReCoRD EM/F1 | 92.7/93.4 929/93.5 93.2/93.9
RTE acc. 92.6 93.5 93.5
WiC acc. 76.2 76.6 77.4
WSC acc. 95.8 96.2 96.2
SuperGLUE (dev) 90.5 91.0 91.3

Table 3: Performance of a five-prompt ensemble built
from a single frozen T5-XXL model exceeds both the

average and the best among the five prompts.



Interpretability of learned soft prompts

e compute nearest neighbors to each prompt token from frozen model’s vocabulary

e similarity metric: cosine distance between vocabulary embedding vector and

prompt token representation
e prompts are learning word-like representations
e top-5 nearest neighbors form tight semantic clusters

e {Technology, technology, Technologies, technologies}

e {entirely, completely, totally, altogether}



Prompt Tuning Key Takeaways

e simple but effective mechanism for learning “soft prompts” to condition frozen
language models to perform specific downstream tasks

e soft prompts are learned through back-propagation and can be tuned to incorporate
signals from any number of labeled examples

e as models exceed billions of parameters, prompt tuning closes the gap and matches the
strong performance of model tuning (where all model weights are tuned)

e robust to domain transfer and enables efficient prompt ensembling



Parameter-Efficient Transfer
Learning for NLP

Neil Houlsby 1 Andrei Giurgiu 1 * Stanistaw Jastrze bski 2 * Bruna Morrone 1 Quentin de
Laroussilhe 1
Andrea Gesmundo 1 Mona Attariyan 1 Sylvain Gelly
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Introduction: Transfer Learning in NLP

e Definition: Transfer learning is a technique where a model is first trained on a large dataset
(often for general purposes), and then fine-tuned on a smaller, task-specific dataset.

e Current Fine-Tuning Approach: Full Fine-Tuning: When adapting a pre-trained model to a
new task, all of the model’s parameters are fine-tuned for that task.

e Problem: parameter inefficient, large storage requirements, and redundant computations

e Goal: To develop a method that is parameter-efficient and can handle many downstream
tasks with minimal additional training, while maintaining competitive performance.



Adapter-Based Tuning Approach

e The authors propose a solution to the above challenges
using adapter modules, which are small, trainable
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What Are Adapter Modules?

e Definition: Adapter modules are small trainable layers that are inserted between the
layers of a pre-trained neural network.

e They allow the core model to remain frozen while only a small number of task-specific
parameters are trained.

e Key idea: these small modules “adapt” the pre-trained features to the specific
requirements of new tasks, hence the name "adapter."

How Adapter Modules work:

1) Placement 2) Training 3) Design



Adapter Module Architecture

e Bottleneck Design: The adapter module first projects
the high-dimensional features down to a smaller latent

space. After applying a nonlinearity, the features are
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Adapter Module Architecture

e Consider a neural network with parameters w: @w(x).

e Feature-based transfer composes ¢w with a new function, xv, to
vield x»(¢pw(x)). Only the new, task-specific, parameters, v, are then
trained.

e Fine-tuning involves adjusting the original parameters, w, for
each new task.

e For adapter tuning, a new function, Ywv(x), is defined. The initial
parameters vo are set such that the new function resembles the
original: Ywwo(x)=@w(x). During training, only v are tuned. If one
chooses |v| < |w|, the resulting model requires ~|w| parameters
for many tasks.
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Experiments: GLUE Benchmark

e The authors evaluate the effectiveness of adapter-based tuning on the GLUE
benchmark by integrating adapter modules into the pre-trained BERT LARGE model

e The difference in accuracy between full fine-tuning and adapter-based tuning is within
0.4%, demonstrating that performance is preserved while drastically reducing the
parameter overhead.

Parameter-Efficient Transfer Learning for NLP

Ao ansg CoLA SST MRPC STS-B QQP MNLI, MNLL,, QNLI RTE | Total

params params / task
BERT| ArGE 9.0x 100% 60.5 94.9 89.3 87.6 72.1 86.7 85.9 91.1 70.1 | 804
Adapters (8-256) | 1.3x 3.6% 59.5 94.0 89.5 86.9 71.8 84.9 85.1 90.7 71.5 | 80.0

Adapters (64) 1.2x 2.1% 06.9 94.2 89.6 87.3 T1.8 85.3 84.6 914 68.8 | 79.6




Experiments: Additional Text Classification Tasks

* In addition to the GLUE benchmark, the
authors evaluated the adapter-based
tuning method on 17 publicly available
text classification tasks.

e Training examples: from 900 to
330,000+

e Classes: from 2 to 157

e Average text length ranges from 57 to
1,900 characters

Dataset No BERT BERTgasg BERTasg ~ BERTgase
baseline Fine-tune  Variable FT  Adapters
20 newsgroups 911 928+L0:1 928LGI1 917102
Crowdflower airline 845 83.6+0.3 84.0+0.1 84.5+0.2
Crowdflower corporate messaging 919 925+£0.5 924+0.6 92.9+0.3
Crowdflower disasters 849 853+04 8.3+04 84.1+£0.2
Crowdflower economic news relevance 811 821+0.0 789+28 82.5+0.3
Crowdflower emotion 36,3 384+0.1 376+0.2 38.7+0.1
Crowdflower global warming 827 842+04 819+02 827x03
Crowdflower political audience 81.0 809+03 80708 79.0+0.5
Crowdflower political bias 76.8 752+£09 76.5x£04 759+0.3
Crowdflower political message 43.8 389+06 4494+06 44.14+0.2
Crowdflower primary emotions 335 369+16 382+10 339+14
Crowdflower progressive opinion W06 TLex05 TBIELS TLTEILl
Crowdflower progressive stance 943 63.8+£10 615£13 60.6x=14
Crowdflower US economic performance 75.6 75.3+0.1 76504 77.3x£0.1
Customer complaint database 54.5 559+0.1 564+0.1 554+0.1
News aggregator dataset 95.2 96.3£00 96.5+0.0 96.2+0.0
SMS spam collection 985 99.3+0.2 99302 951422
Average w27 73.7 74.0 73.3
Total number of params — 17x 9.9x 1.19x%
Trained params/task — 100% 52.9% 1.14%




Key Features of Adapter Modules

e Parameter Efficiency: Small Parameter Footprint, High Degree of Parameter Sharing
e Extensibility: Easily Scalable to New Tasks, No Interference with Previous Tasks
e Compactness: Bottleneck Architecture, Minimal Additional Overhead

e Near State-of-the-Art Performance: achieve within 0.4% of the full fine-tuned models’
performance

e Stability: Skip Connections, Identity Initialization
e Resource Efficiency: Reduced Computational Cost

e Flexibility in Architecture: Flexible Placement, Customizable Size



LoRA: Low-Rank Adaptation
of Large Language Models

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen
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Background

* The idea behind Low-Rank Adaptation (LoRA) is built upon the observation that
the weights learned by Large Language Models after training often contain
redundancies.

* Therefore, instead of fine-tuning the entire set of weights in the LLM, we can
streamline the process by focusing on a low-rank approximation of the

weights — essentially, a smaller set of weights that eliminates these
redundancies.



Problem Statement

* During full fine-tuning, the model is initialized to pre-trained weights ®, and
updated to ®, + AP by repeatedly following the gradient to maximize the
conditional language modeling objective:

|yl

max > log (Po(yilw,y<t))

(z,y)eZz t=1

* In comparison, LoRA is a more parameter-efficient approach, where the task-
specific parameter increment A® = A®(0) is further encoded by a much
smaller-sized set of parameters 0 with |0| < |®,|. The task of finding A® thus

becomes optimizing over 0:

Y]
max > D 108 (Pograse) Bilr, y<t))

(z,y)eZ t=1




LoRA: Low-Rank Adaptation

* By freezing the weights of the pre-
trained model, LORA performs a rank
decomposition of the matrices for the Pretrained
incremental portion of the weights Weights
learned during the fine-tuning phase,
and injects the rank-decomposed
matrices A & B into each layer of the
model's Transformer architecture.




Principle & Theoretical Foundation

* Suppose W, € R%*X denotes the weight matrix in the neural network layer.

® Using regular backpropagation, we can obtain the weight update AW, which is
usually computed as the negative gradient of the loss multiplied by the learning

rate AW = a(—VLWO). T
® Then we can update W' by W' = W, + AW

* We can constrain this update by representing the latter with a low-rank
decomposition

Wy + AW = W, + BA, where B € R**", 4 € R"™¥, and the rank r « min(d, k).



Advantages of LoRA

* A Generalization of Full Fine-tuning. A more general form of fine-tuning allows
the training of a subset of the pre-trained parameters. LORA takes a step further
and does not require the accumulated gradient update to weight matrices to
have full-rank during adaptation.

* No Additional Inference Latency. When deployed in production, it can explicitly
compute and store W = Wyx + BAx and perform inference as usual. Note that

both W, and BA are in R . When we need to switch to another downstream
task, we can recover W, by subtracting BA and then adding a different B'A’, a
quick operation with very little memory overhead.



Comparison Results

Model & Method |# Trainable

Parameters| MNLI SST-2 MRPC CoLA OQNLI QQP RTE STS-B Avg.
RoBpase (FT)* 125.0M| 87.6 94.8 90.2 63.6 928 919 78.7 91.2 864
RoBpase (BitFit)* 0.1IM| 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoBhase (Adpt)* 0.3M|(87.140 94.2+ 1 885411 60.8+4 93.1+1 902409 71.5427 89.7+3 84.4
RoOBpase (Adpt°)* 0.9M |87.31+1 94.7+3 884411 62.6+9 93.0+2 90.6+0 759422 9031+, 85.4
RoBpase (LORA) 0.3M|87.54+3 95.1+, 89.7+7 634412 93.3+3 90.8+; 86.6+7 91.5., 87.2
RoBiarge (FT)* 355.0M| 90.2 964 90.9 68.0 947  92.2 86.6 924 889
ROB]arge (LORA) 0.8M 90-6;&,2 96.2i,5 90.9:|:1,2 68.2:|:1,9 94~9i.3 91.6:|:,1 87.4i2_5 92.6:|:.2 89.0
ROBiarge (Adpt”)t 3.0M|[90.2+3 96.11+3 90.21+7 683110 94.8:> 919, 83.8.59 92.1.;7 88.4
RoBiarge (Adpt")t 0.8M[90.5+ 3 96.6+, 89.71+12 67.8425 94.8+3 91.74+, 80.1429 91914 879
RoBiarge (AdptH)]L 6.0M [89.9+5 96.21 3 88.7429 665444 94. 74+, 92141 834411 91.04+17 87.8
ROBiarge (Adpt™)t 0.8M[90.34+3 96.3+5 87.7417 663420 94.7+2 91541 729429 91515 86.4
RoBiarge (LORA)T 0.8M(90.6+, 962+ 5 90.24+ 19 682419 94.843 91.6+, 85.2411 92315 88.6
DeBxxt. (FT)* 1500.0M| 91.8 97.2 92.0 72.0 960 92.7 93.9 929 O91.1
DeBxx. (LoRA) 4.TM (91947 96917 92.64+6 7244111 96.0+1 92911 949+, 93.01, 91.3

Table 2: RoOBERTay,., ROBERTay,c, and DeBERTaxx;, with different adaptation methods on the
GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better
for all metrics. * indicates numbers published in prior works. t indicates runs configured in a setup
similar to Houlsby et al.|(2019) for a fair comparison.



Comparison Results

Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU  NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 354.92M | 682 8.62 46.2 71.0 2.47
GPT-2 M (Adapter")* 0.37M | 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adapter")* 11.09M | 68.9 8.71 46.1 71.3 2.47
GPT-2 M (Adapter™) 11.09M | 673.¢ 850L¢7 46.0L, 7071, 244,
GPT-2 M (FTToP?)x* 25.19M | 68.1 8.59 46.0 70.8 241
GPT-2 M (PreLayer)* 0.35M | 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M | 70.4.; 8.85.0 468., 71.8.; 253,
GPT-2 L (FT)* 774.03M | 68.5 8.78 46.0 69.9 245
GPT-2 L (Adapter"™) 0.88M | 69.1.; 868,03 463., 71.4L, 249,
GPT-2 L (Adapter") 23.00M | 689,53 870104 46.1.; 7131, 245
GPT-2 L (PreLayer)* 0.77M | 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 077M | 704, 8.89.0, 468, 72.0., 247Lp

Table 3: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoORA outperforms several baselines with comparable
or fewer trainable parameters. Confidence intervals are shown for experiments we ran. * indicates
numbers published in prior works.



Further Exploration

* Which weight matrices in transformers should we apply LoRA to?

# of Trainable Parameters = 18M
Weight Type We Wi W, W, W Wi, W,W, W,W, W, W,
Rank r 8 8 8 8 4 4 2
WikiSQL (£0.5%) | 704 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 91.3 91.3 91.3 91.7

Table 5: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting both W, and
W, gives the best performance overall. We find the standard deviation across random seeds to be
consistent for a given dataset, which we report in the first column.



Further Exploration

 What is the optimal rank r for LoRA?
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Figure 3: Subspace similarity between column vectors of A,—g and A,—g4 for both AW, and AW,,.
The third and the fourth figures zoom in on the lower-left triangle in the first two figures. The top
directions in » = 8 are included in r = 64, and vice versa.
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Limitation of LoRA

* From the regression line for (AD, AM) of both DoRA and FT, a distinct negative
slope characterizes DoRA and FT, instead of a clear positive correlation shown by

LoRA.
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Figure 2. Magnitude and direction updates of (a) FT, (b) LoRA, and (c) DoRA of the query matrices across different layers and intermediate
steps. Different markers represent matrices of different training steps and different colors represent the matrices of each layer.



DORA: Weight-
Decomposed Low-
Rank Adaptation

* Weight-Decomposed LowRank
Adaptation (DoRA) decomposes the
pre-trained weight into two
components, magnitude and
direction, for fine-tuning, specifically
employing LoRA for directional
updates to efficiently minimize the
number of trainable parameters.
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Figure 1. An overview of our proposed DoRA, which decomposes
the pre-trained weight into magnitude and direction components
for fine-tuning, especially with LoRA to efficiently update the
direction component. Note that || - || denotes the vector-wise
norm of a matrix across each column vector.



Principle & Theoretical Foundation

* The core idea of DoRA is to apply updates that not only adjust the magnitude of
the model parameters but also carefully consider their direction.

* This is achieved by scaling the weight gradient and projecting it away from the
current weight matrix.

* The math behind this involves two concepts: scaling by the norm of the update
vector and a projection matrix that ensures orthogonality.



Principle & Theoretical Foundation

* The magnitude and directional variations between the pre-trained weight and
full fine-tuned weight can be defined as follows:

k
Ay = S i =i
k
ADE. — Zn:l(l — COS(VFT , W¢' ))
FT 2

where M"Tt and Mg are the nth scalars in their respective magnitude vectors, V;;:t
and W{" are the nth columns in V- and W,.



Principle & Theoretical Foundation

* Recall the LoRA equation of:
W' =Wy + AW =W, + BA

* Based on this, DoRA can be formulated as:

V 4+ AV Wy + BA

W,: —
VAV, ~ ™[Wo + BAJ.



Comparison Results

Table 1. Accuracy comparison of LLaMA 7B/13B, LLaMA2 7B, and LLaMA3 8B with various PEFT methods on eight commonsense
reasoning datasets. Results of all the baseline methods on LLaMA 7B/13B are taken from (Hu et al., 2023). Results of LoRA on LLaMA2
7B and LLaMA3 8B are obtained using the hyperparameters described in (Hu et al., 2023). DoRA': the adjusted version of DoRA with

the rank halved.
Model PEFT Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - - 73.1 854 68.5 78.5 66.1 89.8 79.9 748 77.0
Prefix 0.11 643 76.8 739 42.1 72.1 72.9 54.0 60.6 64.6
Series 0.99 63.0 792 763 67.9 75.7 74.5 57.1 724 70.8
Parallel 3.54 679 764 78.8 69.8 78.9 73.7 57.3 752 122
LLaMA-7B LoRA 0.83 689 80.7 774 78.1 78.8 77.8 61.3 74.8 74.7
DoRAT (Ours) 043 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 715
DoRA (Ours) 0.84 69.7 834 78.6 87.2 81.0 81.9 66.2 79.2 78.4
Prefix 0.03 653 754 721 55.2 68.6 79.5 62.9 68.0 684
Series 0.80 71.8 83 79.2 88.1 82.4 82.5 67.3 81.8 79.5
Parallel 2.89 72.5 849 79.8 92.1 84.7 84.2 71.2 824 814
LlalaslaB LoRA 0.67 72.1  83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
DoRAT (Ours) 0.35 72.5 853 799 90.1 82.9 82.7 69.7 83.6 80.8
DoRA (Ours) 0.68 724 849 81.5 92.4 84.2 84.2 69.6 82.8 81.5
LoRA 0.83 69.8 799 79.5 83.6 82.6 79.8 64.7 81.0 77.6
LLaMA2-7B DoRA' (Ours) 043 72.0 83.1 799 89.1 83.0 84.5 71.0 81.2 80.5
DoRA (Ours) 0.84 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
LoRA 0.70 70.8 852 799 91.7 84.3 84.2 712 79.0 80.8
LLaMA3-8B DoRA' (Ours) 0.35 745 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0

DoRA (Ours) 0.71 74.6 893 799 95.5 85.6 90.5 80.4 85.8 85.2




Comparison Results
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Figure 4. Performance of fine-tuned LLaMA?2-7B on MT-Bench

> - Figure 5. Average accuracy of LoORA and DoRA for varying ranks
using different numbers of Alpaca training samples.

for LLaMA-7B on the commonsense reasoning tasks.

® DoRA outperforms LoRA in many different aspects across multiple tasks with different parameters.



Contribution

* 1. More detailed control: By targeting the magnitude and direction of the
weights separately, DoRA provides more detailed control over the model fine-
tuning process, which enables more accurate adaptation to specific task

requirements.

e 2. Enhanced learning capability: DoRA's weight decomposition strategy enhances

the model's ability to learn during the fine-tuning process, bringing its
performance on multiple downstream tasks closer to that of a full-parameter

fine-tuning approach.



Contribution

* 3. Maintaining efficiency: Despite its innovation in fine-tuning strategy, DoRA
maintains the efficiency of LoRA and avoids adding extra reasoning burden.

* 4. Improve training stability: DoRA improves the stability of the training process
by decomposing the weights and using low-rank adaptation specifically for the
directions, which helps avoid overfitting and other training problems.



Comparison in PEFT
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