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Background

Why do we need efficient inference?



The Speed of Transformer-based LLMs
Quick review of the data-flow of an LLM:

• Parallel
• Fast

Training stage:

Inference: 𝑃(𝑥′!|𝑥′"!)
Training: 𝐿#$(𝑥! || 𝑃(𝑥%!|𝑥"!))

• Auto-regressive
• Slow
If 𝑥′!"# is unknown, we can’t jump
to the generation of 𝑥′!.

Inference stage:



The Speed of Transformer-based LLMs
Quick review of the complexity of an LLM:

Attention layer:

Feed-Forward Network(FFN) layer:

Assumptions:
Text length = L
Hidden state dimension = D
𝑄,𝐾, 𝑉, 𝑥 ∈ ℝ!×#

𝑊$ ∈ ℝ#×#%

𝑊& ∈ ℝ#%×#

Batch size=1

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾'

𝑑(
𝑉

Time complexity: 𝑂 𝐿&𝐷 + 𝑂 𝐿 + 𝑂 𝐿&𝐷 = 𝑶(𝑳𝟐𝑫)

FFN 𝑥 = 𝜎&(𝑊&(𝜎$(𝑊$(𝑥))))

Time complexity: 𝑂 𝐿𝐷𝐷′ + 𝑂 𝐷% + 𝑂 𝐿𝐷𝐷% + 𝑂 𝐷 = 𝑂 𝐿𝐷𝐷% ∼ 𝑶 𝑳𝑫𝟐
Where 𝐷% is usually several times of 𝐷.



The Speed of Transformer-based LLMs
Cont.

Overall complexity:

Train: 𝑁×(𝑂(𝐿$𝐷 + 𝐿𝐷$)), where N denotes the number of layers

Model D Max(L)

Llama3.2-1B 2048 131072

Llama3.2-3B 3072 131072

Llama3.1-8B 4096 131072

Mistral3-7B 4096 32768

Text L

Math question <100

News article ~500

8-page paper ~4000

Inference: ∑%&#' 𝑁×(𝑂 𝑙$𝐷 + 𝑙𝐷$ ) = 𝑁×𝑂(𝐿(𝐷 + 𝐿$𝐷$)

Long context significantly slows the inference time!



Typical methods to perform efficient inference

Method How to accelerate

Speculative Decoding* Draft with small model (reduce N and D) and
verify with LLM in parallel

Prompt Compression* Shorten the prompt context length (reduce L)

Knowledge Distillation Use a smaller model (reduce N and D)

Sparse Attention Use a context-limited attention (reduce L to k,
a much smaller number)

……



Google research
Published at ICML2023

https://openreview.net/pdf?id=C9NEblP8vS
GitHub：https://github.com/feifeibear/LLMSpeculativeSampling



General idea of speculative decoding
Generate with a fast but less accurate model (denoted by 𝑴𝒒);
Verify with a slow but more accurate model (denoted by 𝑴𝒑).

𝑀!: Auto-regressive generation, with time complexity 𝑂(𝑁! 𝐿"𝐷! + 𝐿#𝐷!# )

𝑀$: Parallel / Non-auto-regressive verification, with time complexity 𝑂(𝑁$ 𝐿#𝐷$ + 𝐿𝐷$# )

Where 𝑁! < 𝑁$ and 𝐷! < 𝐷$
What it achieves:
1. Faster in speed;
2. Exactly the same performance.



General idea of speculative decoding
A case showing the process of speculative decoding



Method of speculative decoding
1. Greedy decoding
𝑥% = 𝑎𝑟𝑔𝑚𝑎𝑥&∈(𝑃(𝑥&|𝑥)%)



Method of speculative decoding
2. Sampling
𝑥%	is sampled from 𝑃&∈((𝑥&|𝑥)%)
Standard: 𝑃&∈( 𝑥& 𝑥)% = softmax(𝒛|𝑤)%), 𝒛: logit of 𝒙

Sampling with temperature 𝑇, 𝑃&∈( 𝑥& 𝑥)% = softmax(𝒛
+
|𝑤)%)

For example:
𝑇 = 1 𝑇 = 0.5 𝑇 = 2



Method of speculative decoding
2. Sampling
𝑥%	is sampled from 𝑃&∈((𝑥&|𝑥)%)



Method of speculative decoding
2. Sampling

𝑀$: 97M
𝑀!: 6M
𝑀! predicts the next 𝛾 tokens

𝑥%	is sampled from 𝑃&∈((𝑥&|𝑥)%)



Method of speculative decoding
2. Sampling



Method of speculative decoding
2. Sampling



Method of speculative decoding
2. Sampling



Method of speculative decoding
2. Sampling



Analysis on the efficiency



Analysis on the efficiency



The wall time cost
The overall time cost, including time spent on both models



Optimize the wall time cost



Visualization of the time cost



Empirical experiments



The importance of having two models
“conjugate”



Princeton & UIUC
Published at ICML2024

https://openreview.net/pdf?id=PEpbUobfJv
blog: https://sites.google.com/view/medusa-llm

video：https://icml.cc/virtual/2024/poster/34133
GitHub：https://github.com/FasterDecoding/Medusa/tree/main



General idea of Medusa
Speculative decoding suffers from the discrepancy between two models

Using one primary model structure to act as both characters.

Specifically, medusa runs 1 time of main body
and predict the next n tokens, with 
corresponding decoding heads.



Multiple heads from Medusa
An LM head projects a hidden state to a distribution over the vocabulary

The traditional head predicts the next 1 token.

Medusa has multiple heads for the next few
tokens each.

Each head is a simple FFN:



Decoding strategy
How does Medusa verify the drafted tokens?

Instead of greedy search or sampling,
Medusa predicts Top-k tokens for each
position, and verify their combinations.



Decoding strategy
Verification step

Examine the token combinations
in parallel with one run.

Candidates from different
positions form a Cartesian set.



Extension to tree attention

Build the tree node by node, each 
time connect the node with the 
highest accuracy to the tree.

Accuracy of the 𝑖%, top prediction 
of the 𝑘%, head: use a calibration 
dataset to calculate.



The training process
Training few Medusa heads suffices, but training with main body
proves better

Cross-Entropy loss:

As the position 𝑘 goes up, CE loss
becomes larger, so 𝜆- = 0.8- is applied.

Gradually increase 𝜆.



Experiment results



Demonstration



https://arxiv.org/abs/2210.03162



Introduction

• Reducing Input Size 

• Decreasing Attention Mechanism Complexity

• Reducing Latency
• Efficient Memory Usage

• Cost Reduction
• Prevents Model Overload

The Role of Prompt Compression in LLMs



Background
Why we need compress input?



Prompt Compression



• Smaller KL divergence means the compressed 
prompt is closer to the original prompt in terms of 
information content

• The longer the compressed prompt (i.e., more 
tokens), the more information remains

Compressed Prompts for various sizes of GPT-2 models – The influence of the length of 
the prompt

Background and Related Work



Main Methods

• Hard prompt as a Baseline;
• Compressed (soft) prompt is trained to 

approximate the behavior of the hard 
prompt;



• As the prompt is compressed, accuracy for 
specific question degrades more rapidly
• (GPT-2 xl for this experiment.)

Reading Comprehension Task



Reconstruction Task



Contrastive Contexts



Results in hard contexts



Results in soft contexts



Questions?



https://arxiv.org/abs/2305.14788



• Soft Prompt Tuning:
Tunable prompts that adjust to tasks 
without changing the model

• Long-range Transformers:
Reducing context while keeping key 
information

The paper builds on several established concepts in machine learning and NLP

Introduction



Transformer-based models

• Rely on fixed-size input sequences
• Computationally expensive
• Inefficient for long document processing 

https://arxiv.org/pdf/1706.03762

Introduction



• Summary tokens direct the model 
to produce Summary Vectors
• Summary Vectors allow the model 

to retain and access long-range 
context efficiently

AutoCompressor: How Summary Tokens and Vectors Work



Training Summary Vectors with Cross-Entropy Loss

• σ<i: The summary vectors generated from all previous segments.



• Randomized Segmenting
handle text segments of various 
lengths

• Stopping Gradients
reduces memory use without affecting 
performance

Efficient Training: Randomized Segments & BPTT



Methods
Improved Long-Sequence Processing with AutoCompressors



Few-Shot Learning Improvements with AutoCompressors

Methods



Results
Fused Summaries achieves a good trade-off between storage costs and throughput.



Performance vs. Throughput in Passage Re-ranking

• AutoCompressors achieve a strong 
balance of high recall and efficient 
throughput, outperforming traditional 
models in passage re-ranking.



Applications and Future Work

• Retrieval tasks: 
Summary vectors enable efficient retrieval and ranking of 
relevant documents

• Document summarization and text 
generation:
Compressing long contexts improves performance and 
reduces computational costs

• Scalability to Larger Models
• Improving Summary Vector Quality
• Efficient Multimodal Inference



Thanks for
your attention!


