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Background

Why do we need efficient inference?




The Speed of Transformer-based LLMs

Quick review of the data-flow of an LLM:

Training

stage T 4P T3 T4 Ts5
roun
Ground | study at WashU
truth:
Calculate
losses:
Inference i — -~ ,— %~ - . T

stage |
Prediction: |

Transformer Decoder
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Inference: P(x'¢|x' <¢)
Training: Leg (x; || P(x' ¢|x<t))
Training stage:

* Parallel

* Fast

Inference stage:
* Auto-regressive

* Slow

If x'+_4 is unknown, we can’t jump
to the generation of x';.



The Speed of Transformer-based LLMs

Quick review of the complexity of an LLM: Assumptions: $
Attention layer: Textlength =L el
QKT Hidden state dimension =D t
Attention(Q, K, V) = softmax <\/d_k> 4 0.K.V,x € R™P Softhax J
Time complexity: 0(12D) + O(L) + 0(12D) = 0(L2D)| W1 € R”*”’ Mask (opt.)
W, € RP'*D |}
Batch size=1 Scale
Feed-Forward Network(FFN) layer: t ]
MatMul
FFN(x) = 0, (W3 (a1 (W1 (x)))) 4 4

Time complexity: 0(LDD") + 0(D") + O(LDD") + 0(D) = O(LDD") ~ O(LD?) Q KV

Where D’ is usually several times of D.



The Speed of Transformer-based LLMs

Cont.

Model
Overall complexity: E———r
Train: NX(O(L?*D + LD?)), where N denotes the number of layers Llama3.2-3B
Llama3.1-8B
Inference: ¥, Nx(O(I?D + ID?)) = NXO(L3D + L?>D?) Mistral3-78B
Long context significantly slows the inference time! Text

Math question
News article

8-page paper
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Typical methods to perform efficient inference

Method

Speculative Decoding*

Prompt Compression*
Knowledge Distillation

Sparse Attention

How to accelerate

Draft with small model (reduce N and D) and
verify with LLM in parallel

Shorten the prompt context length (reduce L)
Use a smaller model (reduce N and D)

Use a context-limited attention (reduce L to k,
a much smaller number)



WashU McKelvey Engineering

Fast Inference from Transformers via Speculative Decoding

Yaniv Leviathan ! Matan Kalman ™! Yossi Matias !

Google research
Published at ICML2023

https://openreview.net/pdf?id=CINEbIP8vS
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General idea of speculative decoding

Generate with a fast but less accurate model (denoted by Mq);

Verify with a slow but more accurate model (denoted by M ,).
M,;: Auto-regressive generation, with time complexity O(N, (L*D, + L*DZ))

M,,: Parallel / Non-auto-regressive verification, with time complexity O (N, (LZDp + LDI%))

Where Nq < Np and Dq < Dp

What it achieves:
1. Faster in speed;
2. Exactly the same performance.



General idea of speculative decoding

A case showing the process of speculative decoding

[START] japan '

In

benchmark bend n

[START] japan benchmark nikkei 22 ;5

—_— HF——lH — HH

In

benchmark nikkei 225 index rose 22 =6

—_— Hl—l— H —H — — i HH

[START] japan

In

(START] japan ! s benchmark nikkei 225 index rose 226 . 69 7 points

[START] japan ! s benchmark nikkei 225 index rose 226 . 69 points , or 0 1

[START] japan ! s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 9859

[START] japan | s benchmark nikkei 225 index rose 226 . 69 points , or 1 ; 5 percent , to 10, 989 . 79 : in

[START] japan | s benchmark nikkei 225 index rose 226 . 69 points , or 1 5 percent , to 10 , 989 . 79 in tokye late

[START] japan IS benchmark 255535 225 iﬂgff rose 226 . 69 Egiﬂff , orl.5percent, to 10, 989 . 79 iﬂ late morning trading . [END]

Figure 1. Our technique illustrated in the case of unconditional language modeling. Each line represents one iteration of the algorithm.
The green tokens are the suggestions made by the approximation model (here, a GPT-like Transformer decoder with 6M parameters
trained on Im1b with 8k tokens) that the target model (here, a GPT-like Transformer decoder with 97M parameters in the same setting)
accepted, while the red and blue tokens are the rejected suggestions and their corrections, respectively. For example, in the first line the
target model was run only once, and 5 tokens were generated.




Method of speculative decoding

1. Greedy decoding

Xt = argmaxWEVP(xw|x<t)

xoq .’L‘lq Cbzq £C3q 334q
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Method of speculative decoding
2. Sampling

exp(#)

Zj eXP(%)

x¢ is sampled from Py,cy (X | X <) P(w;) =

Standard: P,,cy (x| X<t) = softmax(z|w.;), z: logit of x

Sampling with temperature T, P, cy (X, | X<t) = softmax(% lwee)

For example:
T =1 5 T =05 | T =2 y
e £5/0.5 e
— ~ 0. _ ~ P = ~ (0.718
Pw) e +e2+el 0.947 P(w) = 5/05 1 ¢2/05 4 - 1/05 0.999 (w1) ed/2 4 e2/2 4 e1/2
2 2/0.5 e2/2
€ e
P(wz) et e2 el ~ 0.047 P(wp) = e5/0.5 | 2/0.5 | o—1/0.5 ~ 0.001 (w2) e5/2 + e2/2 4 ¢—1/2
~1 —-1/0.5 e~ 1/2
e 3 e a1 Plws) = ~ 0.045
P(ws) = ed 4+ e2 4 1 ~ 0.006 P(ws) = e5/05 | ¢2/0.5 4 o—1/05 10 (ws) e5/2 4 e2/2 + e~1/2



Method of speculative decoding

2. Sampling
x¢ is sampled from Py,cy (X | X <)

Record: P(Zi4|T<tq)

L 0gq L1q L2q L3q L4q

L

QT @1 OF
Draft Model (small)

v v v v

*TTLL

-’I:Oq mlq $2q x3q x4q

qu wlq m2q 333q 2174q

Accept "study" p(z14)
I study at WashU . by probability  ¢(z,)

J Reject "WashU" ; p(zsq)

J Skip the rest by probability q(z3q)

mOp wlp $2p 33319 CC4p

(o) e

otr tr t 1 1
Verification Model (large) }

[ ]

qu wlq x2q x3q w4q

Output: "l study
at WUSTL"




Method of speculative decoding

2. Sampling

Algorithm 1 SpeculativeDecodingStep

) Inputs: M,,, M, prefiz.
xt IS Sam p|ed from PWEV (xw |x<t) > Sample ~ guesses x1 ... -, from M, autoregressively.
for: =1to~ydo
gi(z) < My(prefiz + [21,...,Zi-1])

Mp: 97M x; ~ qi(x)

end for
M . 6M > Run M), in parallel.
q . Pl T ) ,p7+'1(:v) — '
M, predicts the next y tokens Bp\pres el g My PIEGAS F [Bivmemial)

> Determine the number of accepted guesses n.
r, ~U(0,1),...,7y ~U(0,1)

nmin({i —1]1<i<y,m>2830{y})
> Adjust the distribution from M, if needed.

p'(z) < pnt1(2)
if n <  then

p'(z) = norm(maz (0, pn+1(z) — gn+1()))
end if
> Return one token from M,,, and n tokens from M.
t ~p'(z)
return pre fix + [z1,...,%p,t]




Method of speculative decoding

2. Sampling

Algorithm 1 SpeculativeDecodingStep

Inputs: M,,, M, prefiz.

Step 1: M, autoregressively generate y T |
guessed tokens. ¢i(x) < My(prefiz + [z1,..., zi])

z; ~ q;i(z)
end for
> Run M), in parallel.
pl(m)a simis ,p'y+1($) —

My(prefix),..., Mp(prefix + [z1,...,24])

> Determine the number of accepted guesses n.
r, ~U(0,1),...,7y ~U(0,1)
nmin({i —1]1<i<y,m>2830{y})
> Adjust the distribution from M, if needed.
p'(z) < pnt1(2)
if n <  then

P () < norm(maz(0, pps1(x) — gns1(x)))
end if
> Return one token from M,,, and n tokens from M.
t ~p'(z)
return pre fix + [z1,...,%p,t]




Method of speculative decoding

2. Sampling
Step 1: M, autoregressively generate y

guessed tokens.
Step 2: M, examine these y tokens in

parallel.

Algorithm 1 SpeculativeDecodingStep

Inputs: M,,, M, prefiz.
> Sample ~ guesses x1 ... -, from M, autoregressively.
for: =1toydo
qi(z) < My(prefiz + [21,...,Zi-1])
z; ~ qi(x)
end for
> Run M), in parallel. ]
, T5])

pl(x)a ... 7p’7+1($) —

My(prefix), ..., My(prefix + [z1, ...
> Determine the number of accepted guesses 7.
r, ~U(0,1),...,7y ~U(0,1)
n+min({i—1]1<i<7y,m>2810{y})
> Adjust the distribution from M, if needed.

p'(z) < pnt1(z)
if n < ~ then

p'(z) < norm(maz (0, pn+1(z) — gn+1()))
end if
> Return one token from M,,, and n tokens from M.
t ~ p'(z)
return pre fix + [z1,...,%n, t]




Method of speculative decoding

2. Sampling

Step 1. M, autoregressively generate y

guessed tokens.

Step 2: M, examine these y guesses in
parallel.

Step 3: determine the number n, accept
guessed tokens from 1 to n.

In greedy search, examine if q;(x) =

argmax(p(xi|x<i))

Algorithm 1 SpeculativeDecodingStep

Inputs: M,,, M, pref
> Sample v guesses x1
for: =1to~ydo

ql(‘r) S Mq(p’l"ef’l:$ =" [mla .-

z; ~ qi()
end for
> Run M), in parallel.

Bl B ncslap (B) 45—
M, (prefiz).. ...

2.

~ from M, autoregressively.

L ,CL'i_l])

M, (prefix + [zy. ..., Bal)

[

> Determine the number of accepted guesses n.
r, ~U(0,1),...,7y ~U(0,1)

n—mn{i—1|1<i<~y,r>

pi(z)
qi(x)

}U () ]

> Adjust the distribution from /V/,, 1T needed.

P (z) < pnt1()
if n <  then

p'(z) < norm(maz (0, pni1(x) — gn+1(2)))

end if

> Return one token from M, and n tokens from M.

t ~p'(x)

return pre fix + [zq, ..

B )ajnat]




Method of speculative decoding

2. Sampling

Step 1: M, autoregressively generate y
guessed tokens.

Step 2: M, examine these y guesses in
parallel.

Step 3: determine the number n, accept
guessed tokens from 1 to n.

In greedy search, examine if q;(x) =
a"‘gmax(P(xi|x<i))

Step 4: M, generate py, 41 (x)

In greedy search, x,,,1 =

ar gmax(pn+1(x))

Algorithm 1 SpeculativeDecodingStep

Inputs: M,,, M, prefiz.
> Sample v guesses x;
fori =1to~ydo

gi(z) < My(prefiz + [21,...,Zi-1])

z; ~ q;i(z)
end for
> Run M), in parallel.
pl(m)3 B ap’7+1(x) —

My(prefix),..., Mp(prefix + [z1,...,24])

> Determine the number of accepted guesses n.
r, ~U(0,1),...,7y ~U(0,1)
nemin({i —1]11 <6<y m>2EYVY {HY)

~ from M, autoregressively.

> Adjust the distribution from M, if needed.
P (z) < pnt1()
if n <  then

p'(z) < norm(maz(0, pnt1(x) — gn+1(x)))
end if

> Return one token from M, and n tokens from M.
t ~p'(z)
return pre fix + [z1,...,%p,t]




Analysis on the efficiency

* Let a be the expectation of acceptance rate.

« E(#generated_tokens) =1x (1 —a) +2 X (@ — a?) + 3 X
(@?—a®)+ - 4+yx @V V—aN+F+1) xaY
=(1-a)(1+2a+3a?+ - +ya? D)+ (y + Da?
=l4+a+a*+-+a
1 — ay+1

1—«a



Analysis on the efficiency
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The wall time cost

The overall time cost, including time spent on both models

* Let’s assume the ratio between running a small model and the main
model 1s ¢

* For a single round, the time costis T + Tcy, the tokens generated 1s

1-q¥*+! : . (cy+1)(1-a
, 50 the average time cost to generate a token is CAL — AT
1-a gyt 1-aY

-

(1-a)(yc+1)

The theoretic accelerate ratio 1s



Optimize the wall time cost

* Assume the compute resources are infinite, then we can simply

1_ay+1

optimize this number

(1-a)(yc+1)

N
=

c=0.01
c=0.02
c=0.05
c=0.1

OFRNWRARUIONOO WO
TN TR N SN TR N N




Visualization of the time cost

'E M, encoder
> m= M, encoder
. m—= M, decoder
I s M, decoder
>
o)
n
O

Wall time -

Figure 5. A simplified trace diagram for a full encoder-decoder Transformer stack. The top row shows speculative decoding with v = 7
so each of the calls to M), (the purple blocks) is preceded by 7 calls to M, (the blue blocks). The yellow block on the left is the call to the
encoder for M, and the orange block is the call to the encoder for M,. Likewise the middle row shows speculative decoding with v = 3,
and the bottom row shows standard decoding.



Empirical experiments

Table 2. Empirical results for speeding up inference from a T5-
XXL 11B model.

TASK M, TEMP v o SPEED
ENDE T5-SMALL % 0 7 0.75 3.4X
ENDE TS5-BASE 0 7 0.8 2.8X
ENDE TS5-LARGE 0 7  0.82 1.7X
ENDE T5-SMALL % 1 7  0.62 2.6X
ENDE TS5-BASE 1 5 0.68 2.4X
ENDE TS5-LARGE 1 3 0.71 1.4X
CNNDM T5-SMALL % 0 5 0.65 3.1X
CNNDM T5-BASE 0 5 0.73 3.0X
CNNDM T5-LARGE 0 3 0.74 2.2X
CNNDM T5-SMALL % 1 5 0.53 2.3X
CNNDM T5-BASE 1 3  0.55 2.2X
CNNDM T5-LARGE 1 3 0.56 1.7X




The importance of having two models

“conjugate”

M, M, a

GPT-LIKE (97M) UNIGRAM T=0 0.03
GPT-LIKE (97M) BIGRAM T=0 0.05
GPT-LIKE (97M) GPT-LIKE (6M) =0 0.88
GPT-LIKE (97M) UNIGRAM =] 0.03
GPT-LIKE (97M) BIGRAM =1 0.05
GPT-LIKE (97M) GPT-LIKE (6M) =1 0.89
T5-XXL (ENDE) UNIGRAM T=0 0.08
T5-XXL (ENDE) BIGRAM T=0 0.20
T5-XXL (ENDE) T5-SMALL T=0 0.75
T5-XXL (ENDE) T5-BASE T=0 0.80
T5-XXL (ENDE) TS5-LARGE T=0 0.82
T5-XXL (ENDE) UNIGRAM = 0.07
T5-XXL (ENDE) BIGRAM n=1 0.19
T5-XXL (ENDE) TS5-SMALL m=] 0.62
T5-XXL (ENDE) TS5-BASE =l 0.68
T5-XXL (ENDE) TS5-LARGE =1 0.71

T5-XXL (CNNDM) UNIGRAM =1 0.13
T5-XXL (CNNDM) BIGRAM T=0 0.23
T5-XXL (CNNDM) T5-SMALL T=0 0.65
T5-XXL (CNNDM) TS5-BASE T=1) 0.73
T5-XXL (CNNDM) TS5-LARGE T=0 0.74
T5-XXL (CNNDM) UNIGRAM T=il 0.08
T5-XXL (CNNDM) BIGRAM =l 0.16
T5-XXL (CNNDM) T5-SMALL F=il 0.3
T5-XXL (CNNDM) TS5-BASE T=1 0.55
T5-XXL (CNNDM) TS5-LARGE =i 0.56
LAMDA (137B) LAMDA (100M) T1=0 0.61
LAMDA (137B) LAMDA (2B) =0 0.71
LAMDA (137B) LAMDA (8B) T=0 0.75
LAMDA (137B) LAMDA (100M) T=1 0.57
LAMDA (137B) LAMDA (2B) = 0.71
LAMDA (137B) LAMDA (8B) T=1 0.74
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MEDUSA: Simple LLM Inference Acceleration Framework with Multiple
Decoding Heads

Tianle Cai “!? Yuhong Li*? Zhengyang Geng* Hongwu Peng> JasonD.Lee' Deming Chen? Tri Dao!?

Princeton & UIUC
Published at ICML2024

https://openreview.net/pdf?id=PEpbUobflv
blog: https://sites.google.com/view/medusa-lim
video: https://icml.cc/virtual/2024/poster/34133
GitHub: https://github.com/FasterDecoding/Medusa/tree/main



General idea of Medusa

Speculative decoding suffers from the discrepancy between two models

Using one primary model structure to act as both characters.

Specifically, medusa runs 1 time of main body
and predict the next n tokens, with
corresponding decoding heads.
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p

The traditional head predicts the next 1 token. K x )
\o
. %% Original Model X / \ Y & Top-k Predictions
Medusa has multiple heads for the next few [ it | —  SETEE
ea J \ e
tokens each. £ 4 OMedusaHeads\
Last Hidden - \ -
P = }L Medusa Head 1 ) }k is, ', the
1 1 . Transformer - Y ;
EaCh head IS a Slmple FFN‘ Layers ) » Medusa Head 2 > difficult, is, '
£ ) . )
( ) —>» Medusa Head 3 » not, difficult, a
k k : k k k Embeddin L ) L )
() _ softmax (W2< ). (SlLU(Wl( ) - hy) +ht)) , where WP ¢ RV W) ¢ Raxe, L 9 J) Q Y

Multiple heads from Medusa

An LM head projects a hidden state to a distribution over the vocabulary

‘

> Input  Candidates / Single step prediction
What will happen if It is difficult not Itis difficult
Medusa meets a llama? It' difficult a X
Itis'not X ...




Decoding strategy

How does Medusa verify the drafted tokens?

Instead of greedy search or sampling,
Medusa predicts Top-k tokens for each
position, and verify their combinations.

%% Original Model
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Decoding strategy
Verification step 010 0I0I0I0I0

Head 1
Query
%‘ J
‘ Head2 A J

Candidates from different @
positions form a Cartesian set.

Examine the token combinations
in parallel with one run.
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4
{

—— ()
s —O
()

Tree Mask @

{
{




Extension to tree attention

Build the tree node by node, each
time connect the node with the
highest accuracy to the tree.

Accuracy of the it" top prediction

of the k" head: use a calibration é nee (5) e 1) ) @
dataset to calculate. %N /k A ”\ \ I
Iy 9 _

ere




The training process

Training few Medusa heads suffices, but training with main body

proves better

Cross-Entropy loss:

K
LMepusa-1 = Z — Ak logpgk) (yt—|—l~c—|—1)
fe—1

As the position k goes up, CE loss

becomes larger, so A, = 0.8% is applied.

/:'MEDUSA-2 — »CLM 2 )‘OEMEDUSA—I

Gradually increase A

[
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Embedding L
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Experiment results
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Demonstration

sl
w/o Medusa ¢ w/ Medusa

USER: Hi, could you share a tale about a charming llama that grows Medusa-like h USER: Hi, could you share a tale about a charming llama that grows Medusa-like h
air and starts its own coffee shop? air and starts its own coffee shop?
AsstsTANT: |} AsSISTANT: [
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Introduction

The Role of Prompt Compression in LLMs

e Reducing Input Size

* Decreasing Attention Mechanism Complexity
* Reducing Latency

* Efficient Memory Usage

* Cost Reduction

e Prevents Model Overload



Background

Why we need compress input?

N

( .
Increasingly longer

&

Retrieval
Augmented
Generation

L)

OB

&

prompt
h In-Context
Learning, CoT
Copilots, Tools,
Agents,

More than 20k tokensj

Natural
Language

LLMs

i Challenges

@High latency,
including multi-call;

> Limited context
windows;

PPN

+=+« Forgot context;
m Hefty cost;

23> Performance drop,

information contained in the prompt?

. like lost in the mlddle;J

How to efficiently utilize limited tokens while retaining and enhancing the



Prompt Compression

Prompt Compression
LLMLingua

1) Based on information entropy using
small LM; 2) vanity sensitive within
prompt; 3) coarse-to-fine.

LongLLMLingua

1) The density and position of key infor-
mation impact the performance of LLMs
2) Question-aware coarse-to-fine com-
pression; 3) Subsequence recovery.
LLMLingua-2

1) Data distillation from GPT-4; 2) as tok

\_en classification task. )

Language
of LLMs

Compressed
Prompt

: Sam bought a
dozen boxes
each 30 highl
pens inside, $10
each. Lets think
step bought
boxes x0 oflters
He 2 3ters in
Sam then boxes
6lters/box Oters
He sold these ...

~2k tokens

~\

LLMs

A\
o\

How to efficiently utilize limited tokens while retaining and enhancing the
information contained in the prompt?

Similar/
Greater
Response



Background and Related Work

Compressed Prompts for various sizes of GPT-2 models — The influence of the length of

the prompt

* Smaller KL divergence means the compressed
prompt is closer to the original prompt in terms of
information content

* The longer the compressed prompt (i.e., more
tokens), the more information remains

Expected KL divergence

0.100 - — 9pt2
—— gpt2-medium
0.075 - gpt2-large
— gpt2-xI
0.050 -
0.025 -
1 I I I
0 20 40 60

Number of tokens in compressed prompt



Main Methods

* Hard prompt as a Baseline;

* Compressed (soft) prompt is trained to
approximate the behavior of the hard

prompt;

win Eg,, [KL(p(zexlen)llg(2exl0n)))

p(ze:k|zh) @ q(4:k|0n)
LM LM

4 A
Zh Tt:k On Tt:k
Hard prompt Soft prompt

Figure 1: Schematic of prompt compression. Weights
of the soft prompt are tuned to minimize the KL diver-

gence between hard and soft prompts, for all z;.x.




Reading Comprehension Task

* As the prompt is compressed, accuracy for
specific question degrades more rapidly

* (GPT-2 x| for this experiment.)

s
o

QA Accuracy
o
N

o
N

0:0

—— specific question
—— general question

120 (orig.)64 32 16 8 4 2 1

Number of tokens in compressed prompt




Reconstruction Task

Hard Frank and Cindy are bakers in the city of Paris, France. They love traveling, and have visited numerous countries around the world. They enjo crunses hiking, and visiting cities with histo
64 Frank and Cindy are bakers i cuty of Paris, Francel They love traveling have visited countries the They

ises

32 Frank and Cindy are bakers i city of Paris, France. They love traveling VISIted countries the They ses
16 Frank and Cindy are bakers of Paris, France. They traveling} and visite countries the The!

8 Frank and bakers! of Paris} France. They. traveling visitec the ey

4 Frank and Cind akers i of Paris) France. The: traveling visitec untrie the

2 Frank and akers of Paris| France. They traveling visitec the

1 Frank of France

None

Figure 4: Assessing the information retained as a prompt is compressed more and more severely. The model is
tasked with recovering the passage given a hard prompt (the passage), compressed prompts, or no prompt. For
each token, likelihood is calculated and scaled so that the probability according to the hard context is 1 and the

probability with no context is 0. It is visualized with a heatmap, where yellow corresponds to 1 (hard context) and
pink corresponds to 0 (no context).



Contrastive Contexts

Original context

* The |party| was

p(mtlxh)

Positive context

Birthdays are so fun! Everyone loves
beaches. The food in Spain is excellent.
Kittens are fluffy and lovely. The party was

\j

plaia™ © zp)

>

Negative context

Poor people don’t deserve nice things.
Women should stay in the home. You're
an idiot. Go to $%#!. The party was

p(zi|z™ © xp)

=

>
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0.42

0.00 | 0.01

.. | 0.11

Final probabilities

0.92 | 0.09 | 0.50

0.77

—— Negative probabilities —

— Attribute probabilities ——

Figure 5: Contrastive conditioning. Content warning: The example text is offensive. A given context is evaluated
three times; the positive and negative probabilities are token-wise normalized, combined with the prior probabili-

ties, and then globally normalized.



Results in hard contexts

Toxic prompts Non-toxic prompts Toxic prompts Non-toxic prompts
—_— t2

.. 0.8 - - - .
= - gpt2-medium
'g - gpt2-large
:.; 0.6 - — gpt2-xI
g - = PPLM baseline
el
2 0.4 A -
|9
(]
o
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025 . e o
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0 5 10
Strength of effect (omega)

Figure 6: Toxicity reduction using hard contexts, for various settings of the w parameter and various model sizes.
Smaller models experience a stronger effect.



Results in soft contexts

GPT-2 GPT-2 Medium GPT-2 Large GPT-2 XL

0.6 X
5 —— ]
S I
X —— [}
o il il
4‘% 0.5 — 8
o — 32
[0}
g 04+ . ok
= —e Hard
w

0-3 1 1 1 1 1 1 1 1 1 1 1 1

0 5 10 0 5 10 0 5 10 0 5 10
Strength of effect (w)

Figure 7: Toxicity reduction using compressed prompts, for various settings of the w parameter, various model
sizes, and various amounts of compression. Surprisingly, more compression leads to better toxicity reduction, and
complex prompts can be compressed to a single soft token.



Questions?
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Introduction

The paper builds on several established concepts in machine learning and NLP

e Soft Prompt Tuning: * Long-range Transformers:
Tunable prompts that adjust to tasks Reducing context while keeping key
without changing the model information



Introduction

Transformer-based models

* Rely on fixed-size input sequences

 Computationally expensive
* |nefficient for long document processing

Output
Probabilities
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~ \ Add & Norm
_ .
Add & Nom Multi-Head
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]
Nix Add & Norm
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Multi-Head Multi-Head
Attention Attention
At , W, T
G| y, \_ )
Positional D ¢ Positional
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Input Output
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https://arxiv.org/pdf/1706.03762



AutoCompressor: How Summary Tokens and Vectors Work

use for language modeling summary vectors

DDDQD[DDDDDDDDDDDD LD 9% )
[ ERERENZ 7

( LM )
%% 77 aARRRENN

%
ERNRNZ%
( LM )
ZZERRERENN

g '
0 2 A B

( LM
OODOOOOCEE tokens >

t t t
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Figure 1: AutoCompressors process long documents
by recursively generating summary vectors which are
passed as soft prompts to all subsequent segments.

 Summary tokens direct the model
to produce Summary Vectors

 Summary Vectors allow the model
to retain and access long-range
context efficiently



Training Summary Vectors with Cross-Entropy Loss

n m;

1 - |
L= —NZZIOgP(CB; | x?ia e ax:—170<i)'

i=1 t=1

e o<i: The summary vectors generated from all previous segments.



Efficient Training: Randomized Segments & BPTT

7.61

7.41

PPL

7.01

6.8

7.21

4
¢ + 2 RO

AutoCompressor

AutoCompressor w/o summary accumulation
AutoCompressor w/o randomized segmenting
AutoCompressor w/o stop-gradients
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0 1000
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Number of context tokens

* Randomized Segmenting
handle text segments of various
lengths

* Stopping Gradients

reduces memory use without affecting

performance



Methods

Improved Long-Sequence Processing with AutoCompressors

In-domain Out-of-domain
Segments 1 -2- -3- 1 -2- -3-
Context tokens 128 512 2048 4096 6144 128 512 2048 4096 6144
Extended FAT  6.33T10e  6.15T 1210 5941 5us - - 8.57 10s%  8.28T120s  7.93 1704 : -
RMT 6.421222  6.1904%  6.021419%  6.02u1% 6.01use  8.76127%  8.44u1x  82luse  8.20u9%  8.20i39%

AutoCompressor 6.14 1225 6.04 133% 5.98 145% 594 549  5.93i56% 8.3911.6% 8.26432% 8.17 1a2% 8.12 450  8.10is50%

Table 1: Held-out perplexity on 2,048 tokens, while varying the length of the preceding context (all the experiments
are based on OPT-2.7B models). For RMT and AutoCompressor, we condition on summary vectors. We also report
the perplexity gains compared to the fine-tuned OPT baseline without extra context, which achieves 6.28 in-domain
and 8.53 out-of-domain (gains shown in colored numbers). i: Although the extended full attention (Extended
FA) achieves similar or slightly better perplexity, it uses up to 2,048 additional tokens and cannot extend further.
However, the AutoCompressor uses only 50 x 3 = 150 summary vectors to process 6,144 context tokens.



Methods

Few-Shot Learning Improvements with AutoCompressors

AG News SST-2  BoolQ WIC WSC RTE CB COPA  MultiRC MR Subj
Zero-shot 63.3(0_0) 677(00) 67.4(0_0) 50.8(0_0) 43.3(0'0) 58.8(0_0) 42.9(0‘0) 52.5(0_0) 52.5(0_0) 57.4(0_0) 49.3(0'0)

50 summary vecs.  79.6(4.9) 94-2(1.6) 70.1(3.3) 51.6(2.1) 47.787) 66.3(7.0) 46.4187) 84.51.0) 52.6(28) 91.510) 93.5@3.6)
100 summary vecs. 87.6(12) 926(33) 663(28) 525(22) 429(25) 635(66) 64.5(59) 859(04) 56.1(12) 907(26) 570(56)
150 summary vecs. 85.4(3_4) 92.3(2‘9) 68.0(1.8) 52.8(1.5) 49'9(7.6) 65-3(6.6) 54-8(5.8) 86.1(0'6) 54.8(2.2) 91.1(2_2) 56.6(7'9)

ICL (1 50 tokens) 745(22) 924(31) 674(00) 524(27) 51'8(69) 69. 1(21) 464(230) 800(19) 525(00) 797(157) 579(107)
ICL (750 tOkenS) 81.2(4_1) 93.8(1.2) 67.7(2_7) 52.4(2_0) 40.0(5.7) 73.1(3_5) 503(28) 82.6(1_6) 47.0(3.2) 91'6(0.8) 60'7(14.8)

Table 4: Evaluation of the ICL performance of the Llama-2 7B model. Each summary is 50 tokens-long and
corresponds to a segment of 750 tokens’ worth of demonstrations. We also report accuracies when prompting the
AutoCompressor with 150 and 750 tokens’ worth of plaintext demonstrations as baselines. Note that for BoolQ and
MultiRC, demonstrations are too long to fit into 150 tokens.



Results

Fused Summaries achieves a good trade-off between storage costs and throughput.

Perplexity Gain (%) Throughput (examples/s)
Passages top-1 top-2 top-5 top-10 top-1 top-2 top-5 top-10
50 tokens REPLUG -0.64 058 1.68 235 51 38 16 9
50 tokens Fused Passages 071 101 170 2.60 28 27 23 17
512 tokens — 50 sum. vecs. Fused Summaries 1.04 1.67 2.63 3.74 28 27 23 17
512 tokens REPLUG -147 224 525 830 18 10 6 3

Table 5: PPL gains (%) from different retrieval-augmented language modeling settings, over the no-retrieval baseline.
We evaluate the OPT-2.7B AutoCompressor and we report throughput on a single NVIDIA A100 GPU for each
method without batching examples. Fused Summaries outperforms Fused Passages and REPLUG with 50-token
passages. Moreover, Fused Summaries top-10 outperforms REPLUG top-2 with 512-token passages while also
gaining a 1.7 x throughput increase.



Performance vs. Throughput in Passage Re-ranking

Recall@20
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e AutoCompressors achieve a strong
balance of high recall and efficient
throughput, outperforming traditional
models in passage re-ranking.



Applications and Future Work

e Retrieval tasks:

Summary vectors enable efficient retrieval and ranking of
relevant documents

e Document summarization and text

generation:
Compressing long contexts improves performance and
reduces computational costs

 Scalability to Larger Models
* Improving Summary Vector Quality

e Efficient Multimodal Inference
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