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Transformer Architecture
• Word Embedding
• Self-Attention Mechanism

- Query, Key, Value
- Dot product Query and Keys to find 

relevance between tokens: Attention score



Limitation of Transformers

• Fixed window size due to 
quadratic complexity

• Bottleneck
Attend from each of the token to 
every other token

How to achieve a larger context window?



Memorizing Transformers 
Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, Christian Szegedy

Reference: Wu, Y., Rabe, M. N., Hutchins, D., & Szegedy, C. (2022). Memorizing transformers. 
arXiv (Cornell University). https://doi.org/10.48550/arxiv.2203.08913 

https://doi.org/10.48550/arxiv.2203.08913


Growing Knowledge Base

• Theorem database in mathematics • Codebase in program synthesis



Memorizing Transformers

• Maintain an external memory 
Memorize the previously generated 
keys and values

• kNN Attention
– An approximate K-Nearest-

Neighbor (kNN) lookup into the 
memory 

– Find top-k most relevant (key, 
value) pairs in the broad context



Innovations

• Precision
– Other approaches average or summarize of tokens at long distances.
– kNN lookup retrieves exact values even from the distant context.

• Scalability
– In traditional transformer models, gradients are backpropagated 

through the entire model, updating weights of all the learned 
information .

– In the non-differentiable external memory, key-value pairs remain 
static once they are stored and are not updated through the training 
process

– The system focus solely on retrieval during inference without 
needing to re-learn or re-compute everything



• Combines two forms of attention
– Standard dense self-attention on the 

local context
– Approximate KNN search into the 

external memory

• After each training step, the (key, value) 
pairs in the local context are appended to 
the end of the external memory

Memorizing Transformers Architecture



Memorizing Transformer Layers



Memorizing Transformer Layers



Memorizing Transformer Layers



Improvements with External Memory
• Test on a variety of language modelling tasks involving long-form text
• Evaluate perplexity:  The uncertainty of a model to predict the next word
• Lower perplexity values = better (more confident) predictions by model

• Model perplexity steadily improves with the size of external memory 
• Diminishing marginal decreasing from an increasing  memory size



Improvements by Memory on Large Models

• Compare to normal transformers on arXiv math dataset
• Add a memory of size 8K to normal transformer models in different sizes
• The memory mechanism helps consistently when scaling model size up to 

8B.
• 8K memory attained results

comparable to the larger model 
which has 5-8X more trainable
parameters



• Train memory from scratch v.s. Fine tunes the model to use memory

Fine-Tuning transformer to use memory

• Finetuning a 1B vanilla Transformer 
model to use external memory of size 
65K.

• Within 20K steps (4% of the pre-training 
time), the fine-tuned model has already 
closed 85% of the gap between it and the 
1B Memorizing Transformer.

• After 100k steps it has closed the gap 
entirely.



Fine-Tuning for a Larger Memory

• Firstly pretrain the model with a small memory and fine tunes it to make use of a 
larger memory (on the arXiv dataset)

• Increasing the size of external memory provided consistent gains up to a size of 
262K, which achieved results comparable to a 40X larger model



Information Retrieval Patterns

• A qualitative study of what the model was actually retrieving from external 
memory

• Find tokens which showed the biggest improvements in cross-entropy loss 
when the size of the memory was increased, and then examining the top-k 
retrieved memories for those tokens.

• The model gained the most when looking up rare words: proper names, 
references, citations, and function names, where the first use of a name is 
too far away from subsequent uses to fit in the local context. 



Information Retrieval Patterns

• Examples of memory retrieval
• The retrieved surrounding context (highlighted) is the definition body of the 

mathematical object highlighted in the querying context. 



Takeaways

• K-Nearest-Neighbor lookup into a large external memory
• Dramatically increases the length of the context that a language model can 

attend to 
• Genericness: A large improvement across variety of long-document tasks
• Scalability: Perplexity continues to improve with increasing memory size
• A Memorizing Transformer does not need to be pre-trained from scratch
• Immediate utilization of newly acquired knowledge



LONGNET: Scaling Transformers to 
1,000,000,000 Tokens 

Jiayu Ding  Shuming Ma  Li Dong  Xingxing Zhang  
Shaohan Huang  Wenhui Wang  Nanning Zheng  Furu Wei

https://arxiv.org/pdf/2307.02486

https://arxiv.org/pdf/2307.02486


Background 
• Conflicts between the demanding need to scale up LLMs and degrades on 

performances.

• Degrades originate in the computational complexity, which is quadratic.

    



Attention Recap

• Why is it quadratic?

• Turn quadratic into linear or near linear 



Dilated Attention - Key innovation

• Sparse attention did dramatically reduce the computation, but they are LOCAL!!!

• Dilated Attention with dilation rate = 1 is just the same as sparse attention.

• How to handle information flow



Dilated Attention

• Multiple dilation rates and stack the layers



LongNet: Dilated Attention



Multihead Dilated Attention

• To make it converge even faster, we can have different patterns under the same 
dilation rate for each head.



Computational Complexity

The complexity is now O(Nd). LINEAR!



Parallelizing computation on GPUs



Results
Perplexity: 

• LongNet consistently outperform the benchmark models with different context 
lengths.

• LongNet achieved similar performance level with significantly less computational 
cost.



Results

• Larger model size → lower test loss
• Larger context window → lower test loss



LONGLORA: EFFICIENT FINE-TUNING OF 
LONGCONTEXT LARGE LANGUAGE MODELS 

Yukang Chen  Shengju Qian  Haotian Tang  Xin Lai  Zhijian Liu  Song Han  Jiaya Jia
https://arxiv.org/pdf/2309.12307

https://arxiv.org/pdf/2309.12307


LoRA Recap

• Observations: Weights learned after training contains redundancies.

• Using low-rank approximation instead of tuning the entire weights in the model.



Problems with LoRA

• LoRA is neither sufficiently effective nor efficient when the context length increases 
to more than 8K tokens.

*A perplexity of N can be interpreted as the model being as confused as if it had to choose 
uniformly among N options for each word. The lower, the better.



What is LongLoRA

• Shifted Sparse Attention (S^2 attention)

• Parameter efficient tuning



S^2 Attention

• Split attention heads into two partitions, shift one of the partition half the group size.

• Reduce computation by local sparse attention.

• Ensure information flow by shifting.



S^2 Attention



S^2 Attention

Design process: 
• Sparse attention to reduce computational cost

• How to handle information flow → Shifting

Pros:
• Consistent to Full attention: same architecture & full attention while inferencing

• Easy implementation 



Parameter Efficient Tuning

• Lora only works with attention layers → open normalization and embedding layers 
for training

• These layers only occupy limited parameters in the whole model and thus will not 
introduce new computational cost.



Evaluations

Experiment settings: 
• 7B ,13B, 20B Llama2 pretrained; 
• Position indices all rescaled based on positional encoding
• Trained on a single 8× A100 GPUs machine
• Fine tune objectives: Next token prediction 
• Two tasks: 

– Long Sequence Language Modeling
– Topic Retrieval



Evaluations - Long Sequence Language Modeling

Perplexity evaluation on PG19 dataset



Evaluations
Maximum context length can be tuned

Topic Retrieval



Evaluations
Efficiency Evaluation
Substantially decreases FLOPs, particularly with longer context lengths.

Group size
Set group size as ¼ in experiments based on the results.



Ablation Studies

Variants of S^2 Attention
Shifting direction has no effect on the perplexity; performances are similar.



Lost in the Middle: How Language Models Use Long Contest

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, 
Michele Bevilacqua, Fabio Petroni, Percy Liang

https://arxiv.org/abs/2307.03172

https://arxiv.org/abs/2307.03172


Background
Language models have significantly 
improved, enabling them to handle longer 
text inputs.

Despite these advancements, efficiently 
utilizing long text contexts remains a 
challenge.

How effectively do modern language models 
actually utilize long text contexts? Does the 
performance of these models significantly 
deteriorate when the relevant information is 
positioned in the middle of the text?



Multi-document question answering
Input: (1). A question to answer; (2). k documents
Dataset Utilization: NaturalQuestions-Open dataset featuring historical Google search queries and 
human-annotated answers from Wikipedia.
Open models: MPT-30B-Instruct, LongChat-13B
Closed models: GPT-3.5-Turbo, GPT-3.5-Turbo (16K), Claude-1.3, Claude-1.3 (100K)



Multi-document question answering

• Model performance is highest when relevant information occurs at 
the beginning or end of its input context.

• Extend-context models are not necessarily better at using input 
context.



How well can language models retrieve from input context

● Objective: Assess model adaptability to input changes and complex scenarios.
● Input: Serialized JSON with key-value pairs.
● Task: Synthetic key-value retrieval to find specific values.
● Evaluation: Focuses on model performance amid input context and structural changes.



The models like Claude-1.3 perform almost perfectly in retrieving values, regardless of the number of 
distractors. 
Models such as GPT-3.5-Turbo and LongChat-13B exhibit difficulties when key-value pairs are 
positioned in the middle of the input, with LongChat-13B generating code to retrieve keys instead of 
directly outputting values.

How well can language models retrieve from input context



Why Are Language Models Not Robust to 
Changes in the Position of Relevant Information?

Effect of Model Architecture

● Decoder-only models struggle with long input contexts, especially when the relevant 
information shifts within the input.

● Encoder-decoder models like Flan-T5-XXL and Flan-UL2 show better resilience and 
performance due to their bi-directional context processing capabilities.



Effect of Query-Aware Contextualization

● Placing the query before and after documents
● Minimal improvement in question answering tasks; 

notable only when information is at the very beginning 
or end of the input.

Effect of Instruction Fine-Tuning

● Models are fine-tuned on instruction-specific datasets 
to enhance their response quality.

● Fine-tuning helps reduce performance disparity in 
models, especially in worst-case scenarios, but 
overall trends remain similar.

Why Are Language Models Not Robust to 
Changes in the Position of Relevant Information?



Is more context is always better? A case study 
with open-domain QA

Experiment Setup:

● Retriever-reader model with a retrieval system fine-tuned on 
MS-MARCO.

● Recall and accuracy based on retrieved documents containing 
correct answers.

Findings:

● Retrieval performance peaks with just 20 documents.
● Slight accuracy improvement (~1-1.5%) with more context but at 

a high computational cost.
● Suggests better document reranking or truncating retrieved lists 

over simply increasing context.



Conclusion

• Performance Degradation with Changing Information Position
– Models struggle to robustly access and utilize information in long input 

contexts.
– Performance is often lowest when the relevant information is located 

in the middle of long input contexts.

• Contributions and Future Directions
– Provide a better understanding of how language models utilize their 

input context.
– Propose new evaluation protocols for future long-context models and 

highlight areas for improvement.



Q&A


