
Code Language Models

Speaker: Jiawei Shen Eric Liu Yiwen Lu
Presentation date: 2024/10/17

Popular code language models

OpenAI Codex

Contents

1. Code Llama: Open Foundation Models for Code
2. Planning with Large Language Models
3. Teaching Large Language Models to Self-Debug
4. SELFEVOLVE: A Code Evolution Framework via Large Language Models

Code Llama: Open Foundation
Models for Code

1. Code Llama: Open Foundation Models for Code
2. Planning with Large Language Models
3. Teaching Large Language Models to Self-Debug
4. SELFEVOLVE: A Code Evolution Framework via Large Language Models

https://arxiv.org/abs/2308.12950

1. Background
Large language models (LLMs) power a rapidly
increasing number of applications, having reached
a proficiency in natural language that allows them
to be commanded and prompted to perform a
variety of tasks.

2. Contribution

Different variants of Code Llama: Three main variants are provided, each with three sizes (7B, 13B, and 34B
parameters):

Code Llama: Basic code generation model.

Code Llama - Python: A version customized for Python.

Code Llama - Instruct: A version that combines human instructions and self-generated code synthesis data.

2. Contribution

This paper thoroughly evaluates the model on major code generation benchmarks such as HumanEval,
MBPP, APPS, and the multi-language version of HumanEval (MultiPL-E). Code Llama performs well in
these tests and sets a new standard for open source LLMs.

3. Llama2
Most of the pre-training settings and model architecture from Llama 1 are adopted. The standard Transformer
architecture is used, pre-normalization is applied using RMSNorm, SwiGLU activation function and rotated position
embeddings are used. The main architectural differences from Llama 1 include increased context length and
grouped query attention (GQA).

3. Llama2: Grouped Query Attention (GQA)

Before understanding what GQA is, we need to know two more concepts: MHA and MQA

MHA

Multi-Head Attention (MHA) splits input data into multiple heads, each independently performing
attention calculations with distinct weight matrices to capture different features. The Query (Q),
Key (K), and Value (V) components align across heads, and their outputs are summed to generate
the final result.

MQA

Multi-Query Attention (MQA) simplifies attention by keeping Q multi-headed while sharing K and V
across all heads within each layer, reducing the number of K and V matrices to one per layer. This
approach, as seen in models like ChatGLM2-6B, enhances computational efficiency without
compromising performance.

GQA

Although MQA can minimize the cache space required for KV Cache, it is conceivable that the reduction of
parameters means a decrease in accuracy. Therefore, in order to make a trade-off between accuracy and
calculation, GQA (Group Query Attention) came into being. That is, Q is still multi-head, but K, V are shared in
groups, which not only reduces the cache space required for K, V cache, but also exposes most parameters without
serious loss of accuracy.

4.1 Codellama technique: Dataset
Available code, of which 8% of the sample data comes from natural language datasets related to code. These
datasets contain code discussions and code snippets, which help the model understand natural language.

Dataset: The training data mainly comes from publicly available code data, as well as natural language data
related to code.

Tokenization: Tokenization is performed using the same tokenizer as Llama 2.

4.2 Codellama technique: Infilling
Filling is the task of predicting the missing parts of a program, and the Code Llama model achieves this function
through a specific training method. The training uses causal masking technology to move parts of the training
sequence to the end of the sequence and autoregressively predict the rearranged sequence.

Segmentation: The training documents are segmented into prefix, middle part and suffix at the character level.

Masking: The masking transformation is applied with a certain probability, and only operates on documents
that do not exceed the model context length.

4.3 Codellama technique: Long context fine-tuning

The long context fine-tuning stage is specifically proposed to improve the model's ability to handle long
sequences. By modifying the parameters of the RoPE position embedding, the maximum context length of the
model is extended from 4,096 tokens to 100,000 tokens.

Sequence length: The sequence length used during training is 16,384 tokens.

RoPE adjustment: The frequency of the rotation embedding is adjusted to accommodate longer sequences

4.4 Codellama technique: Instruction fine-tuning

Code Llama - Instruct The model is fine-tuned on Code Llama with three additional data to better answer
questions.

Three different types of data:

Proprietary dataset: Fine-tuning dataset using RLHF V5 instructions from Llama 2. Improve the security of
model output and enhance the model's responsiveness to user instructions.

Self-guided dataset: Select data through execution feedback and build a self-guided dataset. Use llama2 70B to
produce instruction questions, coda llama 7B to answer questions, and select the correct ones as the final
dataset.

Recap: Prevent the model from regressing in general coding and language understanding capabilities, and use a
small part of the code dataset and natural language dataset for training

4.5 Evaluation

Different Models

4.5 Evaluation

Safety

Planning with Large Language
Models

1. Code Llama: Open Foundation Models for Code
2. Planning with Large Language Models
3. Teaching Large Language Models to Self-Debug
4. SELFEVOLVE: A Code Evolution Framework via Large Language Models

https://arxiv.org/abs/2303.05510

1. Problem/Background

● Code generation methods like beam
search or sampling often generate
programs that are incorrect

● Previous methods don’t test the code until
it is fully generated

2. Planning-Guided Transformer Decoding

● Also a Transformer-based generation model
● Integrates the Monte Carlo Tree Search

(MCTS)
● Four steps:

○ Selection
○ Expansion
○ Evaluation
○ Backpropagation

2.1 Planning-Guided Transformer Decoding

2.2 Caching/Information Sharing

● Tree Structure Caching
○ Stores the search tree built during Monte

Carlo Tree Search (MCTS) to avoid
recomputing the same partial programs

● Sequence Caching
○ Saves complete programs generated during

evaluation so that future iterations can
reuse these sequences if the same prefix is
encountered

3. Results

● APPS,
CodeContests
are benchmark
coding datasets

● Pass Rate: How
many test cases
were passed

● Strict Accuracy:
How many
problems all
tests cases
were passed

3.1 Results

● Having the two caching mechanism reduces computation time
almost twofold

● Finetuning the transformer models using the solutions created
by PG-TD improves their performance

● The model is able to perform other objectives without
sacrificing pass rate significantly

● The model is able to use automatically generated test cases to
still outperform other methods

4. Limitations

● Reliance on test cases:
○ PG-TD depends a lot on the availability of test cases for evaluating generated programs.

● Computational Cost:
○ Although the caching mechanisms improve efficiency, PG-TD still requires more computational resources

than standard beam search because of the many calls to the Transformer during the planning process.

5. Key Takeaways/Contributions

● Planning
○ PG-TD adds planning to code generation so the Transformer can generate better programs by looking

ahead during the decoding process
● Caching

○ The algorithm design includes caching techniques that reduce repetitive computations
● Model Flexibility

○ PG-TD works with any Transformer-based code generation model without requiring more training

Teaching Large Language Models
to Self-Debug

1. Code Llama: Open Foundation Models for Code
2. Planning with Large Language Models
3. Teaching Large Language Models to Self-Debug
4. SELFEVOLVE: A Code Evolution Framework via Large Language Models

https://arxiv.org/abs/2304.05128

1. Introduction

1. Problems:
○ LLMs perform well in code generation, but struggle to generate correct code in one

attempt, especially for complex tasks.
2. Idea:

○ Programmers debug by reviewing execution and explaining code, often using rubber
duck debugging.

3. SELF-DEBUGGING:
○ Teaches a large language model to debug its predicted program via few-shot

demonstrations
○ Without any human feedback on the code correctness or error messages, the model

is able to identify its mistakes by investigating the execution results and explaining
the generated code in natural language.

Programmers explain their
code line-by-line to identify
mistakes. By explaining it
simply, errors become more
obvious, helping to debug the
code without external
guidance.

2. Background

Previous Researches:

● Prior works propose deep learning techniques to repair the predicted code, which require
additional training (Gupta et al., 2020; Wang et al., 2018; Fu et al., 2019; Chen et al.,
2023a).

● Recent studies show LLMs can generate feedback messages to refine outputs, mainly for
natural language and reasoning tasks (Shinn et al., 2023; Madaan et al., 2023b; Kim et al.,
2023; Bai et al., 2022).

● Current LLMs struggle to self-correct code without external feedback or human input
(Chen et al., 2023a).

Prompting for Code Generation::

● Few-shot prompting: Instructs the
language model to solve a task with
several input-output demonstrations
(Brown et al., 2020).

● Besides the demonstrations, we can
optionally add an instruction in the
prompt to provide a high-level task
description (Ouyang et al., 2022; Sanh et
al., 2022; Suzgun et al., 2022).

examples

Execution-Based Code Selection

● Previous Work:
a. Decoding multiple samples can significantly improve LLM performance (Wang et al.,

2023; Shi et al., 2022).
b. Code execution is used to select the final prediction from multiple generated codes .

The most frequent execution result among successful runs is selected as the final
code (Chen et al., 2019; Li et al., 2022).

● When there are multiple predictions, select the predicted code with the most frequent
execution result among those that do not encounter execution errors, then apply SELF-
DEBUGGING to the code.

3. Contribution
SELF-DEBUGGING Framework

● Introduces a novel framework where LLMs debug
their own code without external feedback.

Rubber Duck Debugging for LLMs

● Adapts the human strategy of explaining code line-
by-line to help LLMs identify and fix errors.

State-of-the-Art Performance

● Achieves 2-3% improvement on Spider (text-to-
SQL)

● Up to 12% improvement on TransCoder and MBPP
benchmarks.

Better Handling of Complex Tasks

● Improves accuracy on the hardest tasks by 9%.

Increased Sample Efficiency

● Reduces the number of samples needed to achieve
high accuracy, improving efficiency.

4. Self-Debugging Framework

The process repeats until the code is debugged or reaches the
maximum iterations:

1. Generation
○ The model generates candidate code based on the

input problem.
2. Execution:

○ The generated code is executed to observe the
results or identify any errors.

3. Explanation
○ The model explains the generated code in natural

language, identifying potential errors.
4. Feedback

○ The model uses the explanation and execution
results to provide feedback on the correctness of
the code.

● If no unit tests are available, the
feedback can rely purely on the
code explanation.

Unit tests provide
predefined input-
output pairs that
the code needs to
pass.

4.1 Types of feedback in Self-Debugging
1. Simple Feedback

○ A basic message indicating code correctness (e.g., "The SQL prediction is correct" or
"Please fix the SQL"), which omits the Explanation step.

2. Unit Test Feedback (UT)
○ Incorporates unit test results into the feedback, providing more detailed information based

on code execution.
○ Helps identify runtime errors and failed test cases.

3. Code Explanation Feedback (Expl)
○ The model explains its generated code, similar to rubber duck debugging, where it

describes and compares code behavior to the problem description. Useful when no unit
tests are available.

4. Execution Trace Feedback (Trace)
○ Prior work on code repair has demonstrated that training the repair model on execution

traces improves the debugging performance (Wang et al., 2018; Gupta et al., 2020).
○ When unit tests are available, the model explains the execution steps line-by-line as it runs

through the code.

5. Experiments

We evaluate SELF-DEBUGGING across multiple code generation tasks:

○ Spider Benchmark (text-to-SQL generation)
○ TransCoder Benchmark (code translation)
○ MBPP (text-to-Python generation)
○ Models Used: Codex, GPT-3.5, GPT-4, StarCoder
○ Decoding Strategy:

i. Greedy decoding for initial code generation (temperature τ = 0).
ii. Sampling multiple programs with temperature τ = 0.7 followed by

execution-based selection.
iii. Maximum debugging turns: 10 (successful debugging mostly ends in 3

turns).

5.1.1 Spider Benchmark (text-to-SQL generation)

● Task: Generate SQL queries from natural language.
● Unit tests: No unit tests are available.
● Results:

○ SELF-DEBUGGING improves accuracy by 2-
3% over baseline.

○ On the hardest queries, accuracy improves
by 9%.

● Feedback Type: Code explanation without unit
tests.

● Comparison:
○ Compared to T5-3B + N-best Reranking,

which is trained specifically for text-to-SQL.
○ SELF-DEBUGGING performs without any

additional training.

5.1.2 TransCoder Benchmark (Code Translation)

● Task: Translate code from one language to
another (C++ to Python).

● Unit Tests: Available for execution feedback.
● Results:

○ SELF-DEBUGGING boosts accuracy by up
to 12%.

○ Performance improves with unit test
feedback and code explanations

5.1.3 MBPP (Text-to-Python Generation)

● Task: Generate Python code from text descriptions.
● Unit Tests: Only a subset is provided for the problem.
● Results:

○ SELF-DEBUGGING improves the baseline
accuracy by 8%.

○ Code explanation and unit test feedback further
enhance performance.

● Comparison:
○ MBR-Exec selects programs based on the most

common execution output.
○ Coder-Reviewer uses both code likelihood and

problem description likelihood for selection.

5.2 Ablation studies

Figure 6a shows that SELF-DEBUGGING significantly improves sample efficiency. On the Spider
benchmark:

● Greedy decoding with SELF-DEBUGGING matches the baseline accuracy with 16 samples.
● 8 samples with SELF-DEBUGGING outperform the baseline with 32 samples.
● Typically, one debugging turn is enough, with further improvements being minimal (~0.1%).

This efficiency gain is observed across other benchmarks as well.

To understand the effectiveness of
SELF-DEBUGGING from different
perspectives.

5.3 Importance of Code Execution

Table 3 examines performance without code execution for Transcoder and MBPP, where models rely
solely on internal feedback (like in Spider). Key findings:

● Codex: SELF-DEBUGGING improves performance by up to 5%, with execution trace feedback
outperforming simple feedback.

● GPT-4: Accuracy improves by 3.6% on MBPP and up to 1% on other benchmarks without unit
test execution.

● GPT-3.5 vs GPT-4: Both rely on internal code knowledge without unit tests. GPT-4 performs
better but tends to be overconfident in initial predictions.

Conclusion: While unit test execution is important, LLMs can still improve through self-generated
feedback.

5.4 Error Types Fixed by SELF-DEBUGGING

● Syntax Errors: Incorrect code structure preventing execution.
● Logical Errors: Code runs but produces wrong results.
● Missing Conditions: Omitted important clauses (e.g., WHERE clauses in SQL).
● Incorrect Joins: Mistakes in data relationships (e.g., wrong JOIN clauses in SQL).
● Function/Variable Misuse: Incorrect usage of functions or variables.
● Incomplete Code: Code lacking necessary elements to execute fully.

6. Conclusion

SELF-DEBUGGING Overview

● SELF-DEBUGGING enables LLMs to debug code they generate.
● Empowers models to perform rubber duck debugging, identifying and fixing bugs without human

instructions.
● Achieves state-of-the-art performance across several code generation tasks.
● Improves sample efficiency significantly.

Performance Highlights

● Text-to-SQL (No Unit Tests):
○ SELF-DEBUGGING improves baseline by 2-3%.
○ Performance boost of 9% on the hardest problems.

● Code Translation & Text-to-Python (With Unit Tests):
○ Accuracy increases by up to 12% with SELF-DEBUGGING.

Key Insights

● Improved Coding Performance: Models iteratively debug their own predictions instead of generating correct code
from scratch.

● SELF-DEBUGGING Process: Understand the code → Identify errors → Follow error messages to fix bugs.

Future Work

● Better Code Explanation: Improve models’ ability to describe the high-level semantic meaning and
implementation details in their explanations.

● Informative Error Messages: Explore techniques to predict more useful error messages beyond line-by-line code
explanations.

● Preliminary findings show semantic error feedback doesn’t add much benefit, suggesting more research is needed
in this area.

SELFEVOLVE: A Code Evolution
Framework via Large Language
Models

1. Code Llama: Open Foundation Models for Code
2. Planning with Large Language Models
3. Teaching Large Language Models to Self-Debug
4. SELFEVOLVE: A Code Evolution Framework via Large Language Models

https://arxiv.org/abs/2306.02907

1. Problem/Background

● Traditional code generation techniques will generate the code then evaluate its performance
○ It will stop when done even if the result is incorrect

● Previous/Proposed methods also retrieve information from external sources to enhance
performance

○ Domain mismatch is common (retrieved data doesn’t apply)
○ Bad data is retrieved

2. SELFEVOLVE: A Two-step Pipeline

● Knowledge Generation:
○ LLMs generate knowledge based on problem

descriptions or trial solutions rather than
external sources. This knowledge could be
API documentation, code examples, or
problem-specific details.

● Code Refinement:
○ The generated code is executed in a sandbox

environment, and any resulting errors are
caught. The LLM then refines the code
iteratively until it passes all test cases or
resolves errors.

3. Knowledge Generation

● Equation depicts probability of the next token in a sequence conditioned on the previous token
in the sequence.

● Product of probabilities of each token given it’s previous tokens and in the input X

3.1 Knowledge Generation

● We are given m knowledge items
● Knowledge K can be retrieved using a sparse or

dense retriever
● Problem: retrievers may be unreliable

○ Use the LLM as the knowledge sources

3.2 Self-Refinement

● Once the results are generated we move on to self-refinement
● Process:

○ Test code against sample test cases in sandbox environment
○ Receive error information then prompt LLM to revise the buggy program

● Below is the joint probability of the refined sequence Y’
● The process is repeated until a working solution is generated or some other criterion is reached

4. Results

● Three baselines:
○ DocPrompting: Utilizes problem-relevant

documentation with a fine-tuned retriever
○ Self-Debugging: Python interpreter to teach LLM to

revise python code with bugs
○ SELFEVOLVE: Uses ChatGPT as the knowledge

generator and code refiner
● Three data sets:

○ DS-1000: Data set for data science code generation
○ HumanEval: Benchmark for general software

engineering code generation
○ TransCoder: C++ to Python code Translation

4.1 Results

4.2 Results

4.4 Case Study

● First example is
overtuned on the
given problem

● Second example
forgot to return the
average

5. Limitations

● Dependence on hand-written prompts
○ Crafting prompts manually is not fully automated. For each new use case, there might be a need to adapt

the prompts, limiting the scalability and flexibility of the framework.
● Suitability of generated knowledge

○ While the generated knowledge can be helpful, it may not always be perfectly suited for every task or
context. The generated knowledge might contain irrelevant or less accurate information.

6. Key Takeaways/Contributions

● Introduction of a Two-Step Self-Evolving Framework
○ SELFEVOLVE is a novel two-step pipeline where large language models (LLMs) first act as knowledge

providers to generate relevant information and then be self-reflective programmers, using error messages
to iteratively refine and correct code without external retrieval or predefined test cases.

● Scalability and Generalization
○ The framework is shown to be scalable to more advanced models, such as GPT-4, and is adaptable to a

variety of datasets and problem domains without needing domain-specific fine-tuning.

What is more……

Challenges and Future Directions (https://arxiv.org/pdf/2406.00515)

Challenges

● Complex Code Reasoning: Difficulty in
understanding and generating long, complex
code.

● Multi-Language Limitations: Struggles to
support tasks involving multiple programming
languages.

● Real-Time Collaborative Development:
Challenges in incorporating real-time code
changes.

● Software Engineering Practices: Misalignment
with standard practices in the field.

Future Directions

● Enhanced Reasoning: Improving LLMs’
capability to handle complex, multi-step code
generation tasks.

● Efficient Learning: Incorporating user
feedback to refine and optimize code
generation.

● Cross-Domain Integration: Extending LLMs
to handle multi-language programming
environments and tasks.

● Robustness and Transparency: Ensuring
models are reliable and explainable in real-
world coding scenarios.

Q&A

