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1. Background

Large language models (LLMs) power a rapidly
increasing number of applications, having reached
a proficiency in natural language that allows them
to be commanded and prompted to perform a
variety of tasks.
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2. Contribution

Different variants of Code Llama: Three main variants are provided, each with three sizes (7B, 13B, and 34B
parameters):

Code Llama: Basic code generation model.

Code Llama - Python: A version customized for Python.

Code Llama - Instruct: A version that combines human instructions and self-generated code synthesis data.



2. Contribution

This paper thoroughly evaluates the model on major code generation benchmarks such as HumanEval,
MBPP, APPS, and the multi-language version of HumanEval (MultiPL-E). Code Llama performs well in
these tests and sets a new standard for open source LLMs.
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Figure 2: The Code Llama specialization pipeline. The different stages of fine-tuning annotated with
the number of tokens seen during training. Infilling-capable models are marked with the & symbol.



3. Llama2

Most of the pre-training settings and model architecture from Llama 1 are adopted. The standard Transformer
architecture is used, pre-normalization is applied using RMSNorm, SwiGLU activation function and rotated position
embeddings are used. The main architectural differences from Llama 1 include increased context length and
grouped query attention (GQA).
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3. Llama2: Grouped Query Attention (GQA)

Before understanding what GQA is, we need to know two more concepts: MHA and MQA
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Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.



MHA

Multi-Head Attention (MHA) splits input data into multiple heads, each independently performing
attention calculations with distinct weight matrices to capture different features. The Query (Q),
Key (K), and Value (V) components align across heads, and their outputs are summed to generate

the final resu”™
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Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.



MQA

Multi-Query Attention (MQA) simplifies attention by keeping Q multi-headed while sharing K and V
across all heads within each layer, reducing the number of K and V matrices to one per layer. This
like ChatGLM2-6B, enhances computational efficiency without

approach, as seen in models

compromising performance.
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Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.



GQA

Although MQA can minimize the cache space required for KV Cache, it is conceivable that the reduction of
parameters means a decrease in accuracy. Therefore, in order to make a trade-off between accuracy and
calculation, GQA (Group Query Attention) came into being. That is, Q is still multi-head, but K, V are shared in
groups, which not only reduces the cache space required for K, V cache, but also exposes most parameters without
serious loss of .
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Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.




4.1 Codellama technique: Dataset

Available code, of which 8% of the sample data comes from natural language datasets related to code. These
datasets contain code discussions and code snippets, which help the model understand natural language.

Dataset: The training data mainly comes from publicly available code data, as well as natural language data
related to code.

Tokenization: Tokenization is performed using the same tokenizer as Llama 2.



4.2 Codellama technique: Infilling

Filling is the task of predicting the missing parts of a program, and the Code Llama model achieves this function
through a specific training method. The training uses causal masking technology to move parts of the training
sequence to the end of the sequence and autoregressively predict the rearranged sequence.

Segmentation: The training documents are segmented into prefix, middle part and suffix at the character level.

Masking: The masking transformation is applied with a certain probability, and only operates on documents
that do not exceed the model context length.



4.3 Codellama technique: Long context fine-tuning

The long context fine-tuning stage is specifically proposed to improve the model's ability to handle long
sequences. By modifying the parameters of the RoPE position embedding, the maximum context length of the
model is extended from 4,096 tokens to 100,000 tokens.

Sequence length: The sequence length used during training is 16,384 tokens.

RoPE adjustment: The frequency of the rotation embedding is adjusted to accommodate longer sequences



4.4 Codellama technique: Instruction fine-tuning

Code Llama - Instruct The model is fine-tuned on Code Llama with three additional data to better answer
questions.

Three different types of data:

Proprietary dataset: Fine-tuning dataset using RLHF V5 instructions from Llama 2. Improve the security of
model output and enhance the model's responsiveness to user instructions.

Self-guided dataset: Select data through execution feedback and build a self-guided dataset. Use llama2 70B to
produce instruction questions, coda llama 7B to answer questions, and select the correct ones as the final
dataset.

Recap: Prevent the model from regressing in general coding and language understanding capabilities, and use a
small part of the code dataset and natural language dataset for training



4.5 Evaluation

Different Models

Model Size Multi-lingual Human-Eval
C++ Java PHP TS C#  Bash |Average

CodeGen-Multi 16B 21.0% 22.2% 84% 20.1% 82% 0.6% | 13.4%
CodeGeeX 13B 16.9% 19.1% 13.5% 10.1% 8.5% 2.8% | 11.8%
code-cushman-001 12B 30.6% 31.9% 28.9% 31.3% 22.1% 11.7% | 26.1%
StarCoder Base 15.5B 30.6% 28.5% 26.8% 32.2% 20.6% 11.0% | 25.0%
StarCoder Python 15.5B 31.6% 30.2% 26.1% 32.3% 21.0% 10.5% | 25.3%

7B 68% 108% 9.9% 12.6% 6.3% 3.2% | 8.3%
13B 13.7% 15.8% 13.1% 13.2% 9.5% 3.2% | 11.4%
34B 23.6% 22.2% 19.9% 21.4% 171% 3.8% | 18.0%
70B 30.4% 31.7% 34.2% 151% 25.9% 8.9% | 24.4%

7B 28.6% 34.2% 242% 33.3% 25.3% 12.0% | 26.3%
CODE LLAMA 13B 39.1% 38.0% 34.2% 29.6% 27.3% 15.2% | 30.6%
34B 47.8% 45.6% 44.1% 33.3% 30.4% 17.1% | 36.4%

7B 31.1% 30.4% 28.6% 32.7% 21.6% 10.1% | 25.8%
CoDE LLAMA - INSTRUCT ~ 13B 42.2% 40.5% 32.3% 39.0% 24.0% 13.9% | 32.0%
34B 45.3% 43.7% 36.6% 40.3% 31.0% 19.6% | 36.1%

7B 32.3% 354% 323% 23.9% 24.7% 16.5% | 27.5%
CODE LLAMA - PYTHON 13B 39.1% 37.3% 33.5% 35.2% 29.8% 13.9% | 31.5%
34B 42.2% 44.9% 42.9% 34.3% 31.7% 14.6% | 35.1%

LLAMA-v2

Table 4: Multi-Lingual HE Pass@1 scores. Pass@1 scores for different programming languages using
greedy decoding. These scores are computed in zero-shot. Results for other models from Li et al. (2023).

Model Size: 7B Model Size: 13B Model Size: 34B
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Figure 3: Correlations between Languages. Correlation scores between the Python, C++, Java, PHP,
C#, TypeScript (TS), and Bash, reported for different model sizes. The code for this figure was generated by
CODE LLAMA - INSTRUCT, the prompt and code can be seen in Figure 21.



4.5 Evaluation

Ongety Reward Model Scores Distribution on Red Teaming Prompts
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Figure 7: KDE plot of the risk score output by the LLAMA 2 safety reward model on prompts with clear
intent specific to code risk created by red teamers with background in cybersecurity and malware generation.
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1. Problem/Background

® Code generation methods like beam
search or sampling often generate
programs that are incorrect

e Previous methods don't test the code until
it is fully generated

Problem Statement
Given is a string S. Replace every character in S with x and print the result.
Constraints
(1). S is a string consisting of lowercase English letters.
(2). The length of S is between 1 and 100 (inclusive).
Input
Input is given from Standard Input in the following format: S
Output
Replace every character in S with x and print the result.
Sample Test Input

sardine
Sample Test Output
s=input() 1 s=input() 1 s=str(ing
2 s=list(s) 2 s=list(s) i range
il range(len(s)): il range(len(s)): s[i] :
j range(len(s)): s[i] : s=s[:i] s[i+1:]
s[i] 2 > s[il] 5
slil=j 6 : 6 print(s)
print("".join(s)) /
8 8 print( join(s))
Beam Search (Pass Rate: 0.00). Sampling + Filtering (Pass Rate: PG-TD (Pass Rate: 1.00).

0.22).

Figure 1: A code generation example for competitive programming, with the problem description
(top) and the programs generated by baseline algorithms and our PG-TD algorithm (bottom).



2. Planning-Guided Transformer Decoding

® Also a Transformer-based generation model
® Integrates the Monte Carlo Tree Search

(MCTS)
e Four steps:

o

o
o
o

Selection
Expansion
Evaluation
Backpropagation

Algorithm 1 The PG-TD algorithm.

Require: root: the current state; c: P-UCB exploration pa-

rameter; k: the maximum number of children of any node;
b: the number of beams for Transformer beam search.

1: program_dict = DICTIONARY ()

2: fori+ 1,2,...,max_rollouts do

¥ node < root

4: # Selection

5: while |node.children| > 0 do

6: node «— P_UCB_SELECT(node.children, c)
s end while

8: # Expansion

9: next_tokens <— TOP_K(node, k)

10: for next_token € next_tokens do

11: next_state <— CONCAT(node, next_token)

12 Create a node new_node for next_state

13 Add new_node to the children of node

14: end for

15: # Evaluation

16: p < BEAM_SEARCH(node, b)

17 7 <= GET_-REWARD(p)

18: program_dictlp] =r

19 # Backpropagation

20: Update and the values of node and its ancestors in the
tree with 7

21: end for

22: return program in program_dict with the highest reward




2.1 Planning-Guided Transformer Decoding

l—' Selection ——— Expansion ——— > Evaluation —— Backpropagation —,
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2.2 Caching/Information Sharing

® Tree Structure Caching

o

Stores the search tree built during Monte
Carlo Tree Search (MCTS) to avoid
recomputing the same partial programs

® Sequence Caching

o

Saves complete programs generated during
evaluation so that future iterations can
reuse these sequences if the same prefix is
encountered

Iteration t Iteration t+1

<PD> <PD>
a /\X a /\X
a X a X
l ¢
a= a, X, a= a, X,
a,b a,c ab
a,b, ab= ac= ac a,b, ab=

Figure 3: [Illustration for caching in
the PG-TD algorithm. The tree search
part is visualized in black color and the
Transformer beam search part is in red
color.



Pass Rate (%) Strict Accuracy (%)
APPS Intro. APPS Inter. APPS comp. CodeContests APPS Intro. APPS Inter.  APPS comp. CodeContests

APPSGPT-2  Beam Search 11.95 955 5.04 5.10 5.50 2.10 1.00 0.00
Sampling+Filtering 25.19 24.13 11.92 20.40 13.80 5.70 230 3.64

. es u s SMCG-TD 24.10 21.98 1037 17.47 11.70 550 2.10 424
PG-TD (c = 4) 26.70 24.92 12.89 24.05 13.10 6.10 3.10 4.85

APPS GPT-Neo Beam Search 1432 9.80 6.39 573 6.70 2.00 2.10 0.00

Sampling+Filtering 27.71 24.85 1255 25.26 15.50 5.80 3.00 424

SMCG-TD 25.09 2034 9.16 15.44 13.80 5.10 1.80 3.03

° APP S’ PG-TD (c = 4) 29.27 25.69 13.55 26.07 15.50 6.43 3.50 4.85

CodeContests Table 1: Results of PG-TD and other algorithms. The maximum number of Transformer generations
are benchmark for all algorithms is 256.

coding datasets

e Pass Rate: How 28] 287 —+— SMCGTD
X x —#— Sampling + Filtering
many test cases > 261 = 261 —e- PG-TD (c=2)
© © —e— PG-TD (c=4)
were passed g .| 2 . - PGTD (c=6)
® Strict Accuracy: @ @
o o
How many 221 221
problems all 200 400 600 1000 2000 3000
tests cases # of Transformer Generations Computation Time (sec.)
igure 4: Pass rates o -TD and baseline algorithms vs. the number of Transformer generations
were passed Figure 4: P tes of PG-TD and basel lgorith th ber of Transf g t

(left) and the computation time (middle) on the introductory problems in the APPS test dataset (1000
problems), using the APPS GPT-2 Transformer model.



3.1 Results

e Having the two caching mechanism reduces computation time
almost twofold

® Finetuning the transformer models using the solutions created
by PG-TD improves their performance

e The model is able to perform other objectives without
sacrificing pass rate significantly

e The model is able to use automatically generated test cases to
still outperform other methods



4. Limitations

® Reliance on test cases:
O PG-TD depends a lot on the availability of test cases for evaluating generated programs.
e Computational Cost:
O  Although the caching mechanisms improve efficiency, PG-TD still requires more computational resources
than standard beam search because of the many calls to the Transformer during the planning process.



5. Key Takeaways/Contributions

e Planning
O PG-TD adds planning to code generation so the Transformer can generate better programs by looking
ahead during the decoding process
e Caching
O  The algorithm design includes caching techniques that reduce repetitive computations
e Model Flexibility
o PG-TD works with any Transformer-based code generation model without requiring more training
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Introduction

Problems:
o LLMs perform well in code generation, but struggle to generate
attempt, especially for complex tasks.
Idea:

duck debugging.
SELF-DEBUGGING:

Programmers explain their
code line-by-line to identify
mistakes. By explaining it
simply, errors become more
obvious, helping to debug the
code without external
guidance.

o Programmers debug by reviewing execution and explaining code, often using ruLI{

o Teaches a large language model to debug its predicted program via few-shot

demonstrations

o  Without any human feedback on the code correctness or error messages, the model
is able to identify its mistakes by investigating the execution results and explaining

the generated code in natural language.



2. Background

Previous Researches:

e Prior works propose deep learning techniques to repair the predicted code, which require
additional training

e Recent studies show LLMs can generate feedback messages to refine outputs, mainly for
natural language and reasoning tasks

e Current LLMs struggle to self-correct code without external feedback or human input



Prompting for Code Generation::

Few-shot prompting: Instructs the
language model to solve a task with
several input-output demonstrations
(Brown et al., 2020).

Besides the demonstrations, we can
optionally add an instruction in the
prompt to provide a high-level task
description (Ouyang et al., 2022; Sanh et
al., 2022; Suzgun et al., 2022).

examples

Problem description

CREATE TABLE customers (

customer_id number ,

customer_name text ,

customer_details text ,

primary key ( customer_id )

)

insert into customers (customer_id, customer_name, customer_details) values (1
’Savannah’, ’rerum’) ;

CREATE TABLE orders (

order_id number ,

customer_id number ,

order_status text ,

date_order_placed time ,

order_details text ,

primary key ( order_id ),

foreign key ( customer_id ) references customers ( customer_id )

)

insert into orders (order_id, customer_id, order_status, date_order_placed,
order_details) values (1, 2, ’Shipped’, ’2009-02-21 15:26:19°, NULL);

Question: Which customers have both "On Road" and "Shipped" as order status?
List the customer names.

Output SQL

SQL: SELECT customers.customer_name FROM customers JOIN orders ON customers.
customer_id = orders.customer_id

WHERE orders.order_status = "On Road"

INTERSECT SELECT customers.customer_name FROM customers JOIN orders ON
customers.customer_id = orders.customer_id

WHERE orders.order_status = "Shipped"




Execution-Based Code Selection

e Previous Work:
a. Decoding multiple samples can significantly improve LLM performance

b. Code execution is used to select the final prediction from multiple generated codes .
The most frequent execution result among successful runs is selected as the final

code .
When there are multiple predictions, select the predicted code with the most frequent

execution result among those that do not encounter execution errors, then apply SELF-
DEBUGGING to the code.



3. Contribution

SELF-DEBUGGING Framework

e Introduces a novel framework where LLMs debug
their own code without external feedback.

Rubber Duck Debugging for LLMs

e Adapts the human strategy of explaining code line-
by-line to help LLMs identify and fix errors.

State-of-the-Art Performance

e  Achieves 2-3% improvement on Spider (text-to-
sqQL)

e Upto 12% improvement on TransCoder and MBPP
benchmarks.

Better Handling of Complex Tasks

Improves accuracy on the hardest tasks by 9%.

Increased Sample Efficiency

Reduces the number of samples needed to achieve
high accuracy, improving efficiency.



4.

Self-Debugging Framework

The process repeats until the code is debugged or reaches the
maximum iterations:

1.

Generation
o  The model generates candidate code based on the

input problem.
Execution:
o  The generated code is executed to observe the
results or identify any errors.
Explanation
o  The model explains the generated code in natural
language, identifying potential errors.
Feedback
o  The model uses the explanation and execution
results to provide feedback on the correctness of

Unit tests provide
predefined input-
output pairs that

the code needs to

pass.
Step 2: Code execution
TEST =)
8:— —— -
O— 9 U
Unit tests Executor
Step 1: Code l »
— 00y ®
@I E .}“‘}'ﬁ. generation z | _F
= ¢ RN - Feedback
Problem Code  Explanation
1
Step 3: Code explanation —>
H

e If no unit tests are available, the
feedback can rely purely on the
code explanation.



4.1 Types of feedback in Self-Debugging

1.

Simple Feedback

o A basic message indicating code correctness (e.g., "The SQL prediction is correct" or

"Please fix the SQL"), which omits the Explanation step.
Unit Test Feedback (UT)

o Incorporates unit test results into the feedback, providing more detailed information based
on code execution.

o Helps identify runtime errors and failed test cases.

Code Explanation Feedback (Expl)

o The model explains its generated code, similar to rubber duck debugging, where it
describes and compares code behavior to the problem description. Useful when no unit
tests are available.

Execution Trace Feedback (Trace)

O Prior work on code repair has demonstrated that training the repair model on execution

traces improves the debugging performance

o  When unit tests are available, the model explains the execution steps line-by-line as |t runs
through the code.



Simple Feedback
Below are C++ programs with incorrect
Python translations. Correct the
translations using the provided
feedback.

[Original Python]

[C+]
[Simple Feedback]

[Simple Feedback]

Unit Test (UT) Feedback
Below are C++ programs with incorrect
Python translations. Correct the
translations using the provided
feedback.

[Original Python]

[C+H]
[UT Feedback]

[UT Feedback]

Unit Test + Explanation
(+Expl.)
Below are C++ programs with incorrect
Python translations. Explain the original
code, then explain the translations line

by line and correct them using the
provided feedback.
[C++]

[C++ Explanation]
[Original Python]
[Python Explanation]

[UT Feedback]
[Python Explanation]

[UT Feedback]

[Python Explanation]

Unit Test + Trace (+Trace)
Below are C++ programs with
incorrect Python translations. Using the
provided feedback, trace through the
execution of the translations to
determine what needs to be fixed, and
correct the translations.

[C++]
[Original Python]
[UT Feedback]
|Trace|
[UT Feedback]
[Trace]




5. Experiments

We evaluate SELF-DEBUGGING across multiple code generation tasks:

O O O O O

Spider Benchmark (text-to-SQL generation)
TransCoder Benchmark (code translation)
MBPP (text-to-Python generation)
Models Used: Codex, GPT-3.5, GPT-4, StarCoder
Decoding Strategy:
i. Greedy decoding for initial code generation (temperature T = 0).
ii. Sampling multiple programs with temperature t = 0.7 followed by
execution-based selection.
iii. Maximum debugging turns: 10 (successful debugging mostly ends in 3
turns).



5.1.1 Spider Benchmark (text-to-SQL generation)

(a) Results on the Spider development set.

e Task: Generate SQL queries from natural language.

Unit tests: No unit tests are available. Spider (Dev)
Results: w/ training
o  SELF-DEBUGGING improves accuracy by 2- " T5-3B + N-best Reranking ~ 80.6
3% over baseline. , LEVER (Ni et al., 2023) 81.9
o  On the hardest queries, accuracy improves - ;
by 9%. _ Prompting only w/o debugging _ _ _ _ _
e Feedback Type: Code explanation without unit Coder-Reviewer 74.5
tests. MBR-Exec o2
e Comparison: SELE-DEBUGGING (this work)

o Compared to T5-3B + N-best Reranking,
which is trained specifically for text-to-SQL.

o  SELF-DEBUGGING performs without any + Expl. 84.1
additional training.




5.1.2 TransCoder Benchmark (Code Translation)

e Task: Translate code from one language to
another (C++ to Python).
Unit Tests: Available for execution feedback.

Results:
o SELF-DEBUGGING boosts accuracy by up
to 12%.

o Performance improves with unit test
feedback and code explanations



5.1.3 MBPP (Text-to-Python Generation)

(b) Results on MBPP dataset.

Task: Generate Python code from text descriptions.

. . : n samples
Unit Tests: Only a subset is provided for the problem. T p—
Resutss = mmao o mms o e oo =
o SELF-DEBUGGING improves the baseline MBR-Exec  63.0 (n = 25)

accuracy by 8%. ReViewer 669 (n — 25)
O Code explanation and unit test feedback further LEVER 68.9 (n = 100)

enhance performance. B} § ELF —_Df:}iU_GEJ ING gtllis_vzozkl }
e Comparison: Codex 127200= 10)
o MBR-Exec selects programs based on the most Simple 73.6
common execution output. UT o
o Coder-Reviewer uses both code likelihood and UT + Expl. 75.6

problem description likelihood for selection.



Table 2: Results of SELF-DEBUGGING with different feedback formats.

(a) Results on the Spider development set. (b) Results on TransCoder.
Spider Codex GPT-3.5 GPT-4 StarCoder  TransCoder Codex GPT-3.5 GPT-4 StarCoder
Baseline ~ 81.3 71.1 73.2 64.7 Baseline  80.4 89.1 77.3 70.0
Simple  81.3 72.2 73.4 64.9 Simple 89.3 91.6 80.9 72.9
+Expl. 84.1 72.2 73.6 64.9 0 91.6 92.7 88.8 76.4
+ Expl. 92.5 92.7 90.4 76.6
+ Trace. 87.9 92.3 89.5 73.6
(c) Results on MBPP.
MBPP  Codex GPT-3.5 GPT-4 StarCoder

Baseline  61.4 67.6 72.8 47.2

Simple 68.2 70.8 78.8 50.6

UT 69.4 22 80.6 52.2

+ Expl. 69.8 74.2 80.4 52:2

+ Trace. 70.8 72.8 80.2 532
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5.2 Ablation studies
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Figure 6: Ablation studies on the Spider development set with Codex. (a) Accuracies with different
numbers of initial samples. (b) Breakdown accuracies on problems with different hardness levels.

Figure 6a shows that SELF-DEBUGGING significantly improves sample efficiency. On the Spider
benchmark:

e Greedy decoding with SELF-DEBUGGING matches the baseline accuracy with 16 samples.

e 8 samples with SELF-DEBUGGING outperform the baseline with 32 samples.

e Typically, one debugging turn is enough, with further improvements being minimal (~0.1%).
This efficiencv gain is observed across other benchmarks as well.



Table 3: Results of SELF-DEBUGGING without unit test execution.

(a) Results on Transcoder. (b) Results on MBPP
I

TransCoder Codex GPT-3.5 GPT-4 MBPP  Codex GPT-3.5 GPT4

. Baseline 80.4 89.1 773 Baseline 61.4 67.6 72.8

Simple 83.4 89.1 78.2 Simple 57.6 68.2 76.0

5.3 Importance of Code Execution = & 5 % oS &
+ Trace. 83.9 89.1 78.4 + Trace. 66.2 69.2 76.4

Table 3 examines performance without code execution for Transcoder and MBPP, where models rely
solely on internal feedback (like in Spider). Key findings:

e Codex: SELF-DEBUGGING improves performance by up to 5%, with execution trace feedback
outperforming simple feedback.

e GPT-4: Accuracy improves by 3.6% on MBPP and up to 1% on other benchmarks without unit
test execution.

e GPT-3.5 vs GPT-4: Both rely on internal code knowledge without unit tests. GPT-4 performs
better but tends to be overconfident in initial predictions.

Conclusion: While unit test execution is important, LLMs can still improve through self-generated
feedback.



5.4 Error Types Fixed by SELF-DEBUGGING

Syntax Errors: Incorrect code structure preventing execution.

Logical Errors: Code runs but produces wrong results.

Missing Conditions: Omitted important clauses (e.g., WHERE clauses in SQL).
Incorrect Joins: Mistakes in data relationships (e.g., wrong JOIN clauses in SQL).
Function/Variable Misuse: Incorrect usage of functions or variables.
Incomplete Code: Code lacking necessary elements to execute fully.



6. Conclusion

SELF-DEBUGGING Overview

SELF-DEBUGGING enables LLMs to debug code they generate.

e Empowers models to perform rubber duck debugging, identifying and fixing bugs without human
instructions.

Achieves state-of-the-art performance across several code generation tasks.
e Improves sample efficiency significantly.

Performance Highlights

o Text-to-SQL (No Unit Tests):
o  SELF-DEBUGGING improves baseline by 2-3%.
o  Performance boost of 9% on the hardest problems.
e Code Translation & Text-to-Python (With Unit Tests):
o  Accuracy increases by up to 12% with SELF-DEBUGGING.



Key Insights

e Improved Coding Performance: Models iteratively debug their own predictions instead of generating correct code
from scratch.
e SELF-DEBUGGING Process: Understand the code = Identify errors = Follow error messages to fix bugs.

Future Work

e  Better Code Explanation: Improve models’ ability to describe the high-level semantic meaning and
implementation details in their explanations.

e Informative Error Messages: Explore techniques to predict more useful error messages beyond line-by-line code
explanations.

e  Preliminary findings show semantic error feedback doesn’t add much benefit, suggesting more research is needed
in this area.
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1. Problem/Background

e Traditional code generation techniques will generate the code then evaluate its performance
o It will stop when done even if the result is incorrect
® Previous/Proposed methods also retrieve information from external sources to enhance

performance
o  Domain mismatch is common (retrieved data doesn’t apply)
O Bad data is retrieved



2. SELFEVOLVE: A Two-step Pipeline

e Knowledge Generation:

(¢]

LLMs generate knowledge based on problem
descriptions or trial solutions rather than
external sources. This knowledge could be
API documentation, code examples, or
problem-specific details.

e Code Refinement:

(¢]

The generated code is executed in a sandbox
environment, and any resulting errors are
caught. The LLM then refines the code
iteratively until it passes all test cases or
resolves errors.

Problem

Miscellaneous Knowledge

~
f4.2. for Statements numpy . Raiser (M,
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3. Knowledge Generation

e Equation depicts probability of the next token in a sequence conditioned on the previous token
in the sequence.
® Product of probabilities of each token given it’s previous tokens and in the input X

PY)= [] pe(YilY<s, X),Yc1 =0

1=1..n



3.1 Knowledge Generation

PY|K) = H o (YilYor X K). Yoy = 0 e Wearegivenm knowledge items‘
= e Knowledge K can be retrieved using a sparse or
dense retriever
® Problem: retrievers may be unreliable
K = arg %{ngg P(K’X, B) O  Use the LLM as the knowledge sources

p(K) = H po(Ki| X, K<i), K<1 =10
i=1..k



3.2 Self-Refinement

® Once the results are generated we move on to self-refinement
® Process:

O Test code against sample test cases in sandbox environment
O  Receive error information then prompt LLM to revise the buggy program

® Below is the joint probability of the refined sequence Y’
® The process is repeated until a working solution is generated or some other criterion is reached

PY'|X,Y,K,e) =po(Y'|X,Y,€)  pa(Y|X, K)



4. Results

® Three baselines:
0  DocPrompting: Utilizes problem-relevant
documentation with a fine-tuned retriever

Table 1: Pass@1 results on the DS-1000 dataset. | denotes that the results are referred from [26].

o Self-DebUgging: Python interpl’eter to teaCh LLM to Other baselines are implemented with the same prompt and hyperparameter setting.
revise python code with bugs Perturbation Overall
Method Origin ~ Surface Semantic  Diff-Rewrite
O SELFEVOLVE: Uses ChatGPT as the knowledge Prior work
i Codex (Completion)f 44.93 37.94 34.35 16.94 39.20
generator and COde reflner Codex (Insertion)’ 47.76 50.18 38.39 21.05 43.30
. DocPrompting 5395 50.00 39.57 2593 45.50
L4 Three data Sets' Self-Debugging 63.38 59.21 45.65 28.40 53.00
o0 DS-1000: Data set for data science code generation Hiisiork
ChatGPT 60.31 52.63 41.30 26.54 49.30
0  HumanEval: Benchmark for general software SELFEVOLVE 6623 6711  48.70 3395 57.10
w/o self-refinement ~ 60.09 59.21 41.30 29.01 50.60

engineering code generation
0  TransCoder: C++ to Python code Translation



4.1 Results

Table 2: Pass@1 and pass@ 10 scores compar-
isons with different methods on HumanEval. We
use the same prompt to implement each method.

t denotes that scores are cited from [5].

Model Pass@1 Pass@10
Prior Work

GPT-4f 82.00 -

text-davinci-003' 65.00 -

ChatGPT 66.46 86.58

CodeT [8] 65.20 86.80

Self-Debugging 73.78 87.80

Ours

SELFEVOLVE 78.05 93.29

w/o self-refinement ~ 70.73 89.63

Table 3: Performance comparison on TransCoder
dataset where we follow [10, 43] to translate C++
code to Python code. All methods in this work
are implemented with greedy decode. “Acc.”
refers to computational accuracy.

TransCoder

Method Acc. Pass@1
Piror Work
PalLM [11] 51.8 -
PalLM-Coder [11] 5.1 -
Codex [9] 80.4 -
Self-Debugging [10] 89.3 -
Ours

ChatGPT 92.7 90.0
SELFEVOLVE 94.8 924

w/o self-refinement 93.4

90.5




4.2 Results
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Figure 2: (a) Performance-iteration curves of SELFEVOLVE on DS-1000, HumanEval and TransCoder
datasets. (b) Precision and recall comparisons between generated knowledge and retrieved one.



Problem:

I want to be able to calculate the mean of A:
import numpy as np

A = ['np.inf', '33.33', '33.33', '33.37']
NA = np.asarray(A)

AVG = np.mean(NA, axis=0)

print AVG
This does not work, unless converted to:

Problem: :
i A = [np.inf, 33.33, 33.33, 33.37] :

I'm using tensorflow 2.10.0.

I am building a custom metric to measure the
accuracy of one class in my multi-class dataset
during training. I am having trouble selecting
the class.

The targets are one hot (e.g: the class @ label
is [1 00 0 0]):

I have 10 classes in total, so I need a n*10
tensor as result.

Now I have a list of integer (e.g. [0, 6, 5, 4,
2]), how to get a tensor [omit for brevity]

A:

import tensorflow as tf

e First example is
labels = [0, 6, 5, 4, 2] NA = np.asarray(A)
[insert] [insert]

overtuned on the
given problem print (result) . print(AVG)
® Second example e e 4 e —— .

4.4 Case Study

Is it possible to perform this conversion
automatically?

A:

import numpy as np

A = ['np.inf', '33.33", '33.33', '33.37']

' Without Generated Doc. : : Without Self-Refinement :
f()rg;()t t() rEEt[jrr] tr]f} ! labels = tf.constant([@,6,5,4,2], dtype=tf.int32); ! NA = np.asarray([float(x) if x != 'np.inf' else
i result = tf.one_hot(labels, 10, dtype=tf.int32) | i np.inf for x in A]) :
23\/(3|F53§;(3 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 12::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::f
With Generated Doc. : g With Self-Refinement
result = tf.one_hot(labels, 10, dtype=tf.int32) ; : NA[NA == 'np.inf'] = np.inf

AVG = np.mean(NA.astype(float))

Figure 3: Two examples to show the efficacy of our proposed SELFEVOLVE methods, where red
codes are wrong codes. (a) Comparison between with and without generated documentation. (b)
Comparison between with and without self-refinement module.




5. Limitations

® Dependence on hand-written prompts
o  Crafting prompts manually is not fully automated. For each new use case, there might be a need to adapt
the prompts, limiting the scalability and flexibility of the framework.
e Suitability of generated knowledge
o0  While the generated knowledge can be helpful, it may not always be perfectly suited for every task or
context. The generated knowledge might contain irrelevant or less accurate information.



6. Key Takeaways/Contributions

® Introduction of a Two-Step Self-Evolving Framework
O SELFEVOLVE is a novel two-step pipeline where large language models (LLMs) first act as knowledge
providers to generate relevant information and then be self-reflective programmers, using error messages
to iteratively refine and correct code without external retrieval or predefined test cases.
@ Scalability and Generalization
O The framework is shown to be scalable to more advanced models, such as GPT-4, and is adaptable to a
variety of datasets and problem domains without needing domain-specific fine-tuning.



What is more......



Challenges and Future Directions

Challenges

Complex Code Reasoning: Difficulty in
understanding and generating long, complex
code.

Multi-Language Limitations: Struggles to
support tasks involving multiple programming
languages.

Real-Time Collaborative Development:
Challenges in incorporating real-time code
changes.

Software Engineering Practices: Misalignment
with standard practices in the field.

Future Directions

Enhanced Reasoning: Improving LLMs’
capability to handle complex, multi-step code
generation tasks.

Efficient Learning: Incorporating user
feedback to refine and optimize code
generation.

Cross-Domain Integration: Extending LLMs
to handle multi-language programming
environments and tasks.

Robustness and Transparency: Ensuring
models are reliable and explainable in real-
world coding scenarios.



Q&A



