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Example Scenario: Using GPT-40 for VQA

What is the cat doing in the picture?

©®  The catin the picture is[standing on a table jext to alarge tipped-over cup] It appears to be

possibly investigating thr the area around it. The cup looks like it hasifallen over
possibly from the cat's actions. There is also aor paper material underneath the cup,
and the overall scene suggests a playful or inquisitive moment for the cat.




VisionLLM: Large Language Model is also an
Open-Ended Decoder for Vision-Centric
Tasks

Wang, W., Chen, Z., Chen, X., Wu, J., Zhu, X., Zeng, G., ... & Dai, J. (2024). Visionlim: Large language model is also an open-ended decoder for vision-centric tasks.
Advances in Neural Information Processing Systems, 36.

https://arxiv.org/abs/2305.11175



Motivation - Why Vision and Language Integration?

1. LLMs
o Powerful zero-shot capabilities in language tasks, adapting to user prompts effortlessly

N

Challenge in Vision Tasks:
o Inherent differences in data formats and task structures between vision and language

3. Current Limitations:
o Extensive pre-training and fine-tuning
o Lacking adaptability to diverse tasks and user-specific instructions.

4. Need for VisionLLM:
o  Combining the reasoning power of LLMs with vision-specific capabilities
o Unified model that adapts to flexible, vision-centered prompts



Vision
Generalist Model

1l

Pre-defined tasks:
detection, captioning,
VQA, grounding, ...

T

Visual
Prompt Tuning

o

|

Comparison of VisionLLM with popular paradigms

Desired output:
<cl><pl><p3> ..

I

Vision + LLM

T

Task defined
by instructions

(a) Vision generalist models [59,
61, 83] are constrained by the for-
mat of pre-defined tasks.

(b) Visual prompt tuning [26, 64,
62] are inconsistent with the for-
mat of LLLMs.

(c) VisionLLM (ours) can flexibly
manage vision-centric tasks using
language instructions like LLMs.




VisionLLM Overview

1. Unified Vision-Language Model:
o VisionLLM is a unified, end-to-end approach that combines VFMs and LLMs
o Unlike API-based solutions, it integrates these models within a single cohesive system
for efficient vision-centric task handling.
2. Key Contributions:
o (1) First open-ended framework for vision tasks using LLMs.
o (2) Language-guided tokenizer and task decoder to align vision tasks with language
instructions.
o (3) Demonstrates high generalization across diverse scenarios (e.g., object detection,
image captioning).
3. Impact:
o Enables flexible task management, extending beyond pre-defined tasks, to bridge vision
and language domains.



Visualization of VisionLLM diverse tasks

Random Object Categories

Random Task Description

Human: “Identify the objects
in <image> that belong to
{‘What is the child eating?’:
<c0>, red gamepad': <c1>}
and draw a bounding box
around each one. The output
should be a list of tuplesin

the format (¢, x1, y1, x2, y2), where c is the class label and
x1, y1, x2, y2 are the coordinates of the top-left and
bottom-right corners of the bounding box. The coordinates
should be within the range 1024."

VisionLLM: "The bounding boxes are [(<c0>, 226.4, 229.8,
363.1, 347.4), (<c1>, 441.1, 183.5, 538.6, 269.9)]."

(a) Object Detection with Customized Class Set (e.g.,
question, reasoning text, open-vocabulary descrip-
tion)

Human: "Provide a long
description of the <image>.

VisionLLM: "The image
features a white dog laying
down on a foldable outdoor
cooling pad ,

which is placed on top of a wooden table. The dog has
its head in the middle of the cooling pad, and a fan is
positioned behind it, blowing air onto the pad. The
table is outdoors, in a grassy area, and there are two
chairs placed around it, one on each side. The scene
appears to be set in a sunny weather, with a bright and
sunny sky, which contributes to the overall outdoor
atmosphere."

(c) Image Description with Controllable Text Length

Human: "For each object in
<image> that is a member
of {'motorbike': <c0>},
output a tuple with the
class label and the
coordinates of a polygon
with 16 points that
encloses the object. The coordinates should be within
the range 1024. The output format should be (c, x1, y1,
x2,y2, ..., x16, y16)."

VisionLLM: "The detected polygons are [(<c0>, 135.3,
95.7, 123.4, 53.4, 84.9, 57.6, 66.8, 60.5, 60.1, 72.3,
34.2,71.4, ..., 124.9, 119.3)]."

(b) Object Location with Editable Output Format

Human: "With the objects
in the <image>, if you feel
hot, what will you do?"

VisionLLM: "First, You can
also try turning off the
computer and other
electrical appliances in the
room to reduce the heat generated by their operation.
As an alternative, you can use the desk fan provided in
the image to create a cooling effect in the room. You
can plug in the fan and adjust its settings to ensure it
blows air in a direction that reaches the room’s
occupants effectively."

(d) Visual Question Answer with Complex Reasoning

Random Output Format

Random Task Description



Background - Vision Generalist Models

1. Generalist Models for Vision:
o Models like OFA, Flamingo, and GIT use a unified framework to handle a wide range of
vision tasks.
o These models often employ sequence-to-sequence (seq2seq) methods, making them
capable of both image-based and non-image-based tasks.
2. Limitations:
o Current models face challenges in fine-tuning and performance due to non-parallel
auto-regressive processes.
o These models are often restricted by pre-defined tasks and do not fully support flexible,
open-ended tasks defined by natural language instructions.



Background - Instruction Tuning

Instruction Tuning: Introduced by GPT-3, enhances zero-shot and few-shot learning for
LLMs (e.g., InstructGPT, FLAN).

Vision-Language Models:

o Flamingo: Uses vision + language prompts for tasks like image captioning and
VQA.

o BLIP-2: Connects visual encoders with LLMs via a querying transformer.

o MiniGPT-4 & LLaVA: Fine-tune BLIP-2 models for image-to-text tasks.

Challenges: Models struggle with visual perception tasks (e.g., detection, segmentation), and
visual prompts don't fully leverage LLM reasoning.



VisionLLM: Model Architecture

Language-Guided Desired Output:
[[1 Random Query [] Image Token [|%| |%| [? T <ch> <pTl> <pTS>
F -Gui .
Backbone v Language Gw-ded Open Endc?d Task
Image Tokenizer Decoder with LLM
<text> &] |:I:| |£ <text>
-

Vision-language example: "Describe the image <image> in details."  Language Instructions <text>

Vision-only example: "For each object in image <image> that is a member of class set <class>, output a
tuple with the class label and the coordinates of a polygon with 16 points that encloses the object. The
coordinates should be within range <range>. The output format should be (c, x1, y1, ...)."




VisionLLM: Unified Language Instruction

Language-Guided Desired Output:
E4 Random Query [ Image Token [ %I I%l T <c11> <pT1> <p13>
F -Gui 1
Backbona v Language GUI.ded Open Ende'd Task
Image Tokenizer Decoder with LLM
<text> ‘ [5 |_1-| <text>
AR

Vision-language example: "Describe the image <image> in details."  Language Instructions <text>

Vision-only example: "For each object in image <image> that is a member of class set <class>, output a
tuple with the class label and the coordinates of a polygon with 16 points that encloses the object. The
coordinates should be within range <range>. The output format should be (c, x1, y1, ...)."




VisionLLM: Unified Language Instruction

Vision-Language Tasks:

e Example: “The image is <image>. Please generate a caption.”
e Instructions follow formats like NLP tasks for image captioning and Visual Question Answering (VQA).

Vision-Only Tasks:

Example: “Segment all objects of class <class> in the image and generate bounding coordinates.”
Unified output format (C, P) with class and boundary points for object detection and segmentation.

C: Class index in the category set <class>

P: N points that locate the subject



VisionLLM: Language-Guided Image Tokenizer

Language-Guided Desired Output:
[l Random Query [ image Token ( 0 - O <cl1><pl><p3> ...
. — I
F -Gui i
Backbone v, Language GU|.ded ~ Open Ende.:d Task
Image Tokenizer Decoder with LLM
38 7 +t ¢ ) T
<text> Ij |_J:| <text>
P P
Vision-language example: "Describe the image <image> in details."  Language Instructions <text>

Vision-only example: "For each object in image <image> that is a member of class set <class>, output a
tuple with the class label and the coordinates of a polygon with 16 points that encloses the object. The
coordinates should be within range <range>. The output format should be (c, x1, y1, ...)."




VisionLLM: Language-Guided Image Tokenizer

Process:

1. Feature Extraction:
o Images X cRHXWx3 processed through backbones (e.g., ResNet) to extract 4-scale visual
features F,
2. Cross-Modality Fusion:
o Text encoders (e.g., BERT) extract language features F; integrated into each scale of visual
features using cross-attention, resulting in language-aware visual features.
3. Output Tokens:
o Atransformer-based network (e.g., Deformable DETR) converts the features into token

embeddings T={(€i, li) if‘il, representing semantic and positional data, respectively.



LLM-based Open-Ended Task Decoder

Language-Guided Desired Output:
["] Random Query [] Image Token ( ? |%] T <C‘1> <p‘1> <p‘3>
I I I
E -Gui :
Backbone v Language GuIded L Open Ende.d Task
Image Tokenizer Decoder with LLM
AB-0
<text> <text>
o
Vision-language example: "Describe the image <image> in details."  Language Instructions <text>

Vision-only example: "For each object in image <image> that is a member of class set <class>, output a
tuple with the class label and the coordinates of a polygon with 16 points that encloses the object. The
coordinates should be within range <range>. The output format should be (c, x1, y1, ...)."




LLM-based Open-Ended Task Decoder

Decoder is built on Alpaca (from LLaMA) to handle vision tasks using language instructions.

e Challenges:
1. Limited ability to handle object locations with numerical precision.
2. Inefficiency in category name classification using multiple tokens.
3. Causal model inefficiencies for visual tasks.

Proposed Solution:

e 1. Location Tokens: Introduce discretized position tokens to streamline object localization tasks.
o Denoted as {<p-512>, ..., <p0>, ..., <p512>}
o Each token <p i> represents the discretized offset of i within the range [-512, 512].
o The token's relative value to the image height or width is calculated as i / 512.

e 2. Category Tokens: Replace multi-token categories with unified classification tokens.



LLM-based Open-Ended Task Decoder

3. Output-Format-as-Query: Parse structured formats from language instructions for efficient decoding.

P11

LLM-based Open-Ended Task Decoder

I P11

Task defined Parsing ( format 1: "< cls > <x1> <y1>..."
by instructions format 2: "<bos>"

format n: ...

Figure 4: Illustration of the “output-format-as-
query” decoding process. “<cls> <x1><y1> ...
denote the queries of the object’s class index and
boundary points, and “<bos>” denotes the begin-
ning of string.



Experimental Settings

Datasets:

e VisionLLM is trained and evaluated on multiple vision-language tasks:
o COCO02017 for object detection and segmentation.
o RefCOCO and RefCOCO+ for visual grounding.
o COCO Caption and LLaVA-Instruct-150K for image captioning and VQA.

Implementation:

Two backbone variants: ResNet and Internimage-H.
Text encoder: BERT Base.

Vision encoder: Deformable DETR.

LLM: Alpaca-7B (fine-tuned with LORA)



Results on standard vision-centric tasks

Method Bacihsis gggggl Detection Instance Seg. Grounding Captioning AP: Average Precision
AP AP50 AP75 AP AP50 AP75 P@0.5 BLEU-4 CIDEr

Specialist Models . . .

Faster R.CNN.FPN [48] ResNet-50 - 403 61.0 440 - - - : . : P@0.5: Precision at 0.5

DETR-DCS [7] ResNet-50 - 43.3 63.1 459 - - - - - -

Deformable-DETR [82] ResNet-50 - 457 65.0 49.1 - . = - . - BLUE-4:Bilingual Evaluation

Mask R-CNN [22] ResNet-50 - 41.0 61.7 449 37.1 584 40.1 - - - Understudy)

Polar Mask [69] ResNet-50 - - - - 30.5 520 31.1 - - -

Pix2Seq [8] ResNet-50 - 43.2 61.0 46.1 - - - - - - CIDEr: Consensus-based

UNITER [11] ResNet-101 - - - - - - - 814 - - I D it

VILLA [19] ResNet-101 - - - - - - - 82.4 - - mage Lescription

MDETR [27] ResNet-101 - - - - - - - 86.8 : - Evaluation

VL-T5 [13] T5-B - - - - - - - - - 116.5

Generalist Models

UniTab [72] ResNet-101 - - - - - - - 88.6 - 115.8

Uni-Perceiver [83] ViT-B - - - - - - - - 32.0 -

Uni-Perceiver-MoE [81]  ViT-B - - - - - - - - 33.2 -

Uni-Perceiver-V2 [28] ViT-B - 586 - - 506 - - - 354 116.9

Pix2Seq v2 [9] ViT-B - 465 - - 382 - - - 34.9 -

VisionLLM-R50s¢p, ResNet-50 - 44.8 64.1 48.5 252 50.6 224 84.4 30.8 1124

VisionLLM-R50 ResNet-50 v 44.6 64.0 48.1 25.1 50.0 224 80.6 31.0 1125

VisionLLM-H Intern-H v 602 793 65.8 30.6 612 27.6 86.7 321 1142




Object Customization & Ablation Studies on Image Tokenization

Object Detection:

e  Outperforms Pix2Seq by 1.4 mAP on ResNet-50.
e  Efficient multi-task predictions using output-format-as-query.

Visual Grounding: Achieves 86.7 P@0.5 using Internimage-H.
Instance Segmentation: Competitive AP scores with ResNet and Internimage-H.
Image Captioning: Comparable BLEU-4 and CIDEr scores, outperforming prior models.

Table 2: Experiments of object-level and output format customization. We conduct these
experiments based on VisionLLM-R50, and report the performance of box AP and mask AP on
COCO minival for (a) and (b), respectively. “#Classes” and “#Points” indicate the number of classes
and boundary points, respectively. “*” indicates that we report the mean AP of the given classes, e.g.,

10 classes.
(a) Object-level customization. (b) Output format customization.
#Classes AP AP5o AP;5 APs APy APy, #Points AP APso AP;5 APs APy APL
10 489 726 512 31.7 475 673 8 185 457 11.6 99 19.7 28.7
20 527 73.6 56.8 31.8 53.2 70.5 14 229 483 194 11.0 25.1 36.0
40* 493 70.7 532 33.1 53.6 63.8 16 242 499 209 11.5 263 36.8

80" 44.6 640 48.1 26.7 47.9 60:5 24 251 50.0 224 125 274 38:2




Ablation Study

e Single Task vs. Multiple Tasks:
o  Single-task model VisionLLM-R50_sep slightly outperforms the multi-task model.
o  Multi-tasking leads to a trade-off between generalization and accuracy.

e Text Encoder in Language-Guided Image Tokenizer:
o BERT plays a crucial role in visual grounding but is less essential for object detection.
o Freezing BERT hinders alignment between vision and language modalities.

e Image Tokenization Method:
o Query-based tokenization outperforms average pooling due to its flexibility in capturing object size
information.

e Number of Localization Tokens:
o Increasing the number of tokens improves localization performance, peaking at 1025 tokens.



Ablation Study

Table 3: Ablation studies on language-guided image tokenizer and hyper-parameters.

(a) Effect of text encoder in the (c) Effect of the num-
language-guided image tokenizer. (b) Effect of image tokenization ber of bins (#Bins).
method. : —
#Bins AP
w/ BERT Freeze COCO RefCOCO Tokenization AP 257 34.9
= = 44.7 48.1 Average Pooling 23.1 513 40.8
4 s 44.8 84.1 Ours 44.8 1025 448

v v 1.3 34.3 2049 44.8




Conclusion and Key Takeaways

e VisionLLM is a novel framework that integrates large language models (LLMs) for
vision-centric tasks, promoting open-ended and customizable tasks like object
detection, instance segmentation, and image captioning.

e The unified language instruction approach allows flexible task definitions using natural
language.

e VisionLLM achieves competitive performance across tasks by leveraging a
language-guided image tokenizer and an LLM-based task decoder.



Future Directions

e Explore more advanced model scaling for larger datasets.

e Incorporate more diverse vision-language tasks.

e Investigate potential real-world applications and challenges in multi-modal
systems.



Visual Instruction Tuning
Liu et al. (2023)

https://arxiv.org/abs/2304.08485



Motivation

e Onset of multimodal models
e |Instruction tuning for LLMs

e (Goal, make vision language models:

o more user friendly
o more general purpose

Multimodal
‘ u_—'>

Visual !



Overview

e Instruction-following
vision-language data pipeline
e [lLaVa

o  Multimodal vision-language model
e LLaVa-Bench

o 2 quantitative benchmarks (COCO
and In-the-Wild)

User
LLaVA

Source: https : //www.barnorama. com/wp- content/uploads/2016/12/03-Confusing-Pictures. jpg

‘What is unusual about this image?

The unusual aspect of this image is a man ironing clothes on the back of a minivan or
van. This is not a typical place to perform this activity, as one would usually iron clothes
in a more stationary and safe location, such as a home, using a regular ironing board.
The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a
vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how
the man is able to maintain balance and stability while ironing clothes in such an unstable
environment.



Background

e CLIP
o Radford et al. (2021). Learning Transferable Visual Models From Natural Language
Supervision

o Contrastive objective, positive samples pushed closer, negative samples pushed further away
o Robust image encoder

e \Vicuna
o Chiang et al. (2023). Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt
quality
o LLM




GPT-assisted Visual Instruction Generation

e Supply text GPT-4 with captions and object bboxes
e Few human generated annotations for in-context learning

e J3types:
o Conversation
o Detailed Description
o Complex Reasoning

e 158K samples
e For Multimodal Chatbot fine-tuning

Context type 1: Captions

A group of people standing outside of a black vehicle with various luggage.
Luggage surrounds a vehicle in an underground parking area

People try to fit all of their luggage in an SUV. =
The sport utility vehicle is parked in the public garage, being packed for a trip ==&
Some people with luggage near a van that is transporting it.
Context type 2: Boxes et
person: [0.681, 0.242, 0.774, 0.694], backpack: [0.384, 0.696, 0.485, 0.914], suitcase: ...<omitted>

Response type 1: conversation

Question: What type of vehicle is featured in the image?

Answer: The image features a black sport utility vehicle (SUV) ...<omitted>

Response type 2: detailed description

The image is an underground parking area with a black sport utility vehicle (SUV) parked. There
are three people in the scene, with one person standing closer to the left side of the vehicle, another
person in the middle, and the third person on the right side. They are all working together to pack
their luggage into the SUV for a trip. ...<omitted>

Response type 3: complex reasoning

Question: What challenges do these people face?

Answer: In the image, a group of people is standing outside a black SUV in a parking area,
surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the
challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks
to be packed, which suggests that the group has a significant amount of belongings ...<omitted>




System

e CLIP image encoder
e Embedding projection layer
e Vicuna LLM

Language Response X, . . .

Language Model f¢

ajajapaYare

Projection W Z. H, qu

Vision Encoder X, Image Xq Language Instruction

Figure 1: LLaVA network architecture.



2-Stage Training

e Stage 1: Pre-training for Feature Language Resporse X R M

Allgnment Language Model f¢
o Visual encoder 3%, LLM %%, projection matrix ¢ — ﬂQ o) QQQ
o 595K image-text pairs from CC3M

o Converted to instruction-following data, GT is
captions

MBnEncedsy X, Image X Language Instruction

Figure 1: LLaVA network architecture.



2-Stage Training

e Stage 1: Pre-training for Feature Lnguage Responce X, R R R
A“gnment Language Model f¢ Q g Q QQ
e Stage 2: Fine-tuning End-to-End [proiccinw > 1 |
o Visual encoder 3%, LLM ¢, projection matrix B X e x Language Instruction
6 Figure 1: LLaVA network architecture.

o Use Multimodal Chatbot and ScienceQA
datasets



Multimodal Chatbot Evaluation

Fine-tuned with 158K instruction-following dataset
Generate response from LLaVa
Generate response from text GPT-4

Use separate text GPT-4 as judge
o Given bboxes, captions, LLaVa output, GPT-4 output



Multimodal Chatbot Evaluation

1) LLaVa-Bench (COCO)
30 images from COCO-Val-2014

(@)

(@)

3 variations each: conversation, detailed description, complex reasoning
90 questions in total

| Conversation Detail description ~Complex reasoning ~ All

Full data 83.1 753 96.5 85.1

Detail + Complex 81.5 (1) 73.3 (20 90.8 (5.7 81.9 (32
Conv + 5% Detail + 10% Complex | 81.0 (2 68.4 7.1 91.5 (5.9 80.5 (4.9
Conversation 76.5 (s6) 59.8 162 84.9 (124 73.8 (113
No Instruction Tuning 22.0 ¢61.1) 24.0 (513 18.5 (780 21.5 636

Table 4: Ablation on LLaVA-Bench (COCO) with different training data. We report relative scores
w.r.t. a text-only GPT-4 model that uses ground truth image captions and bounding boxes as visual
input. We prompt GPT-4 with the answers from our model outputs and the answers by GPT-4
(text-only), and let it compare between both responses and give a rating with an explanation.



Multimodal Chatbot Evaluation

e 2)LLaVa-Bench (In-the-Wild)

e 24 hand-collected “challenging” images

o indoor/outdoor, sketches, paintings, memes
o 60 questions in total

| Conversation Detail description ~Complex reasoning ~ All

OpenFlamingo [*] | 19.3 £ 0.5 19.0 £ 0.5 19.1.40.7 19.1 £ 0.4
BLIP-2 ["7] 546+ 14 29.1+12 329 +0.7 38.1+1.0
LLaVA o13%E 1.9 52.5+6.3 81.7+ 1.8 613220
LLaVAT 58.8 £ 0.6 49.2 £0.8 814 +03 66.7. =03

Table 5: Instruction-following capability comparison using relative scores on LLaVA-Bench (In-the-
Wild). The results are reported in the format of mean + std. For the first three rows, we report three
inference runs. LLaVA performs significantly better than others. T For a given set of LLaVA decoding
sequences, we evaluate by querying GPT-4 three times; GPT-4 gives a consistent evaluation.



Challenges

Requiring high-res images

(@)

Fine-grained details

Broad knowledge coverage

(@)

Ramen side dishes

“bag of patches”

(@)

Strawberries + yogurt = strawberry yogurt

Filled fridge [source]

An open refrigerator filled with a variety of food
items. In the left part of the compartment, towards
the front, there is a plastic box of strawberries with a
small bag of baby carrots on top. Towards the back,
there is a stack of sauce containers. In the middle
part of the compartment, towards the front, there
is a green plastic box, and there is an unidentified
plastic bag placed on it. Towards the back, there is a
carton of milk. In the right part of the compartment,
towards the front, there is a box of blueberries with
three yogurts stacked on top. The large bottle of
yogurt is Fage non-fat yogurt, and one of the smaller
cups is Fage blueberry yogurt. The brand and flavor
of the other smaller cup are unknown. Towards the
back, there is a container with an unknown content.

What is the brand of the blueberry-flavored yogurt?

Is there strawberry-flavored yogurt in the fridge?




ScienceQA Evaluation

e Fine-tune using 21K diverse multiple choice questions
e Model-ensembling with few-shot GPT-4

o Complement - when GPT-4 fails to answer, use LLaVa
o Judge - when GPT-4 and LLaVa generate different answers, ask GPT-4 again using those 2

answers
Subject Context Modali Grade

Method ‘ NAT SOC LAN l XT IMG NO | Gl G112 ‘ Average
Representative & SoTA methods with numbers reported in the literature
Human [ 4] 90.23 84.97 87.48 | 89.60 87.50 88.10 | 91.59 8242 88.40
GPT-3.5 [*1] 7464 69.74 76.00 | 74.44 6728 7742 | 76.80 68.89 73.97
GPT-3.5 w/ CoT [ 4] 7544 70.87 78.09 | 74.68 67.43 79.93 | 78.23 69.68 75.17
LLaMA-Adapter [©"] 8437 88.30 84.36 | 83.72 80.32 86.90 | 85.83 84.05 85.19
MM-CoTgqse [01] 87.52 77.17 85.82 | 87.88 8290 86.83 | 84.65 8537 84.91
MM-CoT grge [01] 9591 82.00 9082 | 9526 88.80 92.89 | 9244 9031 91.68
Results with our own experiment runs
GPT-4! 84.06 7345 8736 | 81.87 70.75 90.73 | 84.69 79.10 82.69
LLaVA 90.36 95.95 88.00 | 89.49 88.00 90.66 | 90.93 90.90 90.92
LLaVA+GPT-41 (complement) | 90.36 95.50 88.55 | 89.05 87.80 91.08 | 92.22 88.73 90.97
LLaVA+GPT-4 (judge) 91.56 96.74 91.09 | 90.62 8899 93.52 | 92.73 92.16 92.53

Table 7: Accuracy (%) on Science QA dataset. Question categories: NAT = natural science, SOC =
social science, LAN = language science, TXT = text context, IMG = image context, NO = no context,
G1-6 = grades 1-6, G7-12 = grades 7-12. TText-only GPT-4, our eval. Our novel model ensembling
with the text-only GPT-4 consistently improves the model’s performance under all categories, setting
the new SoTA performance.



Conclusion + Future Directions

Visual instruction tuning is effective
SOTA on ScienceQA
Excellent for visual-chat comprehension questions

In the future,
o More fine-tuning
o Fusing other modalities



@ NEXxT-GPT: Any-to-Any Multimodal LLM
Wu et al.

Joseph Islam (2024)

https://arxiv.org/pdf/2309.05519



Research Context

Multimodality inherently limits all text only lims, despite their linguistic formidability.
- Modalities include audio, images, videos, and text.
Multimodality extends traditional lIms using modern “adapter” approaches.

- multimodal input lims: BLIP-2, Flamingo, MiniGPT-4, Video-LLaMa, LLaVa,
PandaGPT, and SpeechGPT

Human-Al task alignment requires more effort towards multimodal output models

- Multimodal output [Ims: Emu, DreamLLM, GILL, SEED. fewer!



Destination

What is the unusual part of
this video?

The unusual part of this video is that a dog is
riding a skatcboard. It is not common to sce a
dog on a skatcboard, as dogs are typically not
able to nde skateboards or bicycles. This scene
is unique and interesting because it showcases
a dog's ability to adapt and participate in
human-made activitics, demonstrating its
intelligence and adaptability.

That is pretty cool. How about adding some
music to make this scene look more funny?

Certainly! Here's a synthesized music track
that could enhance the humor and
lightheartedness of the scene:

Do you have any other similar unusual scenes?
Show them.

I have a set of such

g kinds of scenes:

&

p
@ I am in a bad mood, so bad so sad.

I am sorry to hear about that. Sometimes, it is
hard to shake off a bad mood. Have you tried
listening to some lifting music or watching a
comedy to cheer you up?

Can you show something to cheer me up?

Sure, here's a video of
a cute puppy playing
in the park. It always
makes me feel better.

(8)

I need to prepare my presentation for my
history class, can you give some inspiration?

0f course! History is a fascinating subject. One
approach you could take is to create a timeline
presentation. You can use images, videos, and
text to show the progression of cvents and
highlight key moments in history. ...

@ lCan you show me some cxamplcs?l

Certainly! Here are a few examples of timeline
presentations and historical figures :1.2.3.

(€




Challenges in Any-to-Any Multimodal LLMs.

- Sub-SOTA reasoning (CoDi 2023)

- Clunky processing pipelines pose misalignment and limited performance as
task complexity increases. (Visual-ChatGPT, Hugging GPT 2023)

- End to End Pipelines like NExT-GPT with Tuned Models Address resolve this
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NEXT-GPT: Any-to-Any Multimodal LLM.

Encoding:
Leverages ImageBind to accept text, image, video, audio.
Synthesizes input with Concept Tokens (discussed later)

LLM

Vicuna (7B-v0) with LoRA tuning for modern reasoning.

Produces mode signal token with output to designate diffusion mode
Decoding

Stable Diffusion (SD-v1.5) for image generation.
Zeroscope (v2-576w) for video generation.
AudioLDM (I-full) for audio synthesis.

Dataset: MosIT. Covered more later. Basically, designed for this model and task.

Task: Train Projection layers to tie pipeline together in an intuition aligned way.

Text

Video

LM Output Projection
Name Param Name Param
Vicuma 70 Transformer IIMAH

(Lelta MM Transformer IIMA

Transformer IZM A

Diffusion
Name Param
SD 1.38
Auchiol DM 97TSM
Zevoscope 188




Next-GPT: Lightweight Training Overview
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Figure 3. Illustration of modality-switching instruction tuning.
The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
- Train away deformed reasoning from fusing fragmented encodings using cross entropy
- LoRA Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts.
- Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MosIT.
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Figure 3. Illustration of modality-switching instruction tuning.

The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
I\, Train away deformed reasoning from fusing fragmented encodings using cross entropy
- LoRA Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts.
- Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MosIT.



Next-GPT: The Encoding Step

NExT-GPT: Any-to-Any Multimodal LLM
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(a) Encoding-side LLM-centric Alignment



- Concept Token Rep.
al X X 2
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o122 g |e
Next-GPT: Concept Tokens L
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Patch level features reduces reasoning performance. S m—— 2 M ~Z P
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Example: Vid. Patch Rep. L L€ — Concept Vid. Rep.

Input Projection
The image encoder gives isolated visual fragments, like “red pants” or “belt buckle” or “arm.” LLM gets confused. What is that? (Zhong et. al. 2022)

Say now given a video. Beyond what'’s there, what's happening, as a concept?
Concept Token Rep Breakdown:
- Transformer and unifies the idea of the objects in the scene.
- (person leg + spine = book) + (table leg + tabletop = table) = book on table. Object Resolution.
- Grouping block adds coherency to business / across time.
- Person looking at book for a 5 seconds may be a person reading! Busy moment resolution.
- Transformer now aggregates multiple concepts in case of busy scene.
- Person reading + person reading + person reading = reading group. Busy scene resolution.
- Grouping Block

- Reading Group in session. Concept Resolution.

Train the Fire!
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Figure 3. Illustration of modality-switching instruction tuning.

The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
Train away deformed reasoning from fusing fragmented encodings using cross entropy
- LoRA Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts.
- Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MosIT.
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Figure 3. Illustration of modality-switching instruction tuning.
The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
Train away deformed reasoning from fusing fragmented encodings using cross entropy
- LoRA Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts.
- Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MosIT.
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NEXT-GPT: Vicuna Tuning

No LoRA, then these occur.
- Painpoint: Model unreliably diffuses in correct mode.
- Painpoint: Bad reasoning from base Vicuna’s misalignment multimodality
- Painpoint: Compounding errors through system from vicuna misalignment.

Applying LORA
- Challenge: limited data exists to align diffuser selection and pipeline intuition.

- Resolution: MosIT gold annotations LoRA Vicuna for signal tokens and quality
Reduces immediate or compounding comprehension and reasoning errors.

Changes about 1% of parameters.
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Figure 3. Illustration of modality-switching instruction tuning.

The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
Train away deformed reasoning from fusing fragmented encodings using cross entropy
LoRA tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts.
- Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MosIT.
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Figure 3. Illustration of modality-switching instruction tuning.

The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
Train away deformed reasoning from fusing fragmented encodings using cross entropy
Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts.
I\, Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MoslIT.
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Figure 3. Illustration of modality-switching instruction tuning.

The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
Train away deformed reasoning from fusing fragmented encodings using cross entropy
Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts.
I\, Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MoslIT.



Next-GPT Decoding Side
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(b) Decoding-side Instruction-following Alignment
Output projection: Takes Vicuna Output, Signal Token, and a trainable attention vector. Linear Fits input to transformer. Encoder emphasizes with attn. Decoder emphasizes using attention vector. Linear finish

Caption Alignment Loss: Ensures that diffuser reflects learned prompt from Image Output projection. This adds semantic consistency to the model allows output to better reflect input intuition.

Conditional Latent Denoising Loss: Ensures high diffusion quality. This helps the model ensure very clean, high quality images, so that the output is saitsfactory to the end user.



Next-GPT. Decoding Side Training

Challenge: Ensure diffuser intent matches intuition with CE over vicuna output.
Beats LoRA'ing Vicuna for each diffuser.

Challenge: Ensure quality of output. Diffusers can output subpar results. We
resolve this with Conditional Latent Denoising Loss.

Challenge: Diffuse in correct mode. Trivially, use signal token.

This minimizes training cost while ensuring overall alignment and quality.
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Figure 3. Illustration of modality-switching instruction tuning.

The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
Train away deformed reasoning from fusing fragmented encodings using cross entropy
Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts.
Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MosIT.



Next-GPT: Pipeline Alignment Challenges

Challenges:

1. Gap in Understanding User Instructions:
Example: A user requests "Show me a video of a sunset with calming music," but the
model only generates the text description, failing to output both the video and music as
requested.
2. Fine-tuning the LLM and Multimodal Outputs:
Example: Without fine-tuning, when a user inputs "Generate an image of a cat and
describe it," the LLM might only describe the cat but fail to output the actual image.
3. Multimodal Signal Token Alignment:
Example: If the signal token for video [VID] isn't aligned properly, the system may
output an image of the sunset instead of a video, even though the user requested a
video.

We introduce MosIT



Next-GPT: Pipeline Alignment Resolutions:

MosIT dataset:

- 5k samples designed for Modality Switching Instruction Tuning that cover
many 3-7 turn and many topic human machine interactions

- Turns involve complex reasoning over multimodal samples.

- Designed to mimic real world scenarios involving cross modal information and
generate accurate multimodal output

- Template conversations generated using gpt-4.

We now train our entire pipeline over the MosIT dataset to resolve aforementioned
intent, follow through, and modality challenges.



Next-GPT: Training over MosIT

NEXT-GPT: Any-to-Any Multimodal LLM
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MosIT gold encoding annotations are text for encoding and modal for diffusion.

Each sample provides consistent multimodal input and expected output, which aptly aligns the

pipeline.



Next-GPT: Interesting Results

NEXT-GPT demonstrates
strong performance
across image, video, and
audio generation tasks,
achieving comparable or
better results than
state-of-the-art models on
various benchmarks
(Table 2 and 3).

Baseline remains intact.

Table 2. Zero-shot evaluation of image captioning with CIDEr (1) score on NoCaps (Agrawal et al.. 2019), Flickr 30K (Young et al., 2014} and COCO
(Karpathy & Fei-Fei. 2017). and image question answering on VQA ™ (Goyal et al., 2017), VizWiz (Gurari et al_, 2018) and OKVQA (Marino et al.,
2019), and two evaluation-only benchmarks, MMB (Liu et al., 2023¢) and SEED (Li et al.. 2023a). The best results are marked in bokd. and the second
omes are underlined.

Model Version Image Captioning Image Question Answering  Comprehensive
NoCaps Flickr 30K COCO  VQA™®  VizWiz OKVQA MMB SEE
InstructBLIP (Dui et al., 2023) Vicuna- 7B 1231 824 10222 . 334 339 36.0 .
LELaVA (Liu et al,, 2023b) LLaMA-2.7B-Chat 1207 822 . . . . 36.2
mPLUG-Owl (Ye et al,, 2023b) LLaMA.7B 1170 803 1193 . 39.0 . 46.6 M0
Emu (Sun et al., 2023) LLaMA.7B . . 1177 400 354 347 . .
DREAMLIM (Dong et al, 2023) Vicuna-7B . . 1154 56.6 458 443 499
Video-LLaVA (Lin et al., 2023) Vicuna-7B . . . 747 48.1 . 60.9
NExT-GPT Vicuna- 7B 1237 845 1249 66.7 48.4 521 gg) 515

Table 3. Comparison of video reasoning tasks on MSRVTT (Xu et al.. 2016). MSVD-QA and MSRVTT-QA (Xu et al., 2017) and NEXTQA (Xiao et al..
2021), and the audio captioning task on AudioCaps (Kim et al., 2019). Scores with * means being fine-tuned on the training dataset.

A Video Captioning Video Question Answering Audio Captioning

Model Version
MSR-VTT MSVD-QA MSRVTT-QA NExTQA AudioCaps

Codi (Tang et al., 2023) - 744 - - - 78.9*
UIO-2XXL (Lu et al., 2023) 6.8B 48.8° 415 52.1 - 48.9°
Video-LLaMA (Zhang et al., 2023¢) LLaMA-7B - 51.6 - 296 -
Video-LLaVA (Lin et al.. 2023) Vicuna-7B - 70.7 392 -
Emu (Sun et al., 2023) LLaMA-7B - 324 14.0 6.8 -
NEXT-GPT Vicuna-7B 76.2* 645 61.4 50.7 813




Table 4. Results on text-to-image/audio/video generation (MS COCO

N eXt_ G PT: I n te re Sti n g Re S u ItS (2[(_)1;16:().1; jc()r::h:‘ui:(lzps (Kim et al., 2019), and MSRVTT (Xu et al..

Image Audio Video

s FID (}) FAD(]) CLIPSIM (1)
NExT-GPT excels in text-to-image, video, ke, G2 i
. . . AudioLDM-L (Liu ct al., 2023a) - 1.96 -
and audio generation, outperforming E-LLf;BB;u:oh«:;--zgzy A
mu- (Sun et al., 2023) 3 - -
H UIO-2XXL (Lu et al., 2023 33 264 -
models like GILL, Emu, and UIO-2XXL. et L TR T N Y
NEXT-GPT' 118 174 30.96

New SOTA for multimodal output
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Figure 5. Human Evaluation (1-100 scale, results are on average) of
NEXT-GPT in comparison with pipeline baselines.



Result Worth Mentioning

NExT-GPT: Any-to-Any Multimodal LLM
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(a) Text-to-image Generation (b) Text-to-video Generation (c) Text-to-audio Generation

Figure 6. The generation quality under different numbers of modality signal tokens.

Table 5. The perception performance of NExT-GPT by varying input projection mechanisms.

Model Image Question Answering Video Question Answering Audio Captioning
VQA®2 VizWiz MSVD-QA MSRVTT-QA AudioCaps
NExT-GPT 66.7 484 64.5 61.4 81.3
w Linear Layer 63.8 454 60.8 57.1 774
w Q-former + Linear Layer 65.1 469 634 58.1 79.7

Where lower FID is better, signal token count impacts performance.
The starting design is better than slight modifications to input projection.



Next-GPT: Motivating Results

Impressive alignment with user intention encouraged the authors to motivate
their results. They think

- The concept tokens enhance perceptual capabilities by aggregating
fragmented but related information into a coherence structure before
passing it to the model, unlike HuggingGPT and other engineering based
architectures

- The end to end training helps align visual and textual data, leading to
higher reasoning capacities over multimodality.



Next Steps

- Expand dataset for multimodality. Add complex samples towards robustness
- Optimize model efficiency. Reduce Computation load towards scaling.
- Enhance instruction tuning. Better align instruction following.



Summary

- NextGPT makes a new any-to-any end-to-end fully trained multimodal model.

- It stands out because existing work either covers one side or another or
multimodality, or is too engineered for performance.

- ltis lightly trained, and highly attuned to user intuition

- It sets a new SOTA in multimodal io, while maintaining existing benchmarks.

- It can be improved with additional data and simplifying architectures, towards
better enduser alignment.



Evaluating Object Hallucination in Large
Vision-Language Models

Li, Y., Du, Y., Zhou, K., Wang, J., Zhao, W. X., & Wen, J. R. (2023). Evaluating object hallucination in large vision-language models. arXiv preprint
arXiv:2305.10355.
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Introduction

Problem Statement:

e Large Vision-language models (LVLMs) are prone to object hallucination, i.e., generating
descriptions of objects not present in the target image.

e This issue negatively impacts the accuracy of tasks like image captioning and visual question
answering (VQA).

In this paper:

e Evaluating object hallucination for several popular LVLMs
e Investigating the effect of visual instructions on object hallucination
e Introducing a new method to evaluate object hallucination



Object Hallucination

What is Object Hallucination?

Models generate descriptions with objects that are inconsistent or absent from the target image.

® [
[

{_image.

Instruction-based evaluation

Provide a detailed description of the given ]

\appetizing manner.

The image features a table with a variety
of food items displayed in bowls. There
are two bowls of food. one containing a
mix of vegetables, such as broccoli and
carrots, and the other containing meat.
The bowl with vegetables is placed closer
to the front, while the meat bowl is
situated behind it. In addition to the main
dishes, there is an apple placed on the
table, adding a touch of fruit to the meal. A
bottle can also be seen on the table,
possibly containing a beverage or
condiment. The table is neatly arranged,
showcasing the different food items in an

4

Befe-

POPE

Random settings

& [ Is there a bottle in the image? J

[ Yes, there is a bottle in the image. ] ‘é

Popular settings

[ Is there a knife in the image?

)
|

LYes, there is a knife in the image.

Adversarial settings

; [ Is there a pear in the image? }

| &

[ Yes, there is a pear in the image.

Figure 1: Cases of object hallucination in LVLMs. Bold objects are ground-truth objects in the annotations and
red objects are hallucinated objects by LVLMs. The left case is from the traditional instruction-based ejvaluation
method, and the right cases are from three variants of POPE.



Object Hallucination in LVLMs: Evaluation Settings

CHAIR (Caption Hallucination Assessment with Image Relevance):

o  Metric for evaluating object hallucination in image captioning tasks.

Two Variants of CHAIR: hallucinated obi
CHAIR, — |{hallucinated objects}|

1. object instance level. ~ |{all mentioned objects}|’
2.  Sentence level.

CHAIR .« — |{captions with hallucinated objects}|
5 [{all captions}|

Prompts:
1.  Generate a short caption of the image.

2.  Provide a brief description of the given image.

Dataset: MSCOCO.

https://arxiv.org/pdf/1405.0312v3



Obiject Hallucination in LVLMs: Evaluation Results

Different Visual instruction e CHAIR; CHAIRs Len
OSCARguse 71 13.0 -

e InstructBLIP: Trained on public available ] X?XLLW Z; lg-g -
Large . A -

datasets, shorter BLIP e 4.7 8.8 N
mPLUG-OwI 14.8 254] 358

LLaVA 10.5 32.7] 643

Ii MultiModal-GPT 1.1 150 116

e LLaVA: Visual instruction generated by LLM, MiniGPT-4 6.7 9.5_I 24.7
longer | InstructBLIP 2.6 3.7 8.5
mPLUG-Owl 30.2 76.8| 985

LLaVA 18.8 62.7] 90.7

I MultiModal-GPT 18.2 362 457

MiniGPT-4 9.2 315 1162

{InstructBLIP 2.5 34| 75

Table 1: Results of CHAIR on VLPMs and LVLMS. I
denotes “Generate a short caption of the image” and I
denotes “Provide a brief description of the given image”.
Len refers to the average length of generated captions.
The results of VLPMs (OSCAR, VinVL, BLIP, and
OFA) are collected from Dai et al. (2023b). The best
results in each block are denoted in bold.



Disadvantages of CHAIR

e Unstable when different instructions are
employed.

e Relies on complex human-crafted
parsing rules for exact matching

| Model CHAIR; CHAIRg Len
OSCARRU.\'A’ g 13.0 -
VinVLarge 5.5 10.5 :
T OFALuee 4.7 8.9 :
BLIPL(U‘g(' 4.7 8.8 -
mPLUG-OwI 14.8 254 35.8
LLaVA 10.5 32.7 64.3
I;  MultiModal-GPT 11.1 15.0 11.6
MiniGPT-4 6.7 9.5 24.7
InstructBLIP 2.6 3.7 8.5
mPLUG-Owl 30.2 76.8 98.5
LLaVA 18.8 62.7 90.7
Is  MultiModal-GPT 18.2 36.2 45.7
MiniGPT-4 9.2 3.5 1162
InstructBLIP 2.5 34 15

Table 1: Results of CHAIR on VLPMs and LVLMs. I;
denotes “Generate a short caption of the image” and I
denotes “Provide a brief description of the given image”.
Len refers to the average length of generated captions.
The results of VLPMs (OSCAR, VinVL, BLIP, and
OFA) are collected from Dai et al. (2023b). The best
results in each block are denoted in bold.




Influence of Instruction Data on Object Hallucination

e Issue: Larger LVLMs tend to hallucinate more than smaller VLPMs
e Possible Cause: The visual instruction-tuning process in LVLMs might exacerbate hallucination.

Hypotheses

1.  Hypothesis 1:
o LVLMs are prone to hallucinate frequently appearing objects in the instruction dataset (e.qg.,
MSCOCO).
2. Hypothesis 2:
o LVLMs hallucinate co-occurring objects frequently seen together with the ground-truth
objects in the image.



Qualitative Analysis of Object Hallucination
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(a) Hallucination times of top ten frequently appearing objects, whose frequencies decrease from right to left.
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(b) Hallucination times of top ten objects co-occurring with “dining table”, whose frequencies decrease from right to left.

Figure 2: Hallucination times of frequently appearing/co-occurring objects in MSCOCO.




Quantitative Analysis - top-k hit ratio

HR 4@k =

Total Number of Images

1
n

n

w2

=l

Number of top-k
frequently appearing
objects in Hallucinated(i)

Hit@Fk(7)

Hallucinated (%)

Number of Hallucinated
Objects in ith Example

HR¢ @k (o

Number of top-k
frequently co-occurring
objects with the probing
object o in Hallucinated(i)

Hit@k(i, o)
Hallucinated(7)

1
_EZ

=il

Total Number of Images l Number of Hallucinated

Objects in ith Example

k: specific number of the most frequent objects in the dataset

HR @K : proportion of top-k frequently appearing or co-occurring objects in all hallucinated objects. [0,1]



Quantitative Analysis

HR 4 HRc(dining table)
@10 @20 @30 @10 @20 @30
mPLUG-Owl 0.5455 0.6591 0.7533 0.6608 0.7926 0.8253

Model

LLaVA 0.4620 0.5911 0.6796 0.5628 0.7329 0.8595
MultiModal-GPT 0.4152 0.5399 0.6743 0.5742 0.7849 0.8961
MiniGPT-4 0.4610 0.5758 0.7207 0.5600 0.6980 0.9145

Table 2: Results on MSCOCO that quantify the correlations between the appearing/co-occurring frequency of
objects and the hallucination times of LVLMs.
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Quantitative Analysis

HR 4 HRc(dining table)
@10 @20 @30 @10 @20 @30
mPLUG-Owl 0.5455 0.6591 | 0.7533 | 0.6608 0.7926 | 0.8253

Model

LLaVA 0.4620 0.5911 ] 0.6796 | 0.5628 0.7329 | 0.8595
MultiModal-GPT 0.4152 0.5399 | 0.6743 | 0.5742 0.7849 | 0.8961
MiniGPT-4 0.4610 0.5758 | 0.7207 | 0.5600 0.6980 | 0.9145

Table 2: Results on MSCOCO that quantify the correlations between the appearing/co-occurring frequency of
objects and the hallucination times of LVLMs.

LVLMs mostly hallucinate common objects in the visual instruction data.



.
Ground-truth objects

Human annotation

" | person, chair, umbrella, | Negative

sand, sea, ...

Automatic annotation sampling

Polling questions

POPE: Polling-based Object Probing Evaluation

Nonexistent objects

Random: dog, apple, ...

Popular: table, knife, ...

Adversarial: surfboard, ...

Q: Is there a person in the image? ’
A: Yes.

Q: Is there a dog in the image?
A: No.

Segmentation

SEEM

- —— Q: Is there a chair in the image? ’

A: Yes.

Q: Is there a table in the image?
A: No.

Q: Is there an umbrella in the image?

A: Yes.

Q: Is there a surfboard in the image?
A:No.

——

Figure 3: Overview of the POPE pipeline. Given an input image, POPE first extracts ground-truth objects in

the image either from human annotations or with the help of automatic segmentation tools like SEEM. Then,
POPE conducts negative sampling for nonexistent objects in the image under Random/Popular/Adversarial settings.
Finally, the ground-truth objects and nonexistent objects are formulated into question templates to poll LVLMs.



POPE: Evaluation on MSCOCO

Dataset POPE Model Accuracy Precision Recall | F1 Score | Yes (%)
mPLUG-Owl 53.30 5171 99.53 68.06 96.23

LLaVA 54.43 52.32 99.80 68.65 95.37

Random MultiModal-GPT 50.03 50.02 100.00 66.68 99.97
MiniGPT-4 77.83 75.38 82.67 78.86 54.83

InstructBLIP 88.73 85.08 93.93 89.29 55.20

mPLUG-Owl 50.63 50.32 99.27 66.79 98.63

LLaVA 52.43 51.25 99.80 67.72 97.37

MSCOCO Popular MultiModal-GPT 50.00 50.00 100.00 66.67 100.00
MiniGPT-4 68.30 64.27 82.40 72:21 64.10

InstructBLIP 81.37 75.07 93.93 83.45 62.57

mPLUG-Owl 50.67 50.34 99.33 66.82 98.67

LLaVA 50.77 50.39 99.87 66.98 99.10

Adversarial MultiModal-GPT 50.00 50.00 100.00 66.67 100.00
MiniGPT-4 66.60 62.45 83.27 71.37 66.67

InstructBLIP 74.37 67.67 93.33 78.45 68.97

Table 3: Results of LVLMs under three evaluation settings of POPE on the validation set of MSCOCO. Yes denotes
the proportion of answering “Yes” to the given question. The best results in each block are denoted in bold.
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POPE: Evaluation on MSCOCO

Dataset POPE Model Accuracy Precision Recall ‘ F1 Score \ Yes (%)
mPLUG-Owl 53.30 S 99.53 68.06 96.23
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Random MultiModal-GPT 50.03 50.02 100.00 | 66.68 99.97
MiniGPT-4 77.83 75.38 82.67 78.86 54.83
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LVLMs are prone to hallucinate the frequently appearing and co-occurring

objects.
mPLUG-Owl 50.67 50.34 99.33 66.82 98.67
LLaVA 5077 50.39 99.87 66.98 99.10
Adversarial | MultiModal-GPT 50.00 50.00 100.00 66.67 100.00
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Table 3: Results of LVLMs under three evaluation settings of POPE on the validation set of MSCOCO. Yes denotes
the proportion of answering “Yes” to the given question. The best results in each block are denoted in bold.



Comparing POPE and CHAIR on Different Prompts

POPE CHAIR
Prompt F1 Score Prompt CHAIR;
Is there a <object> in the image? 68.65 Generate a short caption of the image. 10.50
Does the image contain a <object>? 66.83 Provide a brief description of the image. 18.80
Have you noticed a <object> in the image? 66.67 Generate a concise description for the image. 14.60
Can you see a <object> in the image? 67.58 Create a short textual summary for the image. 11.60
Avg-+Std. 67.43+0.78 13:88-3.22

Table 4: Evaluation results of LLaVA on POPE and CHAIR with different prompt templates.



Comparing POPE and CHAIR on Different Prompts

POPE CHAIR
Prompt F1 Score Prompt CHAIR;
Is there a <object> in the image? 68.65 Generate a short caption of the image. 10.50
Does the image contain a <object>? 66.83 Provide a brief description of the image. 18.80
Have you noticed a <object> in the image? 66.67 Generate a concise description for the image. 14.60
Can you see a <object> in the image? 67.58 Create a short textual summary for the image. 11.60
Avg-+Std. 67.431+0.78 13.8843.22

Table 4: Evaluation results of LLaVA on POPE and CHAIR with different prompt templates.

Stability of POPE compared to CHAIR



POPE Results for Automatic Segmentation

Dataset POPE Model Accuracy  Precision  Recall | F1 Score  F1 Score (Truth) | Yes (%)
LLaVA 50.47 50.24 99.67 66.80 68.65 99.20

Random MiniGPT-4 1301 79.25 64.40 71.06 78.86 40.63

InstructBLIP 86.60 80.74 96.13 89.29 89.27 59.53

LLaVA 50.00 50.00 99.27 66.50 6772 99.27

MSCOCO  Popular MiniGPT-4 67.80 68.80 65.13 66.92 1221 47.33
InstructBLIP 7127 64.20 96.13 76.99 83.45 74.87

LLaVA 49.77 49.88 99.20 66.38 66.98 99.43

Adversarial  MiniGPT-4 61.93 61.46 64.00 62.70 T137 52.07
InstructBLIP 62.53 37.50 96.13 71.96 78.45 83.60

Table 5: SEEM-based POPE results of LVLM on MSCOCO. F1 Score (Truth) are the results of POPE using
ground-truth annotations, which are copied from Table 3. The best results in each block are denoted in bold.

Scalability of POPE



Consistency of POPE

Data Collected from: InstructBLIP and MiniGPT-4:

e "No" Responses:
o InstructBLIP: Out of 1303 objects with "No" responses, 0 were referenced in captions.
o  MiniGPT-4: Out of 1445 objects with "No" responses, only 5 were mentioned in
captions.
e "Yes" Responses:
o InstructBLIP: All 664 objects mentioned in captions received "Yes" verdicts.
o  MiniGPT-4: Out of 1034 objects mentioned in captions, 961 received "Yes" responses.

Consistency of POPE



POPE vs VQA Performance

Dataset Model POPET VQA?T

InstructBLIP 87.20 59.68
A-OKVQA MiniGPT-4 7247 38.69
LLaVA 66.64 50.51

InstructBLIP 85.32 62.12
GQA MiniGPT-4 6713 42.24
LLaVA 66.56 47.60

Table 6: Evaluation results of LVLMs on POPE and
VQA. For VQA tasks, we report the VQA score on A-
OKVQA and Accuracy on GQA. For POPE, we copy
the result under the random setting from Table 11.
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POPE vs VQA Performance

Dataset  Model POPE! VQA?

InstructBLIP 87.20 59.68
A-OKVQA |MiniGPT-4 72.47  38.69 |
'LLaVA 66.64  50.51 |

InstructBLIP 85.32 62.12
GQA MiniGPT-4 67.13 42.24
|LLaVA 66.56 47.60 |

Table 6: Evaluation results of LVLMs on POPE and
VQA. For VQA tasks, we report the VQA score on A-
OKVQA and Accuracy on GQA. For POPE, we copy
the result under the random setting from Table 11.

MiniGPT-4 : instruction dataset of only derives from image caption data,
LLaVA: uses158K visual instructions data involving complex visual questions.



Limitations of the Study

1.

Narrow Scope: Focuses only on object hallucination, not overall LVLM
performance.

Limited Dataset: Evaluated on a small portion of the validation set,
potentially skewing results.

Answer Matching: Relies on "Yes" or "No" answers, which models may not
always provide explicitly.

Annotation Inconsistencies: Automatic segmentation tool labels may differ

from human annotations.
Few Models Evaluated: Only a small number of LVLMs were tested,

excluding newer models.



Conclusion and Key Takeaways

Evaluation of LVLMs: We evaluated multiple LVLMs and identified their susceptibility to object hallucination.

Impact of Visual Instructions: The object distributions in the visual instructions significantly influence
hallucination behavior in LVLMs.

Limitations of Existing Methods: Current evaluation methods can be unreliable, as they are affected by the
input instructions and generated text.

Proposed POPE Method: We introduced POPE, a polling-based query method, to provide more accurate evaluation of
object hallucination.

Experimental Validation: Results show that POPE offers better insights into object hallucination issues compared to
traditional methods.



Future Direction

e Extending the analysis from coarse-grained to fine-grained object
hallucinations such as the number, attributes, and positions of the object

e Evaluating object hallucination for more LVLMs.

e Cross-Domain Generalization: Test LVLMs on datasets from various
domains to assess hallucination across different tasks.



Future Directions of MLLMs: Modularity vs. Pre-training

Modular Structures:

e Research focuses on replacing black-box pretraining with more modular
models to enhance control, understanding, and faithfulness.

e Causality and Counterfactual Reasoning: Exploration into models like Cm3
that incorporate causal and counterfactual reasoning in multimodal tasks.

Ghosh, A., Acharya, A., Saha, S., Jain, V., & Chadha, A. (2024). Exploring the frontier of vision-language models: A survey of current methodologies

and future directions. arXiv preprint arXiv:2404.07214.
https://arxiv.org/pdf/2404.07214



Future Directions: Efficient and Domain-Specific Models

e Training Efficiency:
o Efforts are underway to develop more efficient multimodal models like
BLIP-2, which surpasses Flamingo-80B with fewer trainable parameters.

e Domain-Specific VLMs:
o Specialized models such as MedFlamingo and SkinGPT are emerging
in fields like healthcare, with more progress expected in sectors like

education and agriculture.

Ghosh, A., Acharya, A., Saha, S., Jain, V., & Chadha, A. (2024). Exploring the frontier of vision-language models: A survey of current methodologies

and future directions. arXiv preprint arXiv:2404.07214.
https://arxiv.org/pdf/2404.07214



Future Directions: Continuous Learning and Fine-Grained
Evaluation

Continual Learning:

e Research on models that can learn continuously without retraining from scratch,
inspired by LLM approaches.

Fine-Grained Evaluation:

e New evaluation metrics for bias and fairness

Ghosh, A., Acharya, A., Saha, S., Jain, V., & Chadha, A. (2024). Exploring the frontier of vision-language models: A survey of current methodologies
and future directions. arXiv preprint arXiv:2404.07214.
https://arxiv.org/pdf/2404.07214



