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Example Scenario: Using GPT-4o for VQA



VisionLLM: Large Language Model is also an 
Open-Ended Decoder for Vision-Centric 

Tasks

https://arxiv.org/abs/2305.11175

Wang, W., Chen, Z., Chen, X., Wu, J., Zhu, X., Zeng, G., ... & Dai, J. (2024). Visionllm: Large language model is also an open-ended decoder for vision-centric tasks. 
Advances in Neural Information Processing Systems, 36.



Motivation - Why Vision and Language Integration?

1. LLMs
○ Powerful zero-shot capabilities in language tasks, adapting to user prompts effortlessly

2. Challenge in Vision Tasks:
○ Inherent differences in data formats and task structures between vision and language

3. Current Limitations:
○ Extensive pre-training and fine-tuning
○ Lacking adaptability to diverse tasks and user-specific instructions.

4. Need for VisionLLM:
○ Combining the reasoning power of LLMs with vision-specific capabilities
○ Unified model that adapts to flexible, vision-centered prompts



Comparison of VisionLLM with popular paradigms



VisionLLM Overview

1. Unified Vision-Language Model:
○ VisionLLM is a unified, end-to-end approach that combines VFMs and LLMs
○ Unlike API-based solutions, it integrates these models within a single cohesive system 

for efficient vision-centric task handling.
2. Key Contributions:

○ (1) First open-ended framework for vision tasks using LLMs.
○ (2) Language-guided tokenizer and task decoder to align vision tasks with language 

instructions.
○ (3) Demonstrates high generalization across diverse scenarios (e.g., object detection, 

image captioning).
3. Impact:

○ Enables flexible task management, extending beyond pre-defined tasks, to bridge vision 
and language domains.



Visualization of VisionLLM diverse tasks

Random Object Categories Random Output Format

Random Task Description Random Task Description



Background - Vision Generalist Models

1. Generalist Models for Vision:
○ Models like OFA, Flamingo, and GIT use a unified framework to handle a wide range of 

vision tasks.
○ These models often employ sequence-to-sequence (seq2seq) methods, making them 

capable of both image-based and non-image-based tasks.
2. Limitations:

○ Current models face challenges in fine-tuning and performance due to non-parallel 
auto-regressive processes.

○ These models are often restricted by pre-defined tasks and do not fully support flexible, 
open-ended tasks defined by natural language instructions.



Background - Instruction Tuning

Instruction Tuning: Introduced by GPT-3, enhances zero-shot and few-shot learning for 
LLMs (e.g., InstructGPT, FLAN).

Vision-Language Models:

○ Flamingo: Uses vision + language prompts for tasks like image captioning and 
VQA.

○ BLIP-2: Connects visual encoders with LLMs via a querying transformer.
○ MiniGPT-4 & LLaVA: Fine-tune BLIP-2 models for image-to-text tasks.

Challenges: Models struggle with visual perception tasks (e.g., detection, segmentation), and 
visual prompts don't fully leverage LLM reasoning.



VisionLLM: Model Architecture



VisionLLM: Unified Language Instruction



VisionLLM: Unified Language Instruction

Vision-Language Tasks:

● Example: “The image is <image>. Please generate a caption.”
● Instructions follow formats like NLP tasks for image captioning and Visual Question Answering (VQA).

Vision-Only Tasks:

● Example: “Segment all objects of class <class> in the image and generate bounding coordinates.”
● Unified output format (C, P) with class and boundary points for object detection and segmentation.

C: Class index in the category set <class>

P: N points that locate the subject



VisionLLM: Language-Guided Image Tokenizer



VisionLLM: Language-Guided Image Tokenizer

Process:

1. Feature Extraction:
○ Images                         processed through backbones (e.g., ResNet) to extract 4-scale visual 

features     
2. Cross-Modality Fusion:

○ Text encoders (e.g., BERT) extract language features       integrated into each scale of visual 
features using cross-attention, resulting in language-aware visual features.

3. Output Tokens:
○ A transformer-based network (e.g., Deformable DETR) converts the features into token 

embeddings                                 representing semantic and positional data, respectively.



LLM-based Open-Ended Task Decoder



LLM-based Open-Ended Task Decoder

Decoder is built on Alpaca (from LLaMA) to handle vision tasks using language instructions.

● Challenges:
1. Limited ability to handle object locations with numerical precision.
2. Inefficiency in category name classification using multiple tokens.
3. Causal model inefficiencies for visual tasks.

Proposed Solution:

● 1. Location Tokens: Introduce discretized position tokens to streamline object localization tasks.
○ Denoted as
○ Each token          represents the discretized offset of i within the range [-512, 512].
○ The token's relative value to the image height or width is calculated as i / 512.

● 2. Category Tokens: Replace multi-token categories with unified classification tokens.



LLM-based Open-Ended Task Decoder

3. Output-Format-as-Query: Parse structured formats from language instructions for efficient decoding.



Experimental Settings

Datasets:

● VisionLLM is trained and evaluated on multiple vision-language tasks:
○ COCO2017 for object detection and segmentation.
○ RefCOCO and RefCOCO+ for visual grounding.
○ COCO Caption and LLaVA-Instruct-150K for image captioning and VQA.

Implementation:

● Two backbone variants: ResNet and InternImage-H.
● Text encoder: BERT Base.
● Vision encoder: Deformable DETR.
● LLM: Alpaca-7B (fine-tuned with LoRA)



Results on standard vision-centric tasks

AP: Average Precision

P@0.5: Precision at 0.5

BLUE-4:Bilingual Evaluation 
Understudy)

CIDEr: Consensus-based 
Image Description 
Evaluation



Object Customization & Ablation Studies on Image Tokenization
Object Detection:

● Outperforms Pix2Seq by 1.4 mAP on ResNet-50.
● Efficient multi-task predictions using output-format-as-query.

Visual Grounding: Achieves 86.7 P@0.5 using InternImage-H.
Instance Segmentation: Competitive AP scores with ResNet and InternImage-H.
Image Captioning: Comparable BLEU-4 and CIDEr scores, outperforming prior models.



Ablation Study
● Single Task vs. Multiple Tasks:

○ Single-task model VisionLLM-R50_sep slightly outperforms the multi-task model.
○ Multi-tasking leads to a trade-off between generalization and accuracy.

● Text Encoder in Language-Guided Image Tokenizer:
○ BERT plays a crucial role in visual grounding but is less essential for object detection.
○ Freezing BERT hinders alignment between vision and language modalities.

● Image Tokenization Method:
○ Query-based tokenization outperforms average pooling due to its flexibility in capturing object size 

information.

● Number of Localization Tokens:
○ Increasing the number of tokens improves localization performance, peaking at 1025 tokens.



Ablation Study



● VisionLLM is a novel framework that integrates large language models (LLMs) for 
vision-centric tasks, promoting open-ended and customizable tasks like object 
detection, instance segmentation, and image captioning.

● The unified language instruction approach allows flexible task definitions using natural 
language.

● VisionLLM achieves competitive performance across tasks by leveraging a 
language-guided image tokenizer and an LLM-based task decoder.

Conclusion and Key Takeaways



Future Directions

● Explore more advanced model scaling for larger datasets.

● Incorporate more diverse vision-language tasks.

● Investigate potential real-world applications and challenges in multi-modal 
systems.



Visual Instruction Tuning
Liu et al. (2023)

https://arxiv.org/abs/2304.08485



Motivation

● Onset of multimodal models
● Instruction tuning for LLMs
● Goal, make vision language models:

○ more user friendly
○ more general purpose



Overview

● Instruction-following 
vision-language data pipeline

● LLaVa
○ Multimodal vision-language model

● LLaVa-Bench
○ 2 quantitative benchmarks (COCO 

and In-the-Wild)



Background

● CLIP
○ Radford et al. (2021). Learning Transferable Visual Models From Natural Language 

Supervision
○ Contrastive objective, positive samples pushed closer, negative samples pushed further away 
○ Robust image encoder

● Vicuna
○ Chiang et al. (2023). Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt 

quality
○ LLM 



GPT-assisted Visual Instruction Generation

● Supply text GPT-4 with captions and object bboxes
● Few human generated annotations for in-context learning
● 3 types:

○ Conversation
○ Detailed Description
○ Complex Reasoning

● 158K samples
● For Multimodal Chatbot fine-tuning



System

● CLIP image encoder
● Embedding projection layer
● Vicuna LLM



2-Stage Training

● Stage 1: Pre-training for Feature 
Alignment

○ Visual encoder ❄, LLM ❄, projection matrix 🔥
○ 595K image-text pairs from CC3M
○ Converted to instruction-following data, GT is 

captions

��
❄ 

❄ 



2-Stage Training

● Stage 1: Pre-training for Feature 
Alignment

● Stage 2: Fine-tuning End-to-End
○ Visual encoder ❄, LLM 🔥, projection matrix 
🔥

○ Use Multimodal Chatbot and ScienceQA 
datasets

��
❄ 

��



Multimodal Chatbot Evaluation

● Fine-tuned with 158K instruction-following dataset
● Generate response from LLaVa
● Generate response from text GPT-4
● Use separate text GPT-4 as judge

○ Given bboxes, captions, LLaVa output, GPT-4 output



Multimodal Chatbot Evaluation

● 1) LLaVa-Bench (COCO)
● 30 images from COCO-Val-2014

○ 3 variations each: conversation, detailed description, complex reasoning
○ 90 questions in total



Multimodal Chatbot Evaluation

● 2) LLaVa-Bench (In-the-Wild)
● 24 hand-collected “challenging” images

○ indoor/outdoor, sketches, paintings, memes
○ 60 questions in total



Challenges

● Requiring high-res images
○ Fine-grained details

● Broad knowledge coverage
○ Ramen side dishes

● “bag of patches”
○ Strawberries + yogurt = strawberry yogurt



ScienceQA Evaluation

● Fine-tune using 21K diverse multiple choice questions
● Model-ensembling with few-shot GPT-4

○ Complement - when GPT-4 fails to answer, use LLaVa
○ Judge - when GPT-4 and LLaVa generate different answers, ask GPT-4 again using those 2 

answers



Conclusion + Future Directions

● Visual instruction tuning is effective
● SOTA on ScienceQA
● Excellent for visual-chat comprehension questions
● In the future,

○ More fine-tuning
○ Fusing other modalities



NExT-GPT: Any-to-Any Multimodal LLM 

Joseph Islam (2024)

Wu et al.

https://arxiv.org/pdf/2309.05519



Multimodality inherently limits all text only llms, despite their linguistic formidability.

- Modalities include audio, images, videos, and text.

Multimodality extends traditional llms using modern “adapter” approaches.

- multimodal input llms: BLIP-2, Flamingo, MiniGPT-4, Video-LLaMa, LLaVa, 
PandaGPT, and SpeechGPT 

Human-AI task alignment requires more effort towards multimodal output models

- Multimodal output llms: Emu, DreamLLM, GILL, SEED. fewer!

Research Context



Destination



Challenges in Any-to-Any Multimodal LLMs.

- Sub-SOTA reasoning (CoDi 2023)

- Clunky processing pipelines pose misalignment and limited performance as 
task complexity increases. (Visual-ChatGPT, Hugging GPT 2023)

- End to End Pipelines like NExT-GPT with Tuned Models Address resolve this



NExT-GPT: Any-to-Any Multimodal LLM



NExT-GPT: Any-to-Any Multimodal LLM.
- Encoding:

- Leverages ImageBind to accept text, image, video, audio.
- Synthesizes input with Concept Tokens (discussed later)

- LLM
- Vicuna (7B-v0) with LoRA tuning for modern reasoning.
- Produces mode signal token with output to designate diffusion mode

- Decoding
- Stable Diffusion (SD-v1.5) for image generation.
- Zeroscope (v2-576w) for video generation.
- AudioLDM (l-full) for audio synthesis.

- Dataset: MosIT. Covered more later. Basically, designed for this model and task. 

- Task: Train Projection layers to tie pipeline together in an intuition aligned way.



Next-GPT: Lightweight Training Overview

The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
- Train away deformed reasoning from fusing fragmented encodings using cross entropy
- LoRA Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts. 
- Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MosIT.



Next-GPT: Lightweight Training Overview

The existing models, ImageBind, Vicuna, and the diffusers, are frozen for training. Notice the Snowflake!
The lightweight projection layers are trained. Notice the Fire!

Steps:
   ⚠    Train away deformed reasoning from fusing fragmented encodings using cross entropy

- LoRA Tune Vicuna for diffusion mode indicating signal tokens and diffuser aligned prompts. 
- Ensure Intuitive diffusion alignment to resolve clunky, aforementioned weird output painpoint by end using MosIT.



Next-GPT: The Encoding Step



Next-GPT: Concept Tokens
Patch level features reduces reasoning performance.

Example: 

The image encoder gives isolated visual fragments, like “red pants” or “belt buckle” or “arm.” LLM gets confused. What is that? (Zhong et. al. 2022)

Say now given a video. Beyond what’s there, what’s happening, as a concept?

Concept Token Rep Breakdown:

- Transformer and unifies the idea of the objects in the scene. 

- (person leg + spine = book) + (table leg + tabletop = table) = book on table. Object Resolution.

- Grouping block adds coherency to business / across time. 

- Person looking at book for a 5 seconds may be a person reading! Busy moment resolution.

- Transformer now aggregates multiple concepts in case of busy scene. 

- Person reading + person reading + person reading = reading group. Busy scene resolution.

- Grouping Block 

- Reading Group in session. Concept Resolution.

Train the Fire!
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NExT-GPT: Vicuna Tuning

No LoRA, then these occur.
- Painpoint: Model unreliably diffuses in correct mode.
- Painpoint: Bad reasoning from base Vicuna’s misalignment multimodality 
- Painpoint: Compounding errors through system from vicuna misalignment.

Applying LoRA
- Challenge: limited data exists to align diffuser selection and pipeline intuition.

- Resolution: MosIT gold annotations LoRA Vicuna for signal tokens and quality

Reduces immediate or compounding comprehension and reasoning errors. 

Changes about 1% of parameters. 
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Next-GPT Decoding Side

Output projection: Takes Vicuna Output, Signal Token, and a trainable attention vector. Linear Fits input to transformer. Encoder emphasizes with attn. Decoder emphasizes using attention vector. Linear finish

Caption Alignment Loss: Ensures that diffuser reflects learned prompt from Image Output projection. This adds semantic consistency to the model allows output to better reflect input intuition. 

Conditional Latent Denoising Loss: Ensures high diffusion quality. This helps the model ensure very clean, high quality images, so that the output is saitsfactory to the end user.



Next-GPT: Decoding Side Training

Challenge: Ensure diffuser intent matches intuition with CE over vicuna output. 
Beats LoRA’ing Vicuna for each diffuser. 

Challenge: Ensure quality of output. Diffusers can output subpar results. We 
resolve this with Conditional Latent Denoising Loss.

Challenge: Diffuse in correct mode. Trivially, use signal token.

This minimizes training cost while ensuring overall alignment and quality. 



Next-GPT: Lightweight Training Overview
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Next-GPT: Pipeline Alignment Challenges

Challenges:

1. Gap in Understanding User Instructions:
Example: A user requests "Show me a video of a sunset with calming music," but the 
model only generates the text description, failing to output both the video and music as 
requested.

2. Fine-tuning the LLM and Multimodal Outputs:
Example: Without fine-tuning, when a user inputs "Generate an image of a cat and 
describe it," the LLM might only describe the cat but fail to output the actual image.

3. Multimodal Signal Token Alignment:
Example: If the signal token for video [VID] isn't aligned properly, the system may 
output an image of the sunset instead of a video, even though the user requested a 
video.

We introduce MosIT



Next-GPT: Pipeline Alignment Resolutions:

MosIT dataset:

- 5k samples designed for Modality Switching Instruction Tuning that cover 
many 3-7 turn and many topic human machine interactions

- Turns involve complex reasoning over multimodal samples.
- Designed to mimic real world scenarios involving cross modal information and 

generate accurate multimodal output
- Template conversations generated using gpt-4.

We now train our entire pipeline over the MosIT dataset to resolve aforementioned 
intent, follow through, and modality challenges.



Next-GPT: Training over MosIT

MosIT gold encoding annotations are text for encoding and modal for diffusion.

Each sample provides consistent multimodal input and expected output, which aptly aligns the 
pipeline.



Next-GPT: Interesting Results

NExT-GPT demonstrates 
strong performance 
across image, video, and 
audio generation tasks, 
achieving comparable or 
better results than 
state-of-the-art models on 
various benchmarks 
(Table 2 and 3). 

Baseline remains intact.



Next-GPT: Interesting Results

NExT-GPT excels in text-to-image, video, 
and audio generation, outperforming 
models like GILL, Emu, and UIO-2XXL.

New SOTA for multimodal output 
generation.

Special note: Table 4 data collected in zero 
shot context! 



Result Worth Mentioning

Where lower FID is better, signal token count impacts performance.
The starting design is better than slight modifications to input projection.



Next-GPT: Motivating Results

Impressive alignment with user intention encouraged the authors to motivate 
their results. They think

- The concept tokens enhance perceptual capabilities by aggregating 
fragmented but related information into a coherence structure before 
passing it to the model, unlike HuggingGPT and other engineering based 
architectures

- The end to end training helps align visual and textual data, leading to 
higher reasoning capacities over multimodality.



Next Steps

- Expand dataset for multimodality. Add complex samples towards robustness 
- Optimize model efficiency. Reduce Computation load towards scaling. 
- Enhance instruction tuning. Better align instruction following. 



Summary 

- NextGPT makes a new any-to-any end-to-end fully trained multimodal model.
- It stands out because existing work either covers one side or another or 

multimodality, or is too engineered for performance.
- It is lightly trained, and highly attuned to user intuition
- It sets a new SOTA in multimodal io, while maintaining existing benchmarks. 
- It can be improved with additional data and simplifying architectures, towards 

better enduser alignment.



Evaluating Object Hallucination in Large 
Vision-Language Models

Li, Y., Du, Y., Zhou, K., Wang, J., Zhao, W. X., & Wen, J. R. (2023). Evaluating object hallucination in large vision-language models. arXiv preprint 
arXiv:2305.10355.

https://arxiv.org/abs/2305.10355



Introduction

Problem Statement:

● Large Vision-language models (LVLMs) are prone to object hallucination, i.e., generating 
descriptions of objects not present in the target image.

● This issue negatively impacts the accuracy of tasks like image captioning and visual question 
answering (VQA).

In this paper:

● Evaluating object hallucination for several popular LVLMs
● Investigating the effect of visual instructions on object hallucination
● Introducing a new method to evaluate object hallucination



Object Hallucination
What is Object Hallucination?

Models generate descriptions with objects that are inconsistent or absent from the target image.



Object Hallucination in LVLMs: Evaluation Settings

CHAIR (Caption Hallucination Assessment with Image Relevance):

○ Metric for evaluating object hallucination in image captioning tasks.

Two Variants of CHAIR:

1. object instance level.
2. Sentence level.

Prompts:

1. Generate a short caption of the image.
2. Provide a brief description of the given image.

Dataset: MSCOCO. 

https://arxiv.org/pdf/1405.0312v3



Object Hallucination in LVLMs: Evaluation Results

Different Visual instruction

● InstructBLIP: Trained on public available 
datasets, shorter 

● LLaVA: Visual instruction generated by LLM, 
longer

 



Disadvantages of CHAIR

● Unstable when different instructions are 
employed.

● Relies on complex human-crafted 
parsing rules for exact matching



Influence of Instruction Data on Object Hallucination

● Issue: Larger LVLMs tend to hallucinate more than smaller VLPMs 
● Possible Cause: The visual instruction-tuning process in LVLMs might exacerbate hallucination.

Hypotheses

1. Hypothesis 1:
○ LVLMs are prone to hallucinate frequently appearing objects in the instruction dataset (e.g., 

MSCOCO).
2. Hypothesis 2:

○ LVLMs hallucinate co-occurring objects frequently seen together with the ground-truth 
objects in the image.



Qualitative Analysis of Object Hallucination



Quantitative Analysis - top-k hit ratio

k: specific number of the most frequent objects in the dataset

HR@k : proportion of top-k frequently appearing or co-occurring objects in all hallucinated objects. [0,1]



Quantitative Analysis 



Quantitative Analysis 



Quantitative Analysis 



Quantitative Analysis 

LVLMs mostly hallucinate common objects in the visual instruction data.



POPE: Polling-based Object Probing Evaluation



POPE: Evaluation on MSCOCO



POPE: Evaluation on MSCOCO



POPE: Evaluation on MSCOCO



POPE: Evaluation on MSCOCO



POPE: Evaluation on MSCOCO



Comparing POPE and CHAIR on Different Prompts



Comparing POPE and CHAIR on Different Prompts

Stability of POPE compared to CHAIR



POPE Results for Automatic Segmentation

Scalability of POPE 



Consistency of POPE

Data Collected from: InstructBLIP and MiniGPT-4:

● "No" Responses:
○ InstructBLIP: Out of 1303 objects with "No" responses, 0 were referenced in captions.
○ MiniGPT-4: Out of 1445 objects with "No" responses, only 5 were mentioned in 

captions.
● "Yes" Responses:

○ InstructBLIP: All 664 objects mentioned in captions received "Yes" verdicts.
○ MiniGPT-4: Out of 1034 objects mentioned in captions, 961 received "Yes" responses.

Consistency of POPE 



POPE vs VQA Performance



POPE vs VQA Performance



POPE vs VQA Performance

MiniGPT-4 : instruction dataset of only derives from image caption data, 
LLaVA: uses158K visual instructions data involving complex visual questions.



Limitations of the Study

1. Narrow Scope: Focuses only on object hallucination, not overall LVLM 
performance.

2. Limited Dataset: Evaluated on a small portion of the validation set, 
potentially skewing results.

3. Answer Matching: Relies on "Yes" or "No" answers, which models may not 
always provide explicitly.

4. Annotation Inconsistencies: Automatic segmentation tool labels may differ 
from human annotations.

5. Few Models Evaluated: Only a small number of LVLMs were tested, 
excluding newer models.



Conclusion and Key Takeaways

● Evaluation of LVLMs: We evaluated multiple LVLMs and identified their susceptibility to object hallucination.

● Impact of Visual Instructions: The object distributions in the visual instructions significantly influence 
hallucination behavior in LVLMs.

● Limitations of Existing Methods: Current evaluation methods can be unreliable, as they are affected by the 
input instructions and generated text.

● Proposed POPE Method: We introduced POPE, a polling-based query method, to provide more accurate evaluation of 
object hallucination.

● Experimental Validation: Results show that POPE offers better insights into object hallucination issues compared to 
traditional methods.



Future Direction

● Extending the analysis from coarse-grained to fine-grained object 
hallucinations such as the number, attributes, and positions of the object

● Evaluating object hallucination for more LVLMs.

● Cross-Domain Generalization: Test LVLMs on datasets from various 
domains to assess hallucination across different tasks. 



Future Directions of MLLMs: Modularity vs. Pre-training

Modular Structures:

● Research focuses on replacing black-box pretraining with more modular 
models to enhance control, understanding, and faithfulness.

● Causality and Counterfactual Reasoning: Exploration into models like Cm3 
that incorporate causal and counterfactual reasoning in multimodal tasks.

Ghosh, A., Acharya, A., Saha, S., Jain, V., & Chadha, A. (2024). Exploring the frontier of vision-language models: A survey of current methodologies 
and future directions. arXiv preprint arXiv:2404.07214.
https://arxiv.org/pdf/2404.07214



Future Directions: Efficient and Domain-Specific Models

● Training Efficiency:
○ Efforts are underway to develop more efficient multimodal models like 

BLIP-2, which surpasses Flamingo-80B with fewer trainable parameters.

● Domain-Specific VLMs:
○ Specialized models such as MedFlamingo and SkinGPT are emerging 

in fields like healthcare, with more progress expected in sectors like 
education and agriculture.

Ghosh, A., Acharya, A., Saha, S., Jain, V., & Chadha, A. (2024). Exploring the frontier of vision-language models: A survey of current methodologies 
and future directions. arXiv preprint arXiv:2404.07214.
https://arxiv.org/pdf/2404.07214



Future Directions: Continuous Learning and Fine-Grained 
Evaluation

Continual Learning:

● Research on models that can learn continuously without retraining from scratch, 
inspired by LLM approaches.

Fine-Grained Evaluation:

● New evaluation metrics for bias and fairness 

Ghosh, A., Acharya, A., Saha, S., Jain, V., & Chadha, A. (2024). Exploring the frontier of vision-language models: A survey of current methodologies 
and future directions. arXiv preprint arXiv:2404.07214.
https://arxiv.org/pdf/2404.07214


