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What does Language Models as Agents mean?

When we talk about language models as agents, we're referring to 
models that can:

● Make decisions
● Interact with external environments (web browsers, APIs, …)
● Perform complex tasks autonomously

Introduction
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Agenda
● Toolformer: Language Models Can Teach Themselves to Use 

Tools 

● ToolLLM: Facilitating Large Language Models to Master 
16000+ Real-world APIs 

● ART: Automatic multi-step reasoning and tool-use for large 
language models

● LLM+P: Empowering Large Language Models with Optimal 
Planning Proficiency 
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Toolformer: Language 
Models Can Teach 
Themselves to Use Tools
Author: Timo Schick et al.

https://arxiv.org/abs/2302.04761
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● What is ToolFormer?
○ A model trained to decide which APIs to call
○ Best incorporates the results into future prediction

An example of ToolFormer
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Why ToolFormer?

● LMs are not designed to handle specialized tasks
○ Temporal inferences
○ Low resource languages

● APIs can be used to aid the LM in places where it lacks knowledge
○ Calculations
○ Search

Motivation
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Why not just a bigger model?

● The most powerful models fail
○ Impossible to be up to date at all times

● Successful model can decide which APIs to call
○ APIs enhance responses

Motivation
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● Flexible Tool Integration
○ Uses diverse set of APIs depending on the context

● Selection Done Self-supervised
○ After a few examples, it can annotate a dataset

Main Contribution



9

Transforming C -> C* takes three steps:
1) Sampling potential API Calls
2) Execute the API Calls
3) Filter API Calls

Method Design
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API name     Input text

Method Design
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Method Design
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● The model samples a position after 400 and makes an API call to 
calculate the percentage

Method Design
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● We can compare the loss of API Calls (more on this later)

Method Design
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Weighted Cross Entropy Loss:

     API Call Threshold:

Method Design
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Loss Example 
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● C* has now been created
○ Now we must finetune the model on this new dataset

● Fine-tuning on C* allows the LM to decide when and how to use each 
tool (API) based on its own feedback.

Method Design
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● Question Answering
○ Factual Information lookup

● Calculator
○ Precise Arithmetic

● Wikipedia Search Engine
○ Get up to date information

● Machine Translation System
○ Language Translation

● Calendar
○ Returns current date

Tools
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● Data: CCNet as the Language Modeling Dataset C
● Language Model M

○ GPT-J
● Fine-tuning

○ Finetune M on C. 
○ Batch size of 128 with lr = 1E-5

● Comparison
○ Compare results with those from GPT 3 and OPT models

● Greedy Decoding

Experiments
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Experiments
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Experiments
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Analysis
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Analysis
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ToolLLM: Facilitating 
Large Language Models to 
Master 16000+ Real-world 
APIs
Author: Yujia Qin et al.

https://arxiv.org/abs/2307.16789
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● Instruction tuning focuses on basic language tasks
● This ignores the complex tool use domain (real time facts, etc.)

Motivation
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● Current solutions have inherent limitations:
1) Limited APIs

a) Fail to involve real world APIs like REST APIs
2) Constrained scenario

a) Only works when instructions are confined to a single tool
3) Inferior Planning and reasoning.

a) Ex: using CoT only. This doesn’t represent the complexity of modern LMs

Motivation
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Method Design 
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Method Design
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Dataset Construction: API Collection

instruction generation:

● API documentation is fed into the model.
● Sampled APIs used to create instructions.
● Relevant APIs are identified to complete complex tasks.
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Set of APIs    Seed examples    (Relevant APIs, 
Instructions)

Dataset Construction: Instruction 
Generation
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● CoT is limited
○ Doesn’t explore total solution space

● Depth First Search Based Decision Tree
○ Can give up and explore a new node

Dataset Construction: Solution Path 
Annotation
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What is a good model?

● Three Levels of Generalization (Focus on Unseen Situations): 
○ Instruction Level:

       unseen instructions for the same set of tools in the training data
○ Tool:

       unseen tools that belong to the same (seen) category of the tools in the training 
data
○ Category Level:

unseen tools that belong to a different (unseen) category of tools in the training 
data

● Three Types of Generalization Tasks (Focus on Task Complexity): 
○ I1 (Single-tool instructions)
○ I2 (Intra-category multi-tool instructions)
○ I3 (Intra-collection multi-tool instructions)

Evaluation
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Tools

● ToolEval:
○ Pass Rate: The percentage of tasks the model successfully completes within certain 

constraints (like limited API calls or time).
○ Win Rate: A comparison between two solution paths (e.g., solutions generated by 

different models). It measures which solution is better based on criteria such as 
accuracy, completeness, and reasoning. ChatGPT is used to evaluate and decide 
which solution is superior.

● NDCG (Normalized Discounted Cumulative Gain):
○ used to evaluate the performance of the API Retriever. NDCG measures how well 

the retriever ranks relevant APIs for a given task. It calculates how closely the 
retrieved APIs match the ground truth (the most appropriate APIs) by assigning a 
relevance score to the top results.

Evaluation
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● ToolLLaMA Model:
○ Fine-tuned LLaMA-2 7B model using the ToolBench dataset.
○ Extended context length to 8192 tokens to handle long API responses.
○ Evaluated on three generalization levels:

■ Instruction Level: Unseen instructions using the same tools.
■ Tool Level: Unseen tools in the same category.
■ Category Level: Unseen tools from different categories.

● Three Task Scenarios:
○ I1: Single-tool instructions.
○ I2: Intra-category multi-tool instructions.
○ I3: Intra-collection multi-tool instructions.

Main experiments
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Results
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Results
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Results
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● ToolLLaMA + DFSDT consistently outperforms ReACT, achieving higher 
pass and win rates across both simple and complex tasks.

● ToolLLaMA demonstrates strong generalization capabilities, effectively 
handling new APIs and instructions, performing close to GPT-4.

● DFSDT is superior to ReACT, especially for complex reasoning tasks 
involving multiple tools.

Results
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● Objective:
○ Test ToolLLaMA’s generalization ability to unseen APIs using the APIBench 

dataset.
○ Compare ToolLLaMA with Gorilla (LLaMA-7B fine-tuned on APIBench).

● Two Retriever Settings:
○ ToolLLaMA + Our API Retriever (used in main experiments).
○ ToolLLaMA + Oracle Retriever (provides exact APIs for task completion).

● Gorilla Settings:
○ Zero-shot (ZS): No API prompts during training.
○ Retrieval-aware (RS): Retrieved APIs included in training prompts.

Out-of-distribution generalization
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Results
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Results
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● ToolLLaMA performs exceptionally well in out-of-distribution (OOD) 
generalization, handling unseen APIs from the APIBench dataset.

● When using the trained API retriever, ToolLLaMA consistently achieves 
low hallucination rates and strong AST accuracy, outperforming Gorilla 
in both zero-shot (ZS) and retrieval-aware (RS) settings.

● With the oracle retriever (which provides exact APIs), ToolLLaMA 
reaches near-perfect AST accuracy, demonstrating its ability to use APIs 
accurately when given the right context.

Results
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ART: Automatic multi-step 
reasoning and tool-use for 
large language models
Author: Bhargavi Paranjape et al.

https://arxiv.org/abs/2303.09014



43

● Challenges with Current LLMs:
○ Limited Multi-Step Reasoning: LLMs struggle with tasks that require 

breaking down complex problems into smaller, intermediate steps.
○ Lack of External Tool Use: LLMs cannot naturally access external 

resources (e.g., search engines, calculators, code execution).

● Chain-of-Thought (CoT) Prompting:
○ requires hand-crafted prompts tailored to each task

1. Introduction
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Overview of ART process:
● ART automatically breaks down complex 

tasks into smaller steps.
● It retrieves similar examples from a Task 

Library.
● Uses external tools from a Tool Library 

(e.g., search engines, code execution).
● Humans can provide feedback to refine or 

correct the process.

1. Introduction
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● Task: the overall problem or objective to be solved.

● Demonstration(or example): a step-by-step solution to a specific task 
stored in Task Library
○ The input (the task or problem).
○ The step-by-step breakdown of how to solve the task (i.e., the 

program or series of actions to be taken).
○ The correct output (the answer or solution to the task).

● Program: the set of instructions that the LLM generates to solve a task.

2. Technologies and Tools 
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● Large Language Models (LLMs): 
○ Uses frozen LLMs (e.g., GPT-3)
○ The model is not retrained but applied as-is to new tasks

● Task Library: 
○ Collection of example tasks (demonstrations)
○ Uses a specific Parsing Expression Grammar (PeG) format to decompose 

tasks
● Tool Library: 

○ Search Engines: For retrieving information like formulas or data.
○ Code Execution Tools: To perform calculations or run small programs 

to solve parts of a problem.

2. Technologies and Tools 
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• Big-Bench: a collaborative benchmark that measures the capabilities and limitations 
of language models.

• Constructing the task library: group tasks in benchmark into the 5 tasks clusters:
– Arithmetic, Code, Search and question decomposition, Free-form reasoning, 

String Operations
– Write programs for few instances in 2-4 tasks from each cluster.

• Program grammar: a query language extends from the Decomposed Prompting 
Format
– Represent decomposed reasoning steps sequentially
– Incorporates function calls to external tools
– A program: task input node(Input:...) + sub-step nodes(Qi:...,#i:...) + answer 

node(Ans:...)(Fig2)

2.1 Task Library
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Triggered when a sub-task query name 
matches a tool name in the task lib.

Seed the tool lib with the following 
tools(fig 2):

• Search: SerpAPI from Google 
search

• Code Generation: Codex model 
from OpenAI

• Code Execution: Virtual Python 
environment with pre-installed 
packages.

2.2 Tool Library
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3. Intro to ART
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1. New Task Description
a. The model examines the task description to understand the problem.

2. Retrieve Similar Tasks from the Task Library
a. ART searches the Task Library for similar examples.
b. The examples (demonstrations) show how to break down similar tasks into smaller steps.

3. Building the Prompt
a. ART uses retrieved examples to build a prompt that guides the LLM.
b. The prompt shows the model how to decompose the new task into smaller steps, and 

may include instructions for using external tools.
4. Program Generation

a. The LLM starts creating a step-by-step solution (program) for the task.
b. Pauses generation whenever a tool is called and resuming generation after that.
c. Tool Use: If the task requires external help (like searching or calculations), ART pauses, 

uses the tool, and integrates the result back into the program.
5. Human Feedback (Optional)

a. Task library: add/correct decomposition demo
b. Tool library: add more tool definitions and use examples

3.1 Process of ART
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3.1 Process of ART
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Explore feedback in the form of debugging: use edit instead of create new 
programs from beginning:

• Correcting sub-step outputs
• Adding/removing sub-steps
• Adding calls to new tools(in the form of dictionary)
• …

3.1 Process of ART - Human Feedback
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3.1 Process of ART - Human Feedback
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● Evaluation Datasets: 
○ 15 tasks from the ART Task Library.
○ 19 new tasks from BigBench for generalization testing.
○ Check cross-benchmark performance:A subset of tasks from MMLU benchmark
○ Compared ART to Toolformer, a model fine-tuned for tool use.

● Baseline models:
○ Few-shot/Direct: LLMs given examples of input-output pairs  without reasoning steps.
○ Auto-CoT: Automatically generates Chain-of-Thought reasoning (step-by-step) but without 

tool use.
○ ART-tool: ART with tool use turned off, to check the gains from using tools.
○ GPT-3 Best: Best published results with manual human supervision and tool use.●  Experiment Setup:
○ Used InstructGPT (GPT-3) as the LLM and Codex for code generation/execution.
○ Temperature set to 0.3 (for focused response generation).
○ 3 seed tasks and 2 demonstrations per task.
○ Results averaged over 5 runs to ensure consistency.

Experiments
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● Task library:
○ Stronger than 

AutoCoT
○ Comparable to 

the best GPT-3 
results

● Test tasks:
○ BigBench test 

tasks
○ Other 

Benchmarks

Results
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LLM+P: Empowering 
Large Language Models 
with Optimal Planning 
Proficiency
Author: Bo Liu et al.

https://arxiv.org/abs/2304.11477
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Large language models:

Good at linguistic competence: HOW to say;
Bad at functional competence: WHAT to say.

• Easily fooled by asking for the solution to a 
problem that requires knowledge about 
how the world works.

• Objective: enable LLMs to solve planning 
problems correctly without altering the 
LLMs themselves.

1. Intro
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2. Preliminary
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A  planning problem P is defined by a tuple
: A finite and discrete set of states

: Defined by the values of a fixed set of variables. 

: A set of goal states which are usually specified as a list of goal 
conditions

: A set of symbolic actions

: The underlying state transition function. Takes the current state and 
action as input and outputs the corresponding next state

2.1 The Classical Planning Problem
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2.1 The Classical Planning Problem

: The solution to P in the form of

Preconditions 
of 

Preconditions 
of 

…
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PDDL serves as a standardized encoding of classical planning problems.

1. Domain PDDL file: Provides a lifted representation of the underlying 
rules of the world. It includes a set of predicates that define the state 
space S   and the actions with their preconditions and effects. 

2. Problem PDDL file: Provides a list of objects to ground the domain, the 
problem’s initial state  S    and goal conditions         .

2.2 Planning Domain Definition 
Language (PDDL)
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A.  Classical Planning:
• Have been widely used in robot systems;
• Use PDDL or answer ser programming(ASP) as the action language;
• Guaranteed to be logically correct;
• Able to find Optimal plans.

B.  Planning with Large Language Models:
• Success in extracting task knowledge and decompose commands or instructions 

for robots in natural language;
• Lack of long-horizon reasoning ability: Ineffective plan;
• Need iteratively querying LLMs.

3. Related Work
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C.  Augmenting LLMs with External Modules:
• Web knowledge
• Human-in-the-loop
• Retrieval-augmented language modeling paradigm
• Calculators(What we are using)

Similar work: LLMs+PDDL+SayCan (dataset): SayCan has a limited scope 
which leads that models achieved high success rate. Also lack domain 
PDDL file leads to infeasible plans.

LLM+P: Does not rely on fine-tuning or re-training of LLMs.

3. Related Work
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A. LLM as a PDDL Writer
Intuition: 
View PDDL as a different language 
than English.

Example:
The generated file appears to have 
the correct PDDL syntax but uses a 
made-up predicate (empty) and 
misses the initial condition that b1 is 
on the table.

4. Method
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B. In-Context Learning:
LLMs’ ability to perform unseen downstream 
tasks by simply conditioning on a few input-
label pairs (demonstrations).

Example:
When the context is included with the prompt 
from the example above, the resulting PDDL 
problem file is directly solvable by the planner.

4. Method
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C. LLM + Classical Planner (LLM + P)

When posed a natural language description of a planning problem, we 
hope the LLM:

1)  Outputs a problem description suitable as input to a general-purpose 
planner; 

2)  Solves the problem using the general-purpose planner; 

3)  Converts the output of the planner back to natural
language (or connects to action executors of a robot).

4. Method
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4. Method

1. Agent is provided with a minimal example;
2. Provided with a new problem P;
3. The LLM then uses the in-context learning to infer the problem PDDL file 

corresponding to P;
4. Feed the problem PDDL file into planner and generate a PDDL plan;
5. LLM translate the PDDL plan back into natural language.
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The assumptions we need for LLM+P are:

1.  A robot knows when to trigger LLM+P based on its conversation with a 
human user; 

2.  A domain PDDL is provided to define the actions that the robot is 
capable of. This specification is task- agnostic — the entities relevant to 
the task are specified in the LLM-generated problem PDDL; 

3.  A simple problem description in natural language and its 
corresponding problem PDDL file are also provided.

4. Method
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1.  How well does LLM-AS-P work? To what extent can state-of-the-art 
LLMs and LLM-based reasoning methods be directly used for planning? 
(Not at all) 

2.  How does LLM+P work compare to LLM-AS-P? (Much better) 

3.  What role does the context play in the success of LLM+P? (It’s crucial) 

4.  Can LLM+P help make service robots more efficient on realistic tasks? 
(Yes)

5. Experiments
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5. Experiments 1
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LLM-AS-P:
• Infeasible plans;
• Lack of inference ability: Completely failed at domain with  complex 

spatial relationship;
• Bad at long-horizon problems: Ignores the requirements, times out, 

cannot keep track of properties.

LLM+P:
• Most failed cases are due to mis-specified problem files;
• Context is important.

5. Experiments 1
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Robot Demonstration:

LLM-AS-P outputs a sub-optimal 
plan which takes the bottle to the 
pantry first and travels back for the 
soup can, with a total cost of 31.

5. Experiments 2
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1.  Combine LLMs with Classical Planners;

2.  Define a diverse set of benchmark problems;

3.  Experiment on these benchmark problems;

4.  Use home robot to solve manipulation task (in natural language);

5.  Limitation: can’t recognize which prompt is suitable for LLM+P.

6. Conclusion
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1.  A good general methodology: leverage classical planners to empower 
large language models with optimal planning capabilities.

2.  Key: Focus LLMs on translating.

Limitation/Future work: 
• When a prompt should be processed by LLM+P;
• Enabling the LLM to auto-detect when and how to apply LLM+P;
• Reducing LLM+P’s dependency on information by humans, potentially 

involving fine tuning.

6. Conclusion
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Future Directions for LLM 
as Agents
Author: Lei Wang et al.

https://arxiv.org/pdf/2308.11432
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● Enhancing Role-playing Capability:
○ Agents need to convincingly simulate specialized roles (e.g., programmer, chemist), 

which requires more fine-tuning with specific role data.
● Generalized Human Alignment:

○ Aligning agents with human values, both positive and negative, is crucial for accurate 
real-world simulations.

● Improving Prompt Robustness:
○ LLMs need more resilient prompts to ensure consistent behavior across complex multi-

step tasks, like planning or memory-based operations.
● Mitigating Hallucination:

○ Reducing LLM-generated false information (hallucinations) is critical, especially in tasks 
requiring high precision (e.g., code generation, security).

● Managing Knowledge Boundaries:
○ Limit LLM’s vast pre-existing knowledge to avoid overly informed agent behavior 

and improve realistic user simulations.
● Boosting Efficiency:

○ Enhancing the speed of LLM responses is essential to ensure agents perform real-
time tasks effectively.

Future Directions for LLM as Agents
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