
Language Models and
Knowledge Graphs

Tong Li, Sunny Yuan, Yiqun Du

Graph neural network basics

Content:

● GNN-LM: language modeling based on global contexts via gnn
● G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question

Answering
● KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning
● Head-to-Tail: How Knowledgeable are Large Language Models (LLMs)?

GNN-LM: LANGUAGE MODELING
BASED ON GLOBAL CONTEXTS VIA

GNN
Meng, Y., Zong, S., Li, X., Sun, X., Zhang, T., Wu,

F., & Li, J. (2021)

gnn-lm: language modeling - arXiv

https://arxiv.org/pdf/2110.08743

https://radical.vc/wp-content/uploads/2024/01/Language-Model-Cohere.png

Language Modeling Background：

● Traditional training of LMs can be viewed as a closed-book
examination

● At inference time, the model does not have access to the training data
and must rely entirely on memorization.

Limitation：Long-tail cases
； Memory limitations

Copying vs. Memorizing：

Open-book examination: LMs should have the ability to "copy" or
reference similar contexts from the training set, even during inference.

Copying is easier than memorizing!

● Introduces the GNN-LM model, which allows the LM to reference
contexts from the entire training corpus by constructing a graph of
related contexts.

● A GNN is then applied to this graph, allowing the LM to aggregate
information from both the input context and retrieved neighbor
contexts.

Overview of the proposed GNN-LM model pipeline：

General LMs:
● LM encodes a sequence of context tokens

-> high dimensional representation h_t
● a transformation matrix/function to estimate the probability of the t-

th token:

Step1: Graph Construction

Define a graph as

 is a collection of nodes v,
 is a collection of edges e.
 is two types of nodes, a_o is the node is within the input c_t,
a_n means the node is in N(c_t).

 is two types of edges, where r_inter means inter-context
connection (from a_n nodes to a_o nodes);
r_intra means intra-context connection (between two nodes of same type).

Step2: Retrieve the neighbors

For an input context c_t, we retrieve k nearest neighbors
of c_t from the training set:

● Use h_t (high-dimensional representation of c_t) to query the cached
representations (obtained by a pretrained LM) of all tokens for training samples

● Distance is measured by the cosine similarity

● retrieve the top K tokens on i -th training sample, and j-th time step.
Then, it is expanded with the left and right window:

Step3: GNN on the constructed graph

Use graph neural networks (GNNs) to aggregate and percolate the token information
based on the graph constructed.

Attention:

Feature:

Aggregate:

GNN feature
propagation and

aggregation

Transformer
attention feature

learn

Step4: kNN based probability for next token

Retrieve the k nearest neighbors

Compute the kNN based probability for the next token:

It extends a vanilla LM by linearly interpolating it with a k-nearest neighbors (kNN) model

Experiments:

For all experiments, we add a 3-layer self-attention augmented GNN on top of the pretrained base
LM, and use the same hidden dimension and number of heads as our base LM. We retrieve k = 1, 024
nearest neighbors for each source token, among them the top 128 neighbors are used in graph, and all
of them are used in computing the kNN-based probability.

Datasets:
WikiText-103, One Billion Word, Enwik8

Main Results:

GNN-LM reduces the base LM perplexity from 18.7
to 16.8.
The combination of GNN and kNN further boosts
the performance to 14.8, a new state-of-the-art
result on WikiText-103.

GNN-kNN-LM helps base LM reduce 0.5
perplexity with only 27M additional
parameters. For comparison, Baevski & Auli
(2018) use 560M additional parameters to
reduce perplexity from 23.9 to 23.0.

GNN-kNN-LM outperforms base LM by 0.03 Bit per Character (BPC),
achieving 1.03 BPC with only 48M parameters, comparable to 18L
Transformer-XL with 88M parameters.

Space Complexity:

● Key Factor: GNN-LM requires significantly more memory than a vanilla language
model (LM) because it constructs a graph with k nearest neighbors for each token
c_i, making the number of nodes in the graph k times larger.

● Memory Mitigation Strategies: Smaller k during initial training; Context truncation

Time Complexity:

● GNN-LM is slower than the base LM, with complexity increasing as k grows. The
overhead comes from kNN retrieval and graph construction, but preprocessing
these can mitigate some of the time cost.

Conclusion:

The paper proposes a new language modeling approach called GNN-LM, which
extends the vanilla neural language model by allowing it to reference similar contexts
from the entire training corpus.

Experiments show that GNN-LM outperforms strong baselines on standard language
modeling benchmarks, and when combined with kNN-LM, it achieves a new state-of-
the-art perplexity on the WikiText-103 dataset.

Improve the efficiency of building the graph and retrieving nearest neighbors in future
work?

G-Retriever: Retrieval-Augmented
Generation for Textual Graph

Understanding and Question Answering

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, Bryan

Hooi

https://arxiv.org/abs/2402.07630
2024

https://arxiv.org/search/cs?searchtype=author&query=He,+X
https://arxiv.org/search/cs?searchtype=author&query=Tian,+Y
https://arxiv.org/search/cs?searchtype=author&query=Sun,+Y
https://arxiv.org/search/cs?searchtype=author&query=Chawla,+N+V
https://arxiv.org/search/cs?searchtype=author&query=Laurent,+T
https://arxiv.org/search/cs?searchtype=author&query=LeCun,+Y
https://arxiv.org/search/cs?searchtype=author&query=Bresson,+X
https://arxiv.org/search/cs?searchtype=author&query=Hooi,+B
https://arxiv.org/search/cs?searchtype=author&query=Hooi,+B
https://arxiv.org/abs/2402.07630

Introduction

Context:

● Large Language Models (LLMs) have reshaped AI, especially in handling complex tasks.
● Many real-world datasets have graph structures, such as the Web, e-commerce platforms,

and knowledge graphs.

Challenge:

● Previous approaches combining LLMs and Graph Neural Networks (GNNs) mainly focus on:
○ Conventional graph tasks (node/edge classification).
○ Simple questions on small, synthetic graphs.

● Need for handling real-world textual graphs with both graph structure and textual data.

Related Work

- Graphs and Large Language Models
- Research spans from designing general graph models to multi-modal architectures.

- Retrieval-Augmented Generation (RAG)
- Proposed by Lewis et al. [21], RAG helps mitigate hallucination issues in LLMs and

enhances trustworthiness and explainability of model outputs.
- Parameter-Efficient Fine Tuning

- Help optimize LLM performance with minimum parameter training
- Important methods

- Prompt tuning
- Prefix tuning
- LoRA

G-Retriever: Key Contributions

● Enabling ‘Chat with Your Graph’.
● Introducing A Novel GraphQA Benchmark with data collected from

different tasks.
● Pioneering the integration of Graph RAG by introducing G-Retriever
● Empirical Findings.

“Chat with your Graph”

We develop a flexible question-answering framework targeting real-world
textual graph applications via a unified conversational interface.

Example of Real-
world Textual Graph

GraphQA Benchmark
- Data format

- A textual graph, a question related to the graph, and one or more corresponding answers

GraphQA Benchmark
- Overview of datasets

G-Retriever Architecture

Overview:

● Indexing: Initial storage and embedding of graphs.
● Retrieval: Use of RAG to select relevant subgraphs.
● Subgraph Construction: Prize-Collecting Steiner Tree for effective retrieval.
● Answer Generation: Using LLMs to generate responses.

Indexing
Graphs are indexed for efficient query processing.

We generate node and graph embeddings using a pre-trained LM, and then store
these embeddings in a nearest neighbor data structure.

Retrieval

The most semantically relevant nodes and edges are retrieved, conditioned on the query.

Subgraph Construction

This step aims to construct a subgraph that encompasses as many relevant nodes and
edges as possible while keeping the graph size manageable.

Used Prize-Collecting Steiner Tree algorithm to identify optimal size and subgraph.

Prize-Collecting Steiner Tree algorithm (PCST)

Aims to find a connected subgraph that maximizes the total prize values of its
nodes while minimizing the total costs of its edges.

Answer generation
Graph Encoder, Projection Layer, Text Embedder, LLM Generation with Graph Prompt Tuning

Experimental Results

Effectiveness Evaluation

Experiment results

Efficiency Evaluation

Halucination

Ablation study

Mitigate Hallucination

KG-BART: Knowledge Graph-Augmented BART for
Generative Commonsense Reasoning

Ye Liu, Yao Wan, Lifang He, Hao Peng, Philip S. Yu

https://arxiv.org/abs/2009.12677

https://arxiv.org/search/cs?searchtype=author&query=Liu,+Y
https://arxiv.org/search/cs?searchtype=author&query=Wan,+Y
https://arxiv.org/search/cs?searchtype=author&query=He,+L
https://arxiv.org/search/cs?searchtype=author&query=Peng,+H
https://arxiv.org/search/cs?searchtype=author&query=Yu,+P+S
https://arxiv.org/abs/2009.12677

Pain points of state-of-the-art pre-trained language
generation models

● Ignoring knowledge information
● Failing to generate output towards capturing the human commonsense

Figure 1: An example of the
generation outputs of our
KGBART model (blue dotted
box) and the existing models
without knowledge graph
augmentation (red dotted
box)

The solution

● Use knowledge graph to augment pre-trained language generation model
:BART

○ To encompass the complex relations of concepts
○ To produce more logical and natural sentences
○ To enhance the model generalization on unseen concept sets

● Effectiveness:
○ Outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4
○ Can work as background scenarios to benefit downstream commonsense QA tasks

The methodology

● Two steps
○ Knowledge graph grounding

■ Constructing two KGs: concept-reasoning graph (referred to as GR) and concept-
expanding graph (referred to as GE)

○ Graph-based encoder-decoder modeling
■ Incorporating the grounded KGs into the state-of-the-art pre-trained language generation

model BART

Knowledge graph notations

● V: the set of entities
○ vi ∈ V (subject)
○ vj ∈ V (object)

● rij ∈ R: relation between concepts
● edge eij ∈ E: (vi , rij , vj)

Concept reasoning graph(GR)

● Consisting of all concept triplets
● Used in the the encoding phase

●
● N (v^R) characterizes the neighborhood relationship between concept (v^R)

and its adjacencies in the KG database
● Enrich the graph with adjunct information

Concept expanding graph(GE)

(climb) --requires--> (gear)
(climb) --associated with-->(outdoor activity)
(mountain) --isA--> (natural formation)

(climb) --requires--> (gear)
(climb) --associated with--> (outdoor activity)
(climb) --similar to--> (hiking)
(mountain) --isA--> (natural formation)
(mountain) --related to--> (snowy)
(mountain) --similar to--> (hill)

Grounding: constructing GR and GE

1. Match the concept set to the entities from KG to generate GR
2. Couple GR with the association of selected neighboring nodes with each

concept in KG to from GE
a. Ranking the neighboring nodes of each concept according to the word similarity scores
b. Selecting their potential top-k neighboring nodes adding to GR
c. Pre-trained GloVe embedding

3. TranSE: Translation Embedding
a. A popular model for knowledge graph embeddings
b. For each triplet, TranSE assumes that the relation r is a translation vector between vi and in vj

in the embedding space, so that:
i. Vi + r ≈ Vj

An Overview of KG-BART

● Traditional textual Transformer
encoder module

○ to represent the contextual
information of each token

● KG-augmented Transformer
module based on graph attention
mechanism

○ to integrate the entity-
oriented knowledge
information into token
representation.

● Textual Transformer decoder
module

● KG-augmented Transformer
decoder module

● Integrates the input token embeddings
{x1, . . . , xn}, which is the output of the
textual encoders, as well as the
embedding of GR to update the token
representation as

● Incorporates graph representations into
the neural encoding process via a graph-
informed attention mechanism

Encoder

1. Grouping the subwords for each concept
a. BART models each token as subwords, unlike GPT
b. because concepts in the KG are at word-level

2. Applying convolutional neural network (CNN) (Kim 2014) with
a max-pooling layer

a. To efficiently obtain the representation in word-level
b. Concept Ci is made up of a sequence of subwords {x1,

x2, . . . , xm},
c. Conv1D layer: (‘L’ here is the sequence length of a

window)

a. Max-pooling layer:

a. Final word-level textual embedding of concept:

Encoder:Subword to Concept Integration (SCI)

● Iteratively update the representations for each concept
V^R_i through its neighbors N^R_i

● Notations:
○ Word Word-level hidden state H:

concatenation of the word embedding e^w and the
graph-based embedding transformed by a weight
matrix W

○ aij -> attention weights:

●
Efeffefefef

○ Updating hidden state of node i using message
passing

○ Concatenating the attention embeddings from
different heads

○ Wa,We,Wr,Wq,Wk and Wv are trainable weights

Multi-Head Graph Attention (MGAT)

● Disintegrating the concept to the subword-level
● Upsampling word-level hidden state with (m−l+1) times (the

length before MaxPooling)
● Utilizing a Deconv1D layer with vector Z = [z0, . . . , zl] ∈

R^(1×l) used in Conv1D to form the Deconv1D matrix ZD ∈
R^(m×(m−l+1)) to get the subword-level hidden state ui

● A two-layer feed-forward
network with GeLU
activation function and a
residual layer normalization
to get final output

Concept to Subword Disintegration (CSD)

● Incorporating hierarchical graph structure
into the decoding process to capture the
relations between concepts and their
neighboring nodes

● Using Multi-Head Hierarchical Graph
Attention (MHGAT) to obtain the updated
concept embeddings

● The final decoder output is
○ The attention between the encoder

hidden state x^o and the previously
generated token hidden state y

○ The attention between the updated
concept embeddings v^(R’’) and the
previously generated token hidden
state y

○ Concatenating of the two attention
with a residual connection

● y^o is used to predict the token
sequence:

Decoder

● The first layer of hierarchical graph attention is
to update the concept node through its
inter-concept neighboring nodes N N i with
relation embedding

● The second graph attention layer updates the
concept representation considering the intra-
concept relations

Multi-Head Hierarchical Graph Attention (MHGAT)

KG-BART Model Pre-Training

● Similar to BART
● Corrupting texts and then optimizing a reconstruction loss, the cross-entropy,

between the decoder’s output and the original texts
● For example, “[mask] wound [mask] teach soldier” in the encoder and

“student wound treat teach soldier” in the decoder

The experiment

● Dataset:
○ CommonGen
○ Testing the ability of machines on commonsense reasoning when generating a text
○ 77k commonsense descriptions over 35k unique concept sets

Results

Table 2: Experimental results of different baseline methods on the CommonGen test dataset. We show
the best results in boldface, and those with the second best performance are underlined

● Automatic metrics to
automatically assess the
performance

● BLEU, ROUGE and METEOR
mainly focus on measuring
ngram similarities between
model output and reference
descriptions

● CIDEr and SPICE focus on
evaluating the associations
between mentioned concepts
instead of n-gram overlap:
content relevance and accuracy
with respect to a structured
knowledge source

● Coverage of concepts

Human evaluations

(1) Rationality: is the sentence
the reasonable commonsense
scenario? (2) Fluency: is the
sentence fluent and grammatical?
(3) Succinctness: does the
sentence avoid repeating
information? (4) Naturalness: does
the sentence use adjunct words?

KG-BART encoder can capture the better relationship between
concepts

● Related concept pairs in
KG-BART attend much
more attention

Transfer KG-BART to Commonsense QA

● Extracting the nouns and verbs in questions and five choices, and combine
the concepts of question q and each choice ci to build concept sets

● For example, q=“What would you do if you want to be able to earn money?”,
ci=“apply for job” (correct) with gi=“applying for a job so i would earn money.”;
cj=“stand in line” (wrong) gj=“i would want to earn money standing in line to
get a deal on a product.”

● More reasonable and natural sentences for correct choices while noisy
sentences for wrong choices

Conclusion

● KG-augmented approach KG-BART is based on pre-trained BART for
generative commonsense reasoning

● KG-BART can generate high-quality sentences even in the unseen concept
sets

● KG-BART has better abilities of both commonsense reasoning and text
generalization

● Paper published in 2021, at the time data-driven conversational agents like
Apple’s Siri, Google Assistant and Amazon’s Alexa are struggling at achieving
the ability of commonsense reasoning on generating the human-like
responses

Head-to-Tail: How Knowledgeable are Large Language Models
(LLMs)?

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, Xin Luna Dong

https://arxiv.org/abs/2308.10168

https://arxiv.org/search/cs?searchtype=author&query=Sun,+K
https://arxiv.org/search/cs?searchtype=author&query=Xu,+Y+E
https://arxiv.org/search/cs?searchtype=author&query=Zha,+H
https://arxiv.org/search/cs?searchtype=author&query=Liu,+Y
https://arxiv.org/search/cs?searchtype=author&query=Dong,+X+L
https://arxiv.org/abs/2308.10168

Overview

● Head-to-Tail: a benchmark that consists of 18K question-answer (QA) pairs
regarding head, torso, and tail facts in terms of popularity

● Context: the rise of LLMs has sparked debates on whether Knowledge
Graphs (KGs), which store real-world factual knowledge in triplet form
(subject, predicate, object), will be replaced with LLM

● Trying to answer How knowledgeable are LLMs

● How reliable are LLMs in answering factual
questions?

● Do LLMs perform equally well on head, torso, and tail
facts?

● Does normal methods that improve LLMs increase
the factuality?

● Motivation
○ hard to directly “query” the knowledge

embedded in an LLM
○ No ready to use benchmark that well

represents user interest and uniform distribution
of world knowledge

● Contribution
○ A benchmark to test knowledge
○ Evaluation method and metrics
○ Comprehensive evaluation of 16 LLMs

Domains

Selected three domains along with a KG where public data are easily accessible.

● DBpedia knowledge graph, where the knowledge originates from Wikipedia
(English snapshot from December 1, 2022.2).

● Movie: We used a snapshot of IMDb3 from May 21, 2023.
● Book: We used the data of Goodreads scraped in 2017 released by Wan and

McAuley (2018).
● Academics: We used a snapshot of MAG (Sinha et al., 2015) from September

13, 2021 and DBLP4 from May 10, 2023.

Head, torso and tail entities

● Decided by the popularity of the entities
● Two ways to approximate popularity: traffic and density

○ Traffic: views and votes
○ Density: the number of facts or authored works about the entity
○ When there is traffic information, we conveniently use traffic to measure the popularity
○ Head entities comprising entities whose cumulative popularity score is up to 1/3 of that of all

entities, torso entities comprising entities with cumulative scores ranging from 1/3 to 2/3, and
tail entities from 2/3 to 1

○ A specific movie vs more niche topics

Questions generation

● Generating questions using a template-based approach, where each generated question asks for an
attribute of an entity

● Filtering out the following types of attributes: (i) unspecific (ii) dynamic (e.g., lastLaunchRocket in
DBpedia), (iii) data source specific (e.g., averageRating in IMDb), and (iv) non-textual (e.g., picture
in DBpedia)

Question generation(cont’d)

● For each specific domain: ∼1K
questions for each of the head, torso,
and tail buckets.

● DBPedia: ∼3K questions for each
bucket. T

Metrics

● Accuracy (A), hallucination rate (H), and missing rate (M)
● Models are prompted to reply with “unsure” for uncertain answers
● Models are prompted to reply with concise answers
● A + H + M = 100%.
● Judging tools:

○ LLM-based
○ Rule-based(i.e. Exact match/average normalized longest common subsequence)
○ Variants given

■ (e.g., “W Shakespeare” is a variant of “William Shakespeare”)

Experiment Analysis

RQ1: How reliable are LLMs in answering factual questions?

● GPT-4 and ChatGPT give unsure or empty
answers for the majority of them, and the
hallucination rate is <20% (still non-negligible)

● LLaMA-33B mostly provides hallucinated
answers

● The overall performance varies substantially
across different specific domains

RQ2: Do LLMs perform equally well on head, torso, and tail facts?

● The overall accuracy of GPT-4 and
Llama 2-70B (ALM) declines in the
order of head, torso, and tail entities

● The same pattern is seen in other
LLMs

RQ3: Does normal methods that improve LLMs increase the factuality

● Increased model size does not automatically
translate to a better grasp of factual knowledge

● The instruction-tuned counterparts (i.e., Vicuna
and Falcon-Instruct) have lower accuracy

○ More conservative in providing factual
answers

Robustness of the evaluation methodology

● Correlations between rule- and LLM-based metrics are high, indicating the
rule based metrics are good alternative

● Removing “unsure” and “brief” increases hallucination rate
● In-domain example prompt help get more correct answers, compared to zero

shot and few shot

Conclusion

● The amount of this encoded knowledge in LLMs remains limited
● Mediocre QA accuracy for popular entities
● Torso-to-tail and recent knowledge is best to be represented by KG
● New research areas need to seamlessly blend knowledge in the symbolic

form and neural form

Future Work

Future Work for LLMs in Graph Processings

1. LLMs for Multi-modal Graphs: Integrate multi-modal data (text, images, audio) with
graph models for comprehensive understanding and reasoning.

2. Efficiency and Computational Cost: Develop efficient strategies to reduce training
and inference costs for large-scale graph data, especially when combining LLMs with
GNNs.

3. Tackling Complex Graph Tasks: Expand LLM applications beyond traditional tasks
like link prediction and node classification to more generative and understanding tasks
such as graph generation and graph-based QA.

4. User-Centric Agents on Graphs: Design interactive, adaptive LLM agents for multi-
run tasks, capable of handling a variety of user inputs with iterative feedback and
dynamic adjustments.

