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Graph neural network basics

The structure of a graph neural network
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Content:

e GNN-LM: language modeling based on global contexts via gnn

e G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question
Answering

e KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning

e Head-to-Tail: How Knowledgeable are Large Language Models (LLMs)?



GNN-LM: LANGUAGE MODELING
BASED ON GLOBAL CONTEXTS VIA
GNN

Meng, Y., Zong, S., Li, X., Sun, X., Zhang, T., Wu,
F., & Li, J. (2021)

gnn-Im: language modeling - arXiv



https://arxiv.org/pdf/2110.08743

Language Modeling Background:

Text input

Traditional training of LMs can be viewed as a closed-book
examination
At inference time, the model does not have access to the training data

and must rely entirely on memorization.
Text output
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Limitation: Long-tail cases
; Memory limitations
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Numeric representation of text
useful for other systems
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Copying vs. Memorizing:

Open-book examination: LMs should have the ability to "copy" or
reference similar contexts from the training set, even during inference.

Copying is easier than memorizing!

e Introduces the GNN-LM model, which allows the LM to reference
contexts from the entire training corpus by constructing a graph of
related contexts.

e A GNN is then applied to this graph, allowing the LM to aggregate
information from both the input context and retrieved neighbor
contexts.



Overview of the proposed GNN-LM model pipeline:
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General LMs:
e LM encodes a sequence of context tokens c; = (wy, ws, ..., w;_1)
-> high dimensional representation h t
e a transformation matrix/function to estimate the probability of the t-

th token: p(w¢|cy) = softmax(W h;)



Step1: Graph Construction

Define a graph as G=WEAR,T, Q)

V 1s a collection of nodes v, [ The ]i movie ]i s |

8 1s a collection of edges e. a QG _.-""ap =~
A = {ao,a,} 1s two types of nodes, a_o is the node is W1th1n the input c t,
a_n means the node is in V(¢ t). (Tmovies J( are )(_bad (e ) (o ) (s )

R = {Tiner, Tinwra} is two types of edges, where r_inter means inter-context

connection (from a_n nodes to a_o nodes);
r_intra means intra-context connection (between two nodes of same type).



Step2: Retrieve the neighbors

For an input context ¢_t, we retrieve k nearest neighbors N (c;) = {V, ...,y
of c_t from the training set:

e Use h_t (high-dimensional representation of ¢_t) to query the cached
representations (obtained by a pretrained LM) of all tokens for training samples

e Distance is measured by the cosine similarity

e retrieve the top K tokens {wj(")} on i -th training sample, and j-th time step

Then, it is expanded with the left and right window:
Neighbor | ¢: This movie is great .

Contexts | ¢®:Those movies are bad .

¢®: This movie is what | like.
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Step3: GNN on the constructed graph

Use graph neural networks (GNNs) to aggregate and percolate the token information
based on the graph constructed.

Attention:
K(s) = Wk bl Qn) = Wi Rl Transformer
. 1 I (r(s) b(e).r(n attention feature
Attention(s, e, n) = ECXP< (s ) 2 (n )T‘ al )f/(a) ( )))’ learn
7 — Z Attention(s’, €', n),
s’eN(n),e’'€g(e)
Feature: [i— 1]
Feature(s, e,n) = WZ h; B(e GNN feature
propagation and
: aggregation
Aggregate: Aggregate() = W, ( ® )(Attentlon(s e, n) - Feature(s, e,n))) ggreg
VseN(n




Step4: kNN based probability for next token

1
Retrieve the k nearest neighbors N(e:) = {Cgl )7 » Ct, )}

Compute the kNN based probability for the next token:

p(we|ey) = )\pkNN('wt|ct) + (1 = N)pm(welee),

pnn(wilet) = 7z Z]I r=w? €Xp (COS(f(Ct) f(e (z)))/T)

It extends a vanilla LM by linearly interpolating it with a k-nearest neighbors (kNN) model



Experiments:

For all experiments, we add a 3-layer self-attention augmented GNN on top of the pretrained base
LM, and use the same hidden dimension and number of heads as our base LM. We retrieve k = 1, 024
nearest neighbors for each source token, among them the top 128 neighbors are used in graph, and all
of them are used in computing the kKNN-based probability.

Datasets:
WikiText-103, One Billion Word, Enwik8&



Main Results:

Model #Param Test ppl (J,) Model #Param Test ppl (J«)
Hebbian + Cache (Rae et al., 2018) 151IM 29.9 LSTM+CNN (Jozefowicz et al., 2016) 1.04B 30.0
Transformer-XL (Dai et al., 2019) 25T™ 18.3 High-Budget MoE (Shazeer et al., 2016) 5B 28.0
Transformer-XL + Dynamic Eval (Krause et al., 2019)  257M 16.4 DynamicConv (Wu et al., 2018) 0.34B 26.7
Compressive Transformer (Rae et al., 2019) - 17.1 Mesh-Tensorflow (Shazeer et al., 2018) 4.9B 24.0
KNN-LM + Cache (Khandelwal et al., 2019) 257M 15.8 Evolved Transformer (Shazeer et al., 2018) . 28.6
Sandwich Transformer (Press et al., 2020a) 247TM 18.0 Transformer-XL (Dai et al., 2019) 0.8B 21.8
Shortformer (Press et al., 2020b) 247M 18.2 Adapgve inputs (base) (Baevsk1.& Auh., 2018) 0.36B 252
SegaTransformer-XL (Bal et al., 2021) 257M 17.1 Adaptlve nputs (large) (Bacvsk1 & Auli, 2018) 0.46B 23.9
Routing Transformer (Roy et al., 2021) - 15.8 base LM (Baevski & Auli, 2018) 1.03B 23.0
[base LM (Baevski & Auli, 2018) 24M____187 | PPN s 28

+GNN 274M 16.8 [ +GNN+kNN 1.05B 25 |
| +GNN+kNN 274M 14.8 |

Table 2: Test perplexity on One Billion Word dataset.
Table 1: Test perplexity on WikiText-103 dataset.

GNN-LM reduces the base LM perplexity from 18.7 GNN-KNN-LM helps base LM reduce 0.5

to 16.8. perplexity with only 27M additional

The combination of GNN and kNN further boosts parameters. For comparison, Baevski & Auli
the performance to 14.8, a new state-of-the-art (2018) use 560M additional parameters to

result on WikiText-103. reduce perplexity from 23.9 to 23.0.



Model #Param BPC (])

64L Transformer (Al-Rfou et al., 2019) 235M 1.06
| 18L Transformer-XL (Dai et al., 2019) 88M 1.03 |

24L Transformer-XL (Dai et al., 2019) 27TM 0.99
24L Transformer-XL + Dynamic Eval (Krause et al., 2019)  277M 0.94
Longformer (Beltagy et al., 2020) 102M 0.99
Adaptive Transformer (Sukhbaatar et al., 2019) 209M 0.98
Compressive Transformer (Rae et al., 2019) 27TM 0.97
Sandwich Transformer (Press et al., 2020a) 209M 0.97
12L Transformer-XL (Dai et al., 2019) 41M 1.06
+kNN 41M 1.04
+GNN 48M 1.04

| +GNN+kNN 48M 1.03 |

Table 3: Bit per Character on the Enwik8 dataset.

GNN-kNN-LM outperforms base LM by 0.03 Bit per Character (BPC),
achieving 1.03 BPC with only 48M parameters, comparable to 18L
Transformer-XL with 88M parameters.



Space Complexity:

e Key Factor: GNN-LM requires significantly more memory than a vanilla language
model (LM) because it constructs a graph with k nearest neighbors for each token
c_i, making the number of nodes in the graph k times larger.

e Memory Mitigation Strateaias: Smaller k durina initial trainina* Context triincation
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Time Complexity:

e GNN-LM is slower than the base LM, with complexity increasing as k grows. The
overhead comes from kNN retrieval and graph construction, but preprocessing
these can mitigate some of the time cost.



Conclusion:

The paper proposes a new language modeling approach called GNN-LM, which

extends the vanilla neural language model by allowing it to reference similar contexts
from the entire training corpus.

Experiments show that GNN-LM outperforms strong baselines on standard language
modeling benchmarks, and when combined with KNN-LM, it achieves a new state-of-
the-art perplexity on the WikiText-103 dataset.

Improve the efficiency of building the graph and retrieving nearest neighbors in future
work?
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Introduction

Context:

e Large Language Models (LLMs) have reshaped Al, especially in handling complex tasks.
e Many real-world datasets have graph structures, such as the Web, e-commerce platforms,
and knowledge graphs.

Challenge:

e Previous approaches combining LLMs and Graph Neural Networks (GNNs) mainly focus on:
o Conventional graph tasks (node/edge classification).
o Simple questions on small, synthetic graphs.

e Need for handling real-world textual graphs with both graph structure and textual data.



Related Work

- Graphs and Large Language Models

Research spans from designing general graph models to multi-modal architectures.

- Retrieval-Augmented Generation (RAG)
Proposed by Lewis et al. [21], RAG helps mitigate hallucination issues in LLMs and
enhances trustworthiness and explainability of model outputs.

- Parameter-Efficient Fine Tuning
- Help optimize LLM performance with minimum parameter training
- Important methods
- Prompt tuning

- Prefix tuning
-  LoRA



G-Retriever: Key Contributions

e Enabling ‘Chat with Your Graph'.

e Introducing A Novel GraphQA Benchmark with data collected from
different tasks.

e Pioneering the integration of Graph RAG by introducing G-Retriever

e Empirical Findings.



“Chat with your Graph”

We develop a flexible question-answering framework targeting real-world

tavhiinl Aaranh annlinratinne vvin a 11nifiaAd A~rAnviareatinnal intarfara

GraphQA

New Architecture
G-Retriever

Techniques
Retrieval Augmented Generation
Graph Prompt Tuning
Graph Textualization
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Write a 500-word argument essay based on the
information provided in the explanation graph.

The explanation graph provides a detailed analysis of
the reasons why women undergo cosmetic surgery.
According to the graph, the main reasons include the
desire to change one's appearance, the influence of
societal beauty standards, and the addiction to
searching for perfection. These reasons are further
supported by the various nodes and edges in the
graph, which provide additional insights into the
motivations and consequences of cosmetic surgery.
Firstly, the node labeled "human" highlights the
fundamental human desire to feel attractive and
confident in one's appearance...

Scene Graph
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Write an 500-word advertisement for this place in the
scene graph that would make people want to visit it.

grass

Sure! Here's an example of a 500-word advertisement
for the place based on the scene graph:

"Experience the breathtaking beauty of our place,
where the rolling hills meet the sparkling water of the
swimming pool. Take a leisurely stroll through the
lush green fields, and let the gentle breeze caress
your face as you gaze out at the picturesque view. The
sheep graze peacefully in the distance, their white
coats glistening in the sunlight. The sky is a brilliant
blue, with fluffy white clouds drifting lazily across.
Come and bask in the serene ambiance of our place,
where the natural beauty will leave you in awe."

L

\ J

f Knowledge Graph
lighting rod
inventor

inventions
franklin
nventions stove
benjamin franklin

What else did ben franklin invent?

Surrounding this question, develop an educational
tour through the knowledge graph, highlighting
interesting facts and connections in an engaging way.

Great! Based on the provided knowledge graph,
here's an educational tour that highlights interesting
facts and connections related to Benjamin Franklin's
inventions and other notable achievements:

1. Franklin's Lightning Rod: Start by exploring
Franklin's most famous invention - the lightning rod.
Discover how Franklin's invention protected buildings
from lightning strikes and how it changed the way
people understood electricity...




Example of Real-
world Textual Graph

Explanation Graph
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_____________________________

Write a 500-word argument essay based on the
Jnformation provided in the explanation graph.

»

I

The explanation graph provides a detailed analysis of
the reasons why women undergo cosmetic surgery.
According to the graph, the main reasons include the
desire to change one's appearance, the influence of
societal beauty standards, and the addiction to
searching for perfection. These reasons are further
supported by the various nodes and edges in the
graph, which provide additional insights into the
motivations and consequences of cosmetic surgery.
Firstly, the node labeled "human" highlights the
fundamental human desire to feel attractive and
confident in one's appearance...
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GraphQA Benchmark

- Data format
- Atextual graph, a question related to the graph, and one or more corresponding answers

1 Arguement 1: Women should not be in combat.

\ Arguement 2: Women and men have the same rights.

: Question: Do argument 1 and argument 2 support or counter each other?
1+ Answer in one word in the form of 'support' or 'counter’.

Question: Is there a woman to the right of the person behind the
computer?

Question: what is the name of justin bieber brother

Answer Answer Answer

. Explanation Graph E . Scene Graph E . Knowledge Graph
1 1 1
: v person -
' B . sitting o sibling s
. - to the right of in front of "y
- causes ciises [ IVATONtO [ children
1 : 1 : '
1 1 '
: 2 |
1 1 1
| [ v,
: Textualized Graph = Textualized Graph Do Textualized Graph
1 1
E node_id, node_attr src, edge_attr, dst . E node_id, node_attr . E node_id, node_attr src, edge_attr, dst
0, women and men 0,isa,1 ' 1 2, name: computer; (x,y,w;h): (8, 119, 34, 32) t 1 15, justin bieber 15, people.person.parents, 356
. 1, citizens _ 1, causes, 2 i) 3, name: person; attribute: sitting; (x,y,w;h): (169, 75, 49, 40) i1 294, jaxon bieber 15, people.person.sibling_s, 551
: 2, have same rights 2, causes, 3 . ! 15, name: woman; (x,y,w,h): (255, 18, 235, 292) . ! 356, jeremy bieber 356, people.person.children, 294
' 3, women 3, capable of, 4 ! 1 sre, edge_attr, dst ' 1 551, m.Ogxnnwp 551, people.sibling_relationship.sibling, 294
. 4, help the country 4, desires, 5 i 1 15, to the right of, 3 v
' 5, be in combat : ! 2, in front of, 3 . d
. Question . Question i Question
| ¥ B
[ '
[ '
[ L |
oy Yo
[ '
[ '
[ '
[ Yo
[ L |
[ '
[ '

1
1
1
1
\  counter

jaxon bieber



GraphQA Benchmark
- Overview of datasets

Table 2: Summary of datasets used in GraphQA benchmark.

Dataset ExplaGraphs SceneGraphs WebQSP
#Graphs 2,766 100,000 4,737

Avg. #Nodes 5.17 19.13 1370.89

Avg. #Edges 4.25 68.44 4252.37

Node Attribute Commonsense concepts Object attributes (e.g., color, shape) Entities in Freebase
Edge Attribute Commonsense relations Relations (e.g., actions, spatial relations) Relations in Freebase

Task Common sense reasoning Scene graph question answering Knowledge based question answering

Evaluation Matrix

Accuracy

Accuracy Hit@1

Children Factory

I Farming Milllon;
ol e Cramaic hascontext , - desires
Surgery l 'food’)
______ -
\ S weisen context

’ \
» Still Developing
N -

= <~ has
not capable of » Imponan: \HW (Neeessar!)‘/
» Decision it e
w:i;n'
v
Consequences
Both Beliefand ~ ~ * Commonsense Only Belief ~ Only Argument
Argument ‘' Concept Concept .~ Concept

An Explanation Graph Generation Task for
Structured Commonsense Reasoning

[[’FedEx Cup’, ’sports.sports_award_type.winners’, 'm.Onlv8cy’],

[’Brandt Snedeker’, ’sports.sports_award_winner.awards’, 'm.On1v8cy’],
[’FedEx Cup’, ’common.topic.article’, 'm.08q5wy’],

[’FedEx Cup’, ’common.topic.notable_for’, ’g.12559n8g_’],

[’Sports League Award Type’, *freebase.type_profile.published’, *Published’],
[’FedEx Cup’, ’common.topic.notable_types’, ’Sports League Award Type’],
[’m.Onlv8cy’, ’sports.sports_award.award_winner’, ’Brandt Snedeker’],
[’Sports League Award Type’, "type.type.expected_by’, *Award’],

[’Sports League Award Type’, ’common.topic.article’, 'm.06zxtxj’],

[’2012 PGA Tour’, ’sports.sports_league_season.awards’, 'm.On1v8cy’],
[’Sports League Award Type’, *freebase.type_hints.included_types’, *Topic’],
[’Sports League Award Type’, "type.type.domain’, ’Sports’],

[’m.Onlv8cy’, ’sports.sports_award.award’, ’FedEx Cup’],

[’Sports League Award Type’, ’freebase.type_profile.strict_included_types’,
*Topic’],

’Sports Leasue Award Tvpe’. freebase.tvpe profile kind’. ’Classification’].



G-Retriever Architecture

Overview:

Indexing: Initial storage and embedding of graphs.

Retrieval: Use of RAG to select relevant subgraphs.

Subgraph Construction: Prize-Collecting Steiner Tree for effective retrieval.
Answer Generation: Using LLMs to generate responses.



Indexing
Graphs are indexed for efficient query processing.

We generate node and graph embeddings using a pre-trained LM, and then store
these embeddings in a nearest neighbor data structure.

e Step 1: Indexing -----------.

producer

: all bad canada ———node attributes
album”™ x
e ~ jeremy nationality LM % > Zn
: : —paren bieber ~— .. : o
blebeir - ch11dren\) jaxon L
: ibli bieber : Lo
i professionSIbhng\ sibling/ 4 : Do
1 - . 1 z I :
; gender—edge attributes LM * 3 e |
: m.0gxnnwp ¥ L
: record :
' male



Retrieval

The most semantically relevant nodes and edges are retrieved, conditioned on the query.
Vi, = argtopk,, .y, c0s(2q, 2n)
E}, = argtopk, . i cos(zq, 2e),

Question: What is the name ___,[ LM *]———» Zq

. of justin bieber brother?

Storage

justin bieber, this is justin bieber, jeremy bieber.
Vi = argtopk, .y cos (24, 2 . ’ ’ ’
k 8YOP%nev ( q’ n) justin bieber fan club, justin ...

. By = argtopk, g cos (2, z.) sibling, sibling_s, hangout, friendship, friend ...



Subgraph Construction

This step aims to construct a subgraph that encompasses as many relevant nodes and
edges as possible while keeping the graph size manageable.

Used Prize-Collecting Steiner Tree algorithm to identify optimal size and subgraph.

R —— I ..........................................................................................................
1 1
! 1
! 1
! 1
! 1

jerem * : :
justin __parent—> Jbiebef S* = argmax Z prize(n) + Z prize(e) — cost(.9)
bieber . SCG, neVg ecEg
ww childrer S is connected
sibling
\ m.0gxnn —sibling—\; el
N bieber

S —— Step 3: Subgraph Construction ---------------------sceoceoo



Prize-Collecting Steiner Tree algorithm (PCST)

Aims to find a connected subgraph that maximizes the total prize values of its
nodes while minimizing the total costs of its edges.

. k —1, ifn € Vi and n is the top ¢ node,
= 6
PSR {0, otherwise. (©)
S* = argmax Z prize(n) + Z prize(e) — cost(S), (7)
S isscgnfe,ctednevs e€ls
where
cost(S) = |Eg| x C, (8)

and C, denotes a predefined cost per edge, which is adjustable to control the subgraph size.



Answer generation

Graph Encoder, Projection Layer, Text Embedder, LLM Generation with Graph Prompt Tuning

e Step 4: Generation -l

E % frozen '
¢) trainable jaxon bieber
‘ A A '
: T T T v v node id, node attr ) ;
E 15, justin bieber ,
E LLM * 294, jaxon bieber - nodes of §* |
: (Self Attention Layers) 356, jeremy bieber
\ 551, m.0gxnnwp ) :
' src, edge attr, dst )
294, parents, 356 .
] y Y y Y y Y y Y y Y 7y 356, children, 15 - edgesof 5
5 H—L0 ; 551, sibling, 294 :
Projection ] LLM * J 551, sibling, 15 _J :
QR}raph Encoder| | (Text Embedder) G s Vit T
of justin bieber brother?
: S§*=(V*, EY) textualize(S™) query q IS 5

s " T OO :



Experimental Results

Effectiveness Evaluation

Setting | Method ExplaGraphs SceneGraphs WebQSP
Zero-shot 0.5650 0.3974 41.06
Inference-onl Zero-CoT [18] 0.5704 0.5260 51.30
y CoT-BAG [44] 0.5794 0.5680 39.60
KAPING [1] 0.6227 0.4375 52.64
Prompt tuning 0.5763 £0.0243  0.6341 £0.0024 48.34 + 0.64
Frozen LLM w/ PT GraphToken [31] 0.8508 £0.0551 0.4903 £0.0105 57.05%0.74
G-Retriever 0.8516 £0.0092 0.8131 £0.0162 70.49+1.21
APrompt tuning 147.77% 128.23% 145.81%
LoRA 0.8538 £ 0.0353 0.7862 £0.0031 66.03 +0.47
Tuned LLM G-Retriever w/ LoORA  0.8705 £ 0.0329 0.8683 + 0.0072 73.79 £ 0.70
A LorA 17 1.95% 111.74% 1 10.44%




Experiment results

Efficiency Evaluation

Dataset Before Retrieval (Avg.) After Retrieval (Avg.)

# Tokens # Nodes Min/Epoch # Tokens # Nodes Min/Epoch
SceneGraphs 1,396 19 123.1 235(83%) 5{74%) 86.8 ({29%)
WebQSP 100,627 1,371 18.7 610 (J99%) 18 ({99%) 6.2({67%)

Ablation study
Table 6: Ablation study on the WebQSP dataset.

Method Hit@1 AG-Retriever

w/o Graph Encoder 54.62+£0.78 | 22.51%
w/o Projection Layer 69.70£0.68 | 1.11%
w/o Textualized Graph 56.96 +1.83 | 19.19%
w/o Retrieval 63.84+£041 |9.43%




Table 5: Quantitative comparison of halluci-

M Itlgate Hallucination nation on the SceneGraphs dataset.

Baseline  G-Retriever

User

Valid Nodes 31% 77 %

.elephants .elephant
- ’\in - Valid Edges 12% 76%

| st sandvet | Fully Valid Graphs ~ 8% 62%

on the side of

What kind of animal is in the bushes?
Answer the question and list the nodes or edges from the graph that support your answer.

LLM w/ Graph Prompt Tuning

[Incorrect response with hallucinated nodes and edges]
The animal in the bushes is a deer.

Nodes:

* Deer (node 1)

* Bushes (node 2)

Edges:

* Deer — Bushes (edge 1)

* Deer — Grass (edge 2)

* Bushes — Grass (edge 3)

G-Retriever (Ours)

[Correct response with accurate node and edge references]

Based on the information provided in the graph, the animal in the bushes is an elephant.
The nodes that support this answer are:

* Node 1: The elephant is mentioned in the first line of the graph.

The edges that support this answer are:

* The edge connects the elephant to the bushes, indicating that the elephant is in the bushes.

T el cme 4ha Aosawersss 4 e msnantanes sane M e adewsan] fue thhae asanhan oo ace ol aseke acsd



KG-BART: Knowledge Graph-Augmented BART for
Generative Commonsense Reasoning

Ye Liu, Yao Wan, Lifang He, Hao Peng, Philip S. Yu
https://arxiv.org/abs/2009.12677
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Pain points of state-of-the-art pre-trained language
generation models

e Ignoring knowledge information
e Failing to generate output towards capturing the human commonsense

Concept Set: {river, fish, net, catch}
I [Expected Output]: everyday scenarios covering all given concepts.

l e , .
1 1. Fisherman uses a strong net to catch plentiful fishes in the river.
| 2. Men like to catch fishes in the wide river with a net in the afternoon.

:-[GPT-2]: A fish is catching in a net
: [UniLM]: A net catches fish in a river

1
1
I
: [TS]: Fish are caughtin a net |n.the river. | ' Figure 1: An example of the
1 [BART]: A man catches a fish with a net in the river | generation outputs of our
KGBART model (blue dotted
box) and the existing models
without knowledge graph
augmentation (red dotted
box)




The solution

Use knowledge graph to augment pre-trained language generation model
:BART

o To encompass the complex relations of concepts

o To produce more logical and natural sentences

o To enhance the model generalization on unseen concept sets
Effectiveness:

o Outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4
o Can work as background scenarios to benefit downstream commonsense QA tasks



The methodology

e Two steps
o Knowledge graph grounding
m Constructing two KGs: concept-reasoning graph (referred to as GR) and concept-
expanding graph (referred to as GE)
o Graph-based encoder-decoder modeling

m Incorporating the grounded KGs into the state-of-the-art pre-trained language generation
model BART



Knowledge graph notations

e V: the set of entities

o Vi €V (subject)

o Vj €V (object)
e rij € R: relation between concepts
e edgeeijeE: (vi,rij,Vvj)




Concept reasoning graph(GR)

R ,.R , R
e Consisting of all concept triplets (Ui 7Tij7vj)

e Used in the the encoding phase



Concept expanding graph(GE)
- GEUN (vF)

e N (V*R) characterizes the neighborhood relationship between concept (V*R)

and its adjacencies in the KG database
e Enrich the graph with adjunct information

(climb) --requires--> (gear) (climb) --requires--> (gear)
(climb) --associated with-->(outdoor activity) (climb) --associated with--> (outdoor activity)
(mountain) --isA--> (natural formation) (climb) --similar to--> (hiking)

(mountain) --isA--> (natural formation)
(mountain) --related to--> (snowy)
(mountain) --similar to--> (hill)



N —

Grounding: constructing GR and GE

Match the concept set to the entities from KG to generate GR
Couple GR with the association of selected neighboring nodes with each
concept in KG to from GE

a. Ranking the neighboring nodes of each concept according to the word similarity scores
b. Selecting their potential top-k neighboring nodes adding to GR
c. Pre-trained GloVe embedding

TranSE: Translation Embedding

a. A popular model for knowledge graph embeddings
b. For each triplet, TranSE assumes that the relation r is a translation vector between vi and in vj

in the embedding space, so that:
i. Vitr=Vj



An Overview of KG-BART

e Traditional textual Transformer
encoder module

] [ . o torepresent the contextual
g { KG-Augmented Encoder ] *{ KG-Augmented Decoder ]‘m%’%" information Of eaCh tOken
gr Mx ‘ I Gt e KG-augmented Transformer
N [ Textual Encoder Textual Decoder ] N mOdUIe based on graph attention
1 1 1 1 T T mecham_sm .
ski ski er moun tain Token1 - <EOS> o tointegrate the entity-
Epcodey Desoder oriented knowledge
Figure 2: The proposed KG-BART model. information into token

representation.
e Textual Transformer decoder
module
e KG-augmented Transformer
decoder module



Encoder

: CSD: Concept to Subword Disintegration
SCI: Subword to Concept Integration
MGAT: Multi-Head Graph Attention

Figure 3: The KG-augmented encoder.

Integrates the input token embeddings
{x1, ..., xn}, which is the output of the
textual encoders, as well as the
embedding of GR to update the token
representation as {x9,...,x%}

Incorporates graph representations into
the neural encoding process via a graph-
informed attention mechanism



Encoder:Subword to Concept Integration (SCI)

SCI: Subword to Concept Integration
MGAT: Multi-Head Graph Attention

i i

n [GRski skier mountain|

Figure 3: The KG-augmented encoder.

,: CSD: Concept to Subword Disintegration

1.

Grouping the subwords for each concept

a.
b.

BART models each token as subwords, unlike GPT
because concepts in the KG are at word-level

Applying convolutional neural network (CNN) (Kim 2014) with
a max-pooling layer

a.
b.

To efficiently obtain the representation in word-level
Concept Ci is made up of a sequence of subwords {x1,
X2, ..., xm},

Conv1D layer: (‘L' here is the sequence length of a
window)

T
Z(thxtﬂ, ceyXeqpo1) st e [Im—1+1]
Max-pooling layer:
e (¢;) = MaxPooling (x},...,%}, ;1)

Final word-level textual embedding of concept:

e’ ={e(c1),...,e(a)}



Multi-Head Graph Attention (MGAT)

e lteratively update the representations for each concept
VAR _i through its neighbors N*R i
e Notations:
o H = [e"; W.v"] Word-level hidden state H:
. concatenation of the word embedding e*w and the
| csD: Concept o subword Dsiegraion. - graph-based embedding transformed by a weight

SCI: Subword to Concept Integration .
MGAT: Multi-Head Graph Attention matrlX W

aij -> attention weights:

______________________ 2; = LeakyReLU (W, [thi; Wih;; W,.rf}]) .

;
9" el
i X = T INE|

T S exp (za)
h, = ||£<=10 (lhzi:lafiwajhi)
g : i o o
s@ —————— sgk]l[egr]m@m@m (GRski skier mountain o Updating hidden state of node i using message
passing
Figure 3: The KG-augmented encoder. o Concatenating the attention embeddings from

different heads
o Wa,We,Wr,Wq,Wk and Wv are trainable weights



Concept to Subword Disintegration (CSD)

,: CSD: Concept to Subword Disintegration
SCI: Subword to Concept Integration
MGAT: Multi-Head Graph Attention

i i

n [GRski skier mountain|

Figure 3: The KG-augmented encoder.

[

z
[u,},...,u;'-n]T :

<0

<l

Disintegrating the concept to the subword-level
Upsampling word-level hidden state h! with (m-I+1) times (the
length before MaxPooling)
Utilizing a Deconv1D layer with vector Z=[z0, ..., zl ] €
R”(1x1) used in Conv1D to form the Deconv1D matrix ZD €
RA(mx(m—-I+1)) to get the subword-level hidden state ui
e A two-layer feed-forward
network with GeLU
activation function and a
\ ( h;l residual layer normanlization
L2 \ to get final output *:
(2

Zl. ) \hgm;l+1 )



Decoder

e Incorporating hierarchical graph structure
into the decoding process to capture the
relations between concepts and their
neighboring nodes

e Using Multi-Head Hierarchical Graph
Attention (MHGAT) to obtain the updated
concept embeddings

e The final decoder output is

o The attention between the encoder

. _ hidden state x*o and the previously

ki skier mountain } generated token hidden state y

fu

MAT: Multi-head Attention MHGAT: Multi-head Hierarchical Graph Attention

[ R Sno/ beauti o The attention between the updated
Token 1 Token 2 Token 3 having fun o iiful  high concept embeddings vA(R”) and the

. previously generated token hidden
Figure 4: The KG-augmented decoder. state y

ATRCG = MAT (y, v vI), AT™® = MAT(y, x°, x°)
o Concatenating of the two attention
with a residual connection
Y’ = W [AT*C; AT™] +y
e Yy"ois used to predict the token
sequence: Pyocap = softmax(Wouwyo + bout)




Multi-Head Hierarchical Graph Attention (MHGAT)

MAT: Multi-head Attention MHGAT: Multi-head Hierarchical Graph Attention

. Learn's sn(/ beauti
Token 1 Token 2 Token 3 having fun (el high

GE ski skier mountain
fu

Figure 4: The KG-augmented decoder.

The first layer of hierarchical graph attention is
to update the concept node v < R through its
inter-concept neighboring nodes N N with
relation embedding

zi; = LeakyReLU (Wa [W Vi 5ka§V;W rgD

&xn () il
e Zlf{\}l)exz (Zil), - Hk v (Z O‘ZJW ) |
(5)
The second graph attention layer updates the
concept representation considering the intra-
concept relations




KG-BART Model Pre-Training

Similar to BART

Corrupting texts and then optimizing a reconstruction loss, the cross-entropy,
between the decoder’s output and the original texts

For example, “[mask] wound [mask] teach soldier” in the encoder and
“student wound treat teach soldier” in the decoder



The experiment

Dataset:

o CommonGen

o Testing the ability of machines on commonsense reasoning when generating a text

o 77k commonsense descriptions over 35k unique concept sets

Train Dev Test
# Concept sets 32,651 993 1,497
# Sentences 67,389 4,018 6,042
% Unseen Concepts - 6.53% 8.97%
% Unseen Concept-Paris - 96.31% 100.00%
% Unseen Concept-Triples - 99.60%  100.00%

Table 1: The basic statistics of the CommonGen dataset.



Results

Table 2: Experimental results of different baseline methods on the CommonGen test dataset. We show
the best results in boldface, and those with the second best performance are underlined

e Automatic metrics to
automatically assess the

Model\ Metrics | BLEU-3/4 | ROUGE-2/L | METEOR | CIDEr | SPICE | Coverage performance

GPT-2 (Radford et al. 2019) | 30.70 21.10 | 17.18 39.28 26.20 12.15 | 25.90 79.09 e BLEU R E and METEOR
BERT-Gen (Bao etal. 2020) | 3040 21.10 | 18.05 40.49 27.30 1249 | 27.30 86.06 - U, ROUGE and _ O
UniLM (Dong et al. 2019) 3830 27.70 | 21.48 43.87 29.70 14.85 | 30.20 89.19 mainly focus on measuring
UniLM-v2 (Bao et al. 2020) | 31.30 22.10 | 18.24 40.62 28.10 13.10 | 28.10 89.13 naram similariti tween
T5-Base (Raffel et al. 2020) | 26.00 16.40 | 14.57 34.55 23.00 9.16 | 22.00 76.67 gram similarities betwee
T5-Large (Raffel et al. 2020) | 39.00 28.60 | 22.01 42.97 30.10 1496 | 31.60 95.29 model output and reference
BART (Lewis et al. 2020) 3630 2630 | 2223  41.98 30.90 13.92 | 30.60 97.35 descriptions

Human Performance 4820 4490 | 48.88 63.79 36.20 43.53 63.50 99.31

KG-BART 4210 30.90 | 23.38 4454 | 32.40 1683 | 32.70 98.68 e CIDEr and SPICE focus on

evaluating the associations
between mentioned concepts
instead of n-gram overlap:
content relevance and accuracy
with respect to a structured
knowledge source

e Coverage of concepts



Human evaluations

Model 1 2 3 4 9 Rating
GPT-2 22% 16% 23% 20% 19% 2.98
UniLM 5% 17% 22% 24% 32% 3.61
TS-large 2%  15% 12% 32% 39% 3.91
BART 1% 10% 17% 30% 42%  4.02
KG-BART | 0% 8% 12% 25% 55% 4.27

(1) Rationality: is the sentence
the reasonable commonsense
scenario? (2) Fluency: is the
sentence fluent and grammatical?
(3) Succinctness: does the

Table 3: Ranking results of system outputs by human evalua- §entenc§ avoid repeating
tion. 1 is the worst and 5 is the best. The larger rating denotes information? (4) Naturalness: does

a better summary quality.

the sentence use adjunct words?



KG-BART encoder can capture the better relationship between

concepts
[Q*‘.’%f ey o, o e Related concept pairs in

tes1-| 0 5 KG-BART attend much
weiane - ] more attention

i | ] ] 5

= B 2

om -l |
[SEP] -- .

BART

Figure 6: Attention weights of the last layers of BART and
KG-BART encoder.



Transfer KG-BART to Commonsense QA

e Extracting the nouns and verbs in questions and five choices, and combine
the concepts of question g and each choice ci to build concept sets

e For example, g="What would you do if you want to be able to earn money?”,
ci="apply for job” (correct) with gi=“applying for a job so i would earn money.”;
cj="stand in line” (wrong) gj="i would want to earn money standing in line to
get a deal on a product.”

e More reasonable and natural sentences for correct choices while noisy
sentences for wrong choices



Conclusion

KG-augmented approach KG-BART is based on pre-trained BART for
generative commonsense reasoning

KG-BART can generate high-quality sentences even in the unseen concept
sets

KG-BART has better abilities of both commonsense reasoning and text
generalization

Paper published in 2021, at the time data-driven conversational agents like
Apple’s Siri, Google Assistant and Amazon’s Alexa are struggling at achieving
the ability of commonsense reasoning on generating the human-like
responses



Head-to-Tail: How Knowledgeable are Large Language Models
(LLMs)?

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, Xin Luna Dong
https://arxiv.org/abs/2308.10168
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Overview

e Head-to-Tail: a benchmark that consists of 18K question-answer (QA) pairs
regarding head, torso, and tail facts in terms of popularity

e Context: the rise of LLMs has sparked debates on whether Knowledge
Graphs (KGs), which store real-world factual knowledge in triplet form
(subject, predicate, object), will be replaced with LLM

e Trying to answer How knowledgeable are LLMs



Il Open domain @ Specific domains (averaged)

50 47.6

401

36.5

30.3
30 1

27.3
20 1

10 A

Correct answers by GPT-4 (%)

Head Torso Tail

Example questions where GPT-4 gives incorrect answers

Question: What profession does Tj Singh (known for John Carter (2012))
have?

Ground Truth: Visual effects

GPT-4: Actor

Question: Who authored Choke (published in 1996)?
Ground Truth: Stuart Woods
GPT-4: Chuck Palahniuk

Academics

Question: Where did Josef Kittler receive the Ph.D. (thesis: Development
and application of pattern recognition techniques.)?

Ground Truth: University of Cambridge, UK

GPT-4: University of Surrey

Question: What college is the sister college of Trinity College, Oxford?
Ground Truth: Churchill College, Cambridge
GPT-4: Balliol College

Figure 1: The question-answering accuracy of GPT-4
decreases in the order of head, torso, and tail entities
on the Head-to-Tail benchmark, and is only 31% on

How reliable are LLMs in answering factual
questions?
Do LLMs perform equally well on head, torso, and tail
facts?
Does normal methods that improve LLMs increase
the factuality?
Motivation

o hard to directly “query” the knowledge

embedded in an LLM
o No ready to use benchmark that well

represents user interest and uniform distribution
of world knowledge

Contribution
o A benchmark to test knowledge
o Evaluation method and metrics
o Comprehensive evaluation of 16 LLMs



Domains

Selected three domains along with a KG where public data are easily accessible.

e DBpedia knowledge graph, where the knowledge originates from Wikipedia
(English snapshot from December 1, 2022.2).

e Movie: We used a snapshot of IMDb3 from May 21, 2023.

e Book: We used the data of Goodreads scraped in 2017 released by Wan and
McAuley (2018).

e Academics: We used a snapshot of MAG (Sinha et al., 2015) from September
13, 2021 and DBLP4 from May 10, 2023.



Head, torso and tail entities

e Decided by the popularity of the entities
e Two ways to approximate popularity: traffic and density

@)

@)
@)
@)

Traffic: views and votes

Density: the number of facts or authored works about the entity

When there is traffic information, we conveniently use traffic to measure the popularity

Head entities comprising entities whose cumulative popularity score is up to 1/3 of that of all
entities, torso entities comprising entities with cumulative scores ranging from 1/3 to 2/3, and
tail entities from 2/3 to 1

A specific movie vs more niche topics



Questions generation

Generating questions using a template-based approach, where each generated question asks for an
attribute of an entity

Filtering out the following types of attributes: (i) unspecific (ii) dynamic (e.g., lastLaunchRocket in
DBpedia), (iii) data source specific (e.g., averageRating in IMDDb), and (iv) non-textual (e.g., picture
in DBpedia)

You are given a few samples of a relation in the format of <X, relation, Y>.
You need to write a question *template* about the relation, which can be
used to generate questions. The template needs to have one blank such that
a question about Y can be generated by filling the blank with X.

#Example 1

Samples: <!Hero, musicBy, Eddie DeGarmo>, <9 to 5 (musical), musicBy,
Dolly Parton>, <All About Us (musical), musicBy, John Kander>
Template: The music of _ is by whom?

#Example 2

Samples: <10,000 Maniacs, bandMember, Dennis Drew>, <16bit (band),
bandMember, Eddie Jefferys>, <ITYM, bandMember, Teddy Park>
Template: Name a band member of _?

#Example 3
Samples: {SAMPLES}
Template:



Question generation(cont’d)

e For each specific domain: ~1K
questions for each of the head, torso,

Domain Sources # Templates  # Questions and tail buckets.
Movie IMDb 13 5003 ® DBPedia: ~3K questions for each
Book Goodreads 4 3,000
Academics MAG, DBLP 13 2,946 bU Cket ’ T
Open DBpedia 393 9,132
Total 423 18,171

Table 2: The overall statistics of Head-to-Tail.



Metrics

Accuracy (A), hallucination rate (H), and missing rate (M)
Models are prompted to reply with “unsure” for uncertain answers
Models are prompted to reply with concise answers
A+H+M=100%.
Judging tools:

o LLM-based

o Rule-based(i.e. Exact match/average normalized longest common subsequence)

o Variants given
m  (e.g., “W Shakespeare” is a variant of “William Shakespeare”)



Experiment Analysis

Model All Open Movie Book Academics
Acv Him | AcM Hiv » At Hiv At Him A Hiwm

GPT-4 30.9 19.7 37.1 25.3 41.7 15.5 21.3 194 10.0 6.8

ChatGPT 20.3 14.1 22:1 14.8 34.7 13.3 16.9 249 3.0 1.9

Llama?2 (70B) 11.8  34.0 75 248
LLaMA (33B) 182 800 | 190  79.1

27.9 34.3 10.3 54.5 9.8 41.0
28.7 70.1 15.8 82.9 7l 90.3

Table 3: The best overall accuracy is only ~31% on Head-to-Tail. All numbers are in percentage (%).



RQ1: How reliable are LLMs in answering factual questions?

e GPT-4 and ChatGPT give unsure or empty
answers for the majority of them, and the
hallucination rate is <20% (still non-negligible)

e |l aMA-33B mostly provides hallucinated
answers

e The overall performance varies substantially
across different specific domains

Model All Open Movie Book Academics
Acm Him | At Hiv At Hiv At Him Apv Hiw

GPT-4 30.9 19.7 37.1 253 ' 41.7 15.5 21.3 194 10.0 6.8

ChatGPT 20.3 14.1 22.1 14.8 34.7 13.3 16.9 24.9 3.0 1.9

Llama 2 (70B) 11.8 34.0 1S 2458 i 979 343 10.3 54.5 9.8 41.0
LLaMA (33B) 18.2 80.0 19.0 79.1 |, 28.7 70.1 15.8 82.9 7 90.3

Table 3: The best overall accuracy is only ~31% on Head-to-Tail. All numbers are in percentage (%).



RQ2: Do LLMs perform equally well on head, torso, and tail facts?

2 Head Torso Tail
Domain
ArM Hiv A Hiv Awm Him
Movie 59.3 14.8 55.0 16.9 10.9 14.7
Book 22.8 24.4 24.3 21.8 16.9 12.0
Academics 15.8 9.9 10.5 6.8 3.9 3.7
Open 47.6 30.2 36.5 24.1 27.3 21.6
All 40.3 233 334 19.7 19.0 159
(a) GPT-4.
. Head Torso Tail
Domain
ArM Hiv A Hiv Apm Him
Movie 39.2 28.2 33.9 29.8 10.7 449
Book 15.0 52.2 12.9 54.4 3.1 56.9
Academics 12.9 352 11.1 38.2 5.3 49.7
Open 9.9 22.3 6.9 25.4 5.7 26.8
All 16.2 30.3 132 33.0 6.1 38.6

Table 4: LLMs’ factuality, measured by Ay (%), de-
creases in the order of head, torso, and tail entities from

Head-to-Tail.

(b) Llama 2-70B.

e The overall accuracy of GPT-4 and
Llama 2-70B (ALM) declines in the
order of head, torso, and tail entities

e The same pattern is seen in other
LLMs



Model Aim Hiwm M

GPT-4 46.0 (15.7)  21.4(11.9) 32.6({3.7)
Llama 2 (70B)  18.7 (12.5)  29.7(10.6) 51.6(/1.9)

Table 5: Accuracy on the top-10% popular questions in
the head bucket 1s only slightly better than overall head

entities. (1/): increased/decreased % compared with
using all head instances.)



RQ3: Does normal methods that improve LLMs increase the factuality

e Increased model size does not automatically
translate to a better grasp of factual knowledge
e The instruction-tuned counterparts (i.e., Vicuna
and Falcon-Instruct) have lower accuracy
o More conservative in providing factual
Model Head-to-Tail Head Torso Tail
Am Him M Amnm Hwm A Hwn Apm Him
LLaMA (7B) 12.1 80.0 7.9 19.0 74.4 B B 81.0 5.4 84.8
LLaMA (13B) 14.4 84.3 L3 22.0 11.2 14.8 83.8 6.3 91.9
LLaMA (33B) 18.2 80.0 1.8 26.0 72.8 19.8 78.7 8.8 88.6
LLaMA (65B) 17.8 81.9 0.3 25.9 73.8 18.7 81.0 8.7 90.9
Vicuna (7B) 10.1 79.2 10.8 16.2 727 9.6 79.8 4.3 85.0
Vicuna (13B) 9.2 62.6 28.2 14.0 55.0 8.8 62.8 4.7 70.0
Flan-T5 (3B) 2.3 17.4 80.3 39 19.7 | 1 17.1 1.3 15.5
Flan-T5 (11B) 4.2 20.0 3.7 7.6 23.7 32 19.9 20 16.5
Falcon (7B) 9.5 579 32.6 14.5 53.8 92 579 4.8 62.0
Falcon (40B) 10.8 41.0 48.2 16.2 36.4 112 40.0 4.9 46.6
Falcon-Instruct (7B) 6.8 56.7 36.5 115 56.0 5.6 572 34 56.7
Falcon-Instruct (40B) 10.8 322 57.0 16.7 30.5 11.5 31:1 4.3 34.8

Table 7: Comparison of different LLMs with different sizes. All numbers are in percentage (%).



Robustness of the evaluation methodology

Correlations between rule- and LLM-based metrics are high, indicating the
rule based metrics are good alternative

Removing “unsure” and “brief” increases hallucination rate

In-domain example prompt help get more correct answers, compared to zero
shot and few shot

g Few-shot Zero-shot In-domain
Domain
A H A H A H
LLM-Based ~ RuleBased . 7 . T = . ok Y o o
: : T Open 327 208 326 247 450 278
%]
AgMm 0721 0915 0921  0.966 =
Fa s 055 o5l oSl 006 All 294 172 292 186 383 247
ArL 0730 0947 0775  0.969 g  Open 197 133 216 179 301 230
=
Hgm 0968 0991 0993  0.998 B Al 219 146 228 167 298 228
Him Hpy 0976 0995 0998  0.999
Hre 0976 0995 0998  0.999 = Open 138 102 149 145 230 195
-
All 95 105 103 127 154 202
Table 8: The minimum and mean Spearman’s rank cor-
relation coefficients (p) and Pearson correlation coef- Table 9: Performance of ChatGPT with different
ficients (r) show high correlation between LM- and prompts on Head-to-Tail. All numbers are in percent-

rule-based metrics. age (%).



Conclusion

The amount of this encoded knowledge in LLMs remains limited
Mediocre QA accuracy for popular entities
Torso-to-tail and recent knowledge is best to be represented by KG

New research areas need to seamlessly blend knowledge in the symbolic
form and neural form



Future Work



Future Work for LLMs in Graph Processings

1. LLMs for Multi-modal Graphs: Integrate multi-modal data (text, images, audio) with
graph models for comprehensive understanding and reasoning.

2. Efficiency and Computational Cost: Develop efficient strategies to reduce training
and inference costs for large-scale graph data, especially when combining LLMs with
GNNSs.

3. Tackling Complex Graph Tasks: Expand LLM applications beyond traditional tasks
like link prediction and node classification to more generative and understanding tasks
such as graph generation and graph-based QA.

4. User-Centric Agents on Graphs: Design interactive, adaptive LLM agents for multi-
run tasks, capable of handling a variety of user inputs with iterative feedback and
dynamic adjustments.



