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Language Modeling Background：

● Traditional training of LMs can be viewed as a closed-book 
examination

● At inference time, the model does not have access to the training data 
and must rely entirely on memorization. 

Limitation：Long-tail cases
； Memory limitations



Copying vs. Memorizing：

Open-book examination: LMs should have the ability to "copy" or 
reference similar contexts from the training set, even during inference. 

Copying is easier than memorizing!

● Introduces the GNN-LM model, which allows the LM to reference 
contexts from the entire training corpus by constructing a graph of 
related contexts.

● A GNN is then applied to this graph, allowing the LM to aggregate 
information from both the input context and retrieved neighbor 
contexts.



Overview of the proposed GNN-LM model pipeline：

General LMs:
● LM encodes a sequence of context tokens 

-> high dimensional representation h_t
● a transformation matrix/function to estimate the probability of the t-

th token: 



Step1:  Graph Construction

Define a graph as

    is a collection of nodes v,
    is a collection of edges e.
                      is two types of nodes, a_o is the node is within the input c_t, 
a_n means the node is in N(c_t). 

                         is two types of edges, where r_inter means inter-context 
connection (from a_n nodes to a_o nodes);
r_intra means intra-context connection (between two nodes of same type). 



Step2:  Retrieve the neighbors

For an input context c_t, we retrieve k nearest neighbors 
of c_t from the training set:

● Use h_t (high-dimensional representation of c_t) to query the cached 
representations (obtained by a pretrained LM) of all tokens for training samples

● Distance is measured by the cosine similarity

● retrieve the top K tokens            on i -th training sample, and j-th time step. 
Then, it is expanded with the left and right window:  



Step3:  GNN on the constructed graph 

Use graph neural networks (GNNs) to aggregate and percolate the token information 
based on the graph constructed. 

Attention: 

Feature: 

Aggregate: 

GNN feature 
propagation and 

aggregation 

Transformer  
attention feature 

learn 



Step4: kNN based probability for next token  

Retrieve the k nearest neighbors

Compute the kNN based probability for the next token:

 

It extends a vanilla LM by linearly interpolating it with a k-nearest neighbors (kNN) model



Experiments:

For all experiments, we add a 3-layer self-attention augmented GNN on top of the pretrained base 
LM, and use the same hidden dimension and number of heads as our base LM. We retrieve k = 1, 024 
nearest neighbors for each source token, among them the top 128 neighbors are used in graph, and all 
of them are used in computing the kNN-based probability. 

Datasets: 
WikiText-103, One Billion Word, Enwik8



Main Results: 

GNN-LM reduces the base LM perplexity from 18.7 
to 16.8. 
The combination of GNN and kNN further boosts 
the performance to 14.8, a new state-of-the-art 
result on WikiText-103. 

GNN-kNN-LM helps base LM reduce 0.5 
perplexity with only 27M additional 
parameters. For comparison, Baevski & Auli 
(2018) use 560M additional parameters to 
reduce perplexity from 23.9 to 23.0.



GNN-kNN-LM outperforms base LM by 0.03 Bit per Character (BPC), 
achieving 1.03 BPC with only 48M parameters, comparable to 18L 
Transformer-XL with 88M parameters.



Space Complexity:

● Key Factor: GNN-LM requires significantly more memory than a vanilla language 
model (LM) because it constructs a graph with k nearest neighbors for each token 
c_i, making the number of nodes in the graph k times larger.

● Memory Mitigation Strategies: Smaller k during initial training; Context truncation

Time Complexity:

● GNN-LM is slower than the base LM, with complexity increasing as k grows. The 
overhead comes from kNN retrieval and graph construction, but preprocessing 
these can mitigate some of the time cost.



Conclusion: 

The paper proposes a new language modeling approach called GNN-LM, which 
extends the vanilla neural language model by allowing it to reference similar contexts 
from the entire training corpus.

Experiments show that GNN-LM outperforms strong baselines on standard language 
modeling benchmarks, and when combined with kNN-LM, it achieves a new state-of-
the-art perplexity on the WikiText-103 dataset.

Improve the efficiency of building the graph and retrieving nearest neighbors in future 
work?
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Introduction

Context:

● Large Language Models (LLMs) have reshaped AI, especially in handling complex tasks.
● Many real-world datasets have graph structures, such as the Web, e-commerce platforms, 

and knowledge graphs.

Challenge:

● Previous approaches combining LLMs and Graph Neural Networks (GNNs) mainly focus on:
○ Conventional graph tasks (node/edge classification).
○ Simple questions on small, synthetic graphs.

● Need for handling real-world textual graphs with both graph structure and textual data.



Related Work

- Graphs and Large Language Models
- Research spans from designing general graph models to multi-modal architectures.

- Retrieval-Augmented Generation (RAG)
- Proposed by Lewis et al. [21], RAG helps mitigate hallucination issues in LLMs and 

enhances trustworthiness and explainability of model outputs.
- Parameter-Efficient Fine Tuning

- Help optimize LLM performance with minimum parameter training
- Important methods

- Prompt tuning
- Prefix tuning 
- LoRA



G-Retriever: Key Contributions

● Enabling ‘Chat with Your Graph’. 
● Introducing A Novel GraphQA Benchmark with data collected from 

different tasks.
● Pioneering the integration of Graph RAG by introducing G-Retriever 
● Empirical Findings.       

  

   

  



“Chat with your Graph” 

We develop a flexible question-answering framework targeting real-world 
textual graph applications via a unified conversational interface. 

    
   

  



Example of Real-
world Textual Graph



GraphQA Benchmark
- Data format

- A textual graph, a question related to the graph, and one or more corresponding answers



GraphQA Benchmark
- Overview of datasets



G-Retriever Architecture

Overview:

● Indexing: Initial storage and embedding of graphs.
● Retrieval: Use of RAG to select relevant subgraphs.
● Subgraph Construction: Prize-Collecting Steiner Tree for effective retrieval.
● Answer Generation: Using LLMs to generate responses.



Indexing
Graphs are indexed for efficient query processing.

We generate node and graph embeddings using a pre-trained LM, and then store 
these embeddings in a nearest neighbor data structure.



Retrieval

The most semantically relevant nodes and edges are retrieved, conditioned on the query.



Subgraph Construction

This step aims to construct a subgraph that encompasses as many relevant nodes and 
edges as possible while keeping the graph size manageable.

Used Prize-Collecting Steiner Tree algorithm to identify optimal size and subgraph.



Prize-Collecting Steiner Tree algorithm (PCST)

Aims to find a connected subgraph that maximizes the total prize values of its 
nodes while minimizing the total costs of its edges.



Answer generation
Graph Encoder, Projection Layer, Text Embedder, LLM Generation with Graph Prompt Tuning



Experimental Results 

Effectiveness Evaluation



Experiment results

Efficiency Evaluation

Halucination

Ablation study



Mitigate Hallucination 



KG-BART: Knowledge Graph-Augmented BART for 
Generative Commonsense Reasoning
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Pain points of state-of-the-art pre-trained language 
generation models

● Ignoring knowledge information 
● Failing to generate output towards capturing the human commonsense

Figure 1: An example of the 
generation outputs of our 
KGBART model (blue dotted 
box) and the existing models 
without knowledge graph 
augmentation (red dotted 
box)



The solution

● Use knowledge graph to augment pre-trained language generation model 
:BART

○ To encompass the complex relations of concepts
○ To produce more logical and natural sentences
○ To enhance the model generalization on unseen concept sets

● Effectiveness:
○ Outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4
○ Can work as background scenarios to benefit downstream commonsense QA tasks



The methodology

● Two steps
○ Knowledge graph grounding

■ Constructing two KGs: concept-reasoning graph (referred to as GR) and concept-
expanding graph (referred to as GE)

○ Graph-based encoder-decoder modeling
■ Incorporating the grounded KGs into the state-of-the-art pre-trained language generation 

model BART



Knowledge graph notations

● V: the set of entities
○ vi ∈ V (subject)
○ vj ∈ V (object)

● rij ∈ R: relation between concepts
● edge eij ∈ E: (vi , rij , vj )



Concept reasoning graph(GR)

● Consisting of all concept triplets  
● Used in the the encoding phase



●                
● N (v^R) characterizes the neighborhood relationship between concept (v^R) 

and its adjacencies in the KG database
● Enrich the graph with adjunct information

Concept expanding graph(GE) 

(climb) --requires--> (gear)
(climb) --associated with-->(outdoor activity)
(mountain) --isA--> (natural formation)

(climb) --requires--> (gear)
(climb) --associated with--> (outdoor activity)
(climb) --similar to--> (hiking)
(mountain) --isA--> (natural formation)
(mountain) --related to--> (snowy)
(mountain) --similar to--> (hill)



Grounding: constructing GR and GE

1. Match the concept set to the entities from KG to generate GR
2. Couple GR with the association of selected neighboring nodes with each 

concept in KG to from GE
a. Ranking the neighboring nodes of each concept according to the word similarity scores 
b. Selecting their potential top-k neighboring nodes adding to GR
c. Pre-trained GloVe embedding

3. TranSE: Translation Embedding
a. A popular model for knowledge graph embeddings
b. For each triplet, TranSE assumes that the relation r is a translation vector between vi and in vj 

in the embedding space, so that:
i. Vi + r ≈ Vj



An Overview of KG-BART

● Traditional textual Transformer 
encoder module 

○ to represent the contextual 
information of each token

● KG-augmented Transformer 
module based on graph attention 
mechanism 

○ to integrate the entity-
oriented knowledge 
information into token 
representation. 

● Textual Transformer decoder 
module

●  KG-augmented Transformer 
decoder module 



● Integrates the input token embeddings 
{x1, . . . , xn}, which is the output of the 
textual encoders, as well as the 
embedding of GR to update the token 
representation as

● Incorporates graph representations into 
the neural encoding process via a graph-
informed attention mechanism

Encoder



1.  Grouping the subwords for each concept 
a. BART models each token as subwords, unlike GPT
b. because concepts in the KG are at word-level

2. Applying convolutional neural network (CNN) (Kim 2014) with 
a max-pooling layer

a. To efficiently obtain the representation in word-level
b. Concept Ci is made up of a sequence of subwords {x1, 

x2, . . . , xm},
c. Conv1D layer: (‘L’ here is the sequence length of a 

window)

a. Max-pooling layer:

a. Final word-level textual embedding of concept:

Encoder:Subword to Concept Integration (SCI) 



● Iteratively update the representations for each concept 
V^R_i through its neighbors N^R_i

● Notations:
○ Word                   Word-level hidden state H: 

concatenation of the word embedding e^w and the 
graph-based embedding transformed by a weight 
matrix W

○ aij -> attention weights: 

●  
Efeffefefef

○ Updating hidden state of node i using message 
passing

○ Concatenating the attention embeddings from 
different heads

○ Wa,We,Wr,Wq,Wk and Wv are trainable weights

Multi-Head Graph Attention (MGAT)



● Disintegrating the concept to the subword-level
● Upsampling word-level hidden state     with (m−l+1) times (the 

length before MaxPooling)
● Utilizing a Deconv1D layer with vector Z = [z0, . . . , zl ] ∈ 

R^(1×l) used in Conv1D to form the Deconv1D matrix ZD ∈ 
R^(m×(m−l+1)) to get the subword-level hidden state ui 

● A two-layer feed-forward 
network with GeLU 
activation function and a 
residual layer normalization 
to get final output

Concept to Subword Disintegration (CSD) 



● Incorporating hierarchical graph structure 
into the decoding process to capture the 
relations between concepts and their 
neighboring nodes

● Using Multi-Head Hierarchical Graph 
Attention (MHGAT) to obtain the updated 
concept embeddings

● The final decoder output is
○ The attention between the encoder 

hidden state x^o and the previously 
generated token hidden state y

○ The attention between the updated 
concept embeddings v^(R’’) and the 
previously generated token hidden 
state y

○ Concatenating of the two attention 
with a residual connection

● y^o is used to predict the token 
sequence: 

Decoder



● The first layer of hierarchical graph attention is 
to update the concept node                through its 
inter-concept neighboring nodes N N i with 
relation embedding 

● The second graph attention layer updates the 
concept representation considering the intra-
concept relations

Multi-Head Hierarchical Graph Attention (MHGAT)



KG-BART Model Pre-Training

● Similar to BART
● Corrupting texts and then optimizing a reconstruction loss, the cross-entropy, 

between the decoder’s output and the original texts
● For example, “[mask] wound [mask] teach soldier” in the encoder and 

“student wound treat teach soldier” in the decoder



The experiment

● Dataset: 
○ CommonGen 
○ Testing the ability of machines on commonsense reasoning when generating a text
○  77k commonsense descriptions over 35k unique concept sets



Results

Table 2: Experimental results of different baseline methods on the CommonGen test dataset. We show 
the best results in boldface, and those with the second best performance are underlined

● Automatic metrics to 
automatically assess the 
performance 

● BLEU, ROUGE and METEOR 
mainly focus on measuring 
ngram similarities between 
model output and reference 
descriptions

● CIDEr and SPICE focus on 
evaluating the associations 
between mentioned concepts 
instead of n-gram overlap: 
content relevance and accuracy 
with respect to a structured 
knowledge source

● Coverage of concepts 



Human evaluations

(1) Rationality: is the sentence
the reasonable commonsense 
scenario? (2) Fluency: is the
sentence fluent and grammatical? 
(3) Succinctness: does the
sentence avoid repeating 
information? (4) Naturalness: does
the sentence use adjunct words? 



KG-BART encoder can capture the better relationship between 
concepts

● Related concept pairs in 
KG-BART attend much 
more attention



Transfer KG-BART to Commonsense QA 

● Extracting the nouns and verbs in questions and five choices, and combine 
the concepts of question q and each choice ci to build concept sets

● For example, q=“What would you do if you want to be able to earn money?”, 
ci=“apply for job” (correct) with gi=“applying for a job so i would earn money.”; 
cj=“stand in line” (wrong) gj=“i would want to earn money standing in line to 
get a deal on a product.”

● More reasonable and natural sentences for correct choices while noisy 
sentences for wrong choices



Conclusion

● KG-augmented approach KG-BART  is based on pre-trained BART for 
generative commonsense reasoning

● KG-BART can generate high-quality sentences even in the unseen concept 
sets

● KG-BART has better abilities of both commonsense reasoning and text 
generalization

● Paper published in 2021, at the time data-driven conversational agents like 
Apple’s Siri, Google Assistant and Amazon’s Alexa are struggling at achieving 
the ability of commonsense reasoning on generating the human-like 
responses



Head-to-Tail: How Knowledgeable are Large Language Models 
(LLMs)?

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, Xin Luna Dong
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Overview

● Head-to-Tail: a benchmark that consists of 18K question-answer (QA) pairs 
regarding head, torso, and tail facts in terms of popularity

● Context: the rise of LLMs has sparked debates on whether Knowledge 
Graphs (KGs), which store real-world factual knowledge in triplet form 
(subject, predicate, object), will be replaced with LLM

● Trying to answer How knowledgeable are LLMs



● How reliable are LLMs in answering factual 
questions?

● Do LLMs perform equally well on head, torso, and tail 
facts?

● Does normal methods that improve LLMs increase 
the factuality?

● Motivation
○ hard to directly “query” the knowledge 

embedded in an LLM
○ No ready to use benchmark that well 

represents user interest and uniform distribution 
of world knowledge

● Contribution
○ A benchmark to test knowledge
○ Evaluation method and metrics
○ Comprehensive evaluation of 16 LLMs



Domains

Selected three domains along with a KG where public data are easily accessible. 

● DBpedia knowledge graph, where the knowledge originates from Wikipedia 
(English snapshot from December 1, 2022.2).

● Movie: We used a snapshot of IMDb3 from May 21, 2023. 
● Book: We used the data of Goodreads scraped in 2017 released by Wan and 

McAuley (2018). 
● Academics: We used a snapshot of MAG (Sinha et al., 2015) from September 

13, 2021 and DBLP4 from May 10, 2023.



Head, torso and tail entities

● Decided by the popularity of the entities
● Two ways to approximate popularity: traffic and density

○ Traffic: views and votes
○ Density: the number of facts or authored works about the entity
○ When there is traffic information, we conveniently use traffic to measure the popularity
○ Head entities comprising entities whose cumulative popularity score is up to 1/3 of that of all 

entities, torso entities comprising entities with cumulative scores ranging from 1/3 to 2/3, and 
tail entities from 2/3 to 1

○ A specific movie vs more niche topics



Questions generation

● Generating questions using a template-based approach, where each generated question asks for an 
attribute of an entity

● Filtering out the following types of attributes: (i) unspecific (ii) dynamic (e.g., lastLaunchRocket in 
DBpedia), (iii) data source specific (e.g., averageRating in IMDb), and (iv) non-textual (e.g., picture 
in DBpedia)



Question generation(cont’d)

● For each specific domain: ∼1K 
questions for each of the head, torso, 
and tail buckets. 

● DBPedia: ∼3K questions for each 
bucket. T



Metrics

● Accuracy (A), hallucination rate (H), and missing rate (M)
● Models are prompted to reply with “unsure” for uncertain answers
● Models are prompted to reply with concise answers
● A + H + M = 100%.
● Judging tools:

○ LLM-based
○ Rule-based(i.e. Exact match/average normalized longest common subsequence)
○ Variants given 

■ (e.g., “W Shakespeare” is a variant of “William Shakespeare”)



Experiment Analysis



RQ1: How reliable are LLMs in answering factual questions?

● GPT-4 and ChatGPT give unsure or empty 
answers for the majority of them, and the 
hallucination rate is <20% (still non-negligible)

● LLaMA-33B mostly provides hallucinated 
answers

● The overall performance varies substantially 
across different specific domains



RQ2: Do LLMs perform equally well on head, torso, and tail facts?

● The overall accuracy of GPT-4 and 
Llama 2-70B (ALM) declines in the 
order of head, torso, and tail entities

● The same pattern is seen in other 
LLMs





RQ3: Does normal methods that improve LLMs increase the factuality

● Increased model size does not automatically 
translate to a better grasp of factual knowledge

● The instruction-tuned counterparts (i.e., Vicuna 
and Falcon-Instruct) have lower accuracy

○ More conservative in providing factual 
answers



Robustness of the evaluation methodology

● Correlations between rule- and LLM-based metrics are high, indicating the 
rule based metrics are good alternative

● Removing “unsure” and “brief” increases hallucination rate
● In-domain example prompt help get more correct answers, compared to zero 

shot and few shot



Conclusion

● The amount of this encoded knowledge in LLMs remains limited
● Mediocre QA accuracy for popular entities
● Torso-to-tail and recent knowledge is best to be represented by KG
● New research areas need to seamlessly blend knowledge in the symbolic 

form and neural form



Future Work



Future Work for LLMs in Graph Processings

1. LLMs for Multi-modal Graphs: Integrate multi-modal data (text, images, audio) with 
graph models for comprehensive understanding and reasoning.

2. Efficiency and Computational Cost: Develop efficient strategies to reduce training 
and inference costs for large-scale graph data, especially when combining LLMs with 
GNNs.

3. Tackling Complex Graph Tasks: Expand LLM applications beyond traditional tasks 
like link prediction and node classification to more generative and understanding tasks 
such as graph generation and graph-based QA.

4. User-Centric Agents on Graphs: Design interactive, adaptive LLM agents for multi-
run tasks, capable of handling a variety of user inputs with iterative feedback and 
dynamic adjustments.


