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Challenges with Large Language Models (LLMs)

Hallucinations

inability to 
encode long-tail 
facts, and high 
retraining costs

4



Objective of KNOWLEDGE CARD

KNOWLEDGE CARD: 

A modular framework for “plugging in” specialized knowledge from 
smaller models.

Goal: 

Enable LLMs to access accurate, specialized knowledge dynamically 
without retraining.
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● Knowledge Modularity

● Knowledge Cards

● Knowledge Selectors
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Bottom-Up vs Top-Down

Top-Down Approach

● Starts by asking if external 
knowledge is needed

● Selectively activates relevant 
knowledge cards based on context

● Focuses on domain-specific accuracy 
with Factuality filtering

Bottom-Up Approach

● Activates all knowledge cards 
simultaneously

● Filters through Relevance, Pruning, 
and Factuality selectors

● Retains multi-domain, high-quality 
knowledge to enrich LLM responses

7



Training Knowledge Cards

Starting Point: Each Knowledge Card begins with a pre-trained language model 
(like OPT-1.3B).

Domain-Specific Training: Knowledge Cards are fine-tuned on specialized 
datasets from targeted domains, such as biomedical literature, news, or sports.

Objective: The goal is to enable each Knowledge Card to act as an expert in its 
domain, ready to provide relevant and accurate information when queried.

Flexible Updates: New Knowledge Cards can be added, updated, or replaced as 
knowledge evolves, keeping the framework adaptable and up-to-date.
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Relevance Selector

Theory: The Relevance Selector filters out knowledge that isn’t directly related to the query.
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Pruning Selector

Theory: To condense information, the Pruning Selector shortens documents to fit the LLM’s 
context length.

Process:

● Summarization models or heuristics (such as maximum information retention 
within character or token limits) are applied to shorten documents in 

● The exact formula may vary, as pruning is often heuristic-based rather than 
involving a specific formula, but the goal is to retain core information while 
reducing text length
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Factuality Selector

Theory: The Factuality Selector evaluates the accuracy of the selected documents.
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Experiment and Result

General QA Misinformation detection Temporal knowledge 
updates
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Analysis - Knowledge Selector Impact

● Relevance, Pruning, and Factuality selectors each contribute to improved quality.

● Factuality Selector is crucial in reducing hallucinations.
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Compatibility and Error Analysis

KNOWLEDGE CARD is compatible with other LLMs, 
speciffcally TEXT-DAVINCI-003 and GPT-3.5-TURBO

Confusion matrices of yes/no and 
correctness to see whether LLM 
know it need more information
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Conclusion

● Knowledge Card represents a powerful approach to improving LLM 
performance in a scalable and modular way. With its plug-and-play 
design, it can continuously evolve, offering a promising path for 
collaborative and community-driven knowledge updates.

● Knowledge Card would make the LLM ecosystem more dynamic and 
adaptive, paving the way for a truly up-to-date and factually accurate 
AI model.
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why SciBERT is needed?

scientific 
publications NLP Deep neural 

models
Large amounts 
of labeled data

scientific domains - 
expertise

Unsupervised pretraining of 
language models

SciBERT

general domains - 
crowdsourcing

general domain 
corpora - BERT & 

ELMo
scientific domains - 

?
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What contributions does this paper make?

● We release SCIBERT, a new resource demonstrated to improve performance 
on a range of NLP tasks in the scientific domain.

● We perform extensive experimentation to investigate the performance of 
finetuning versus task-specific architectures atop frozen embeddings, and the 
effect of having an in-domain vocabulary.

● We evaluate SCIBERT on a suite of tasks in the scientific domain, and 
achieve new state-of-the-art (SOTA) results on many of these tasks.
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Methods

● Background: the same architecture as BERT but is instead pretrained 
on scientific text.  

● Vocabulary:
○ BASEVOCAB: the original vocabulary released with BERT
○ SCIVOCAB: a new WordPiece vocabulary on our scientific corpus 

using the SentencePiece1 library.
● Corpus: a random sample of 1.14M papers from Semantic Scholar 

(Ammar et al., 2018).
○ This corpus consists of 18% papers from the computer science 

domain and 82% from the broad biomedical domain.
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Experimental Setup

● Tasks
● Datasets
● Pretrained BERT Variants

○ BERT-Base
○ SCIBERT

● Finetuning BERT
● Frozen BERT Embeddings
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Tasks & Datasets

● Tasks: NER, PICO, CLS, REL, DEP.
○ Named Entity Recognition (NER) , PICO Extraction (PICO) , Text 

Classification (CLS) , Relation Classification (REL) , Dependency Parsing 
(DEP) 

● Datasets: 
○ EBM-NLP (Nye et al., 2018), SciERC (Luan et al., 2018),  ACL-ARC (Jurgens 

et al., 2018),Paper Field, SciCite (Cohan et al., 2019). (newer)
○ BC5CDR (Li et al., 2016), JNLPBA (Collier and Kim, 2004), NCBI-disease 

(Dogan et al., 2014) , GENIA (Kim et al., 2003) - LAS,  ChemProt (Kringelum 
et al., 2016). (older)
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Datasets
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Pretrained BERT Variants

● BERT-Base: use pretrained weights from BERT-Base, with both cased and 
uncased versions evaluated, using the original BERT vocabulary (BASE-
VOCAB).

● SCIBERT: train four SciBERT models using BERT code, with versions 
differing in casing and vocabulary, where models with BASEVOCAB are fine-
tuned from BERT-Base, and those with SCIVOCAB are trained from scratch.

● Casing: The cased models for NER and the uncased models for all other 
tasks. We also use the cased models for parsing.
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Finetuning BERT & Frozen BERT Embeddings

● Finetuning BERT
○ The study fine-tunes BERT with task-specific modifications and optimized 

hyperparameters, achieving the best results with 2-4 epochs and a 2e-5 
learning rate across most datasets.

● Frozen BERT Embeddings
○ The study explores using frozen BERT embeddings with task-specific 

models for NLP tasks, incorporating BiLSTM and CRF layers, and 
applies cross-entropy loss with early stopping and a frozen BERT setup, 
achieving generally effective results across tasks without extensive 
hyperparameter tuning.

24



Result: Table 1
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Result: Table 2
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● BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text 
Mining), which is a domain-specific language representation model pre-trained on large-
scale biomedical corpora. (BioBERT: a pre-trained biomedical language representation 
model for biomedical text mining)



Discussion

● Effect of Finetuning
○ A = Finetune -  Frozen

SCIBERT BERT-Base

average A = +3.25 F1 A = +3.58 F1

computer science A = +5.59 F1 A = +3.17 F1

biomedical A = +2.94 F1 A = +4.61 F1

multidomain A = +0.7 F1 A = +1.14 F1
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Discussion

● Effect of SCIVOCAB
○ A = (SCIBERT_SCIVOCAB) - (SCIBERT_BASEVOCAB)

A

average +0.60 F1 

computer science +0.61 F1

biomedical +0.76 F1

multidomain +0.11 F1
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Conclusion and Future Work

● Conclusion: SciBERT performs exceptionally well across various 
tasks in the scientific domain, significantly outperforming BERT-Base 
and even surpassing BioBERT on certain biomedical tasks.

● Future Work: The team plans to release a BERT-Large version of 
SciBERT, conduct experiments with different proportions of domain-
specific papers, and develop a single multi-domain resource to 
maximize utility and reduce training costs.
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Introduction

Reasons for writing this article:

● The strong performance of large 
pretrained models across tasks 
raises doubts about the necessity 
of domain-specific models.

● Existing studies are limited by 
single-domain focus and lack 
insights on how continued 
pretraining varies with data size 
and domain proximity.
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Introduction

● Contributions
○ a thorough analysis of domain- and task-adaptive pretraining across four 

domains and eight tasks, spanning low- and high-resource settings.
○ an investigation into the transferability of adapted LMs across domains 

and tasks.
○ a study highlighting the importance of pretraining on human-curated 

datasets, and a simple data selection strategy to automatically approach 
this performance.
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Background: Pretraining

● pretrain ROBERTA (Liu et al., 2019) into two categories of 
unlabeled data:
○ large corpora of domain-specific text

○ available unlabeled data associated with a given task
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Domain-Adaptive Pretraining

Four areas: biomedical papers, computer science papers, news text, and Amazon 
reviews.
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Domain-Adaptive Pretraining

● Analyzing Domain Similarity
○ The study assesses domain similarity 

for ROBERTA by analyzing vocabulary 
overlap, finding greater alignment with 
News and Reviews than with 
Computer Science and Biomedical 
domains, indicating higher potential 
DAPT benefits for less similar 
domains.
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Domain-Adaptive Pretraining

● Experiments
○ The study continues pretraining ROBERTA for 12.5K steps on each domain 

dataset using a TPU, observing reduced masked LM loss in all domains 
except News. Each domain has two classification tasks, covering both high- 
and low-resource settings.

○ Baseline: ROBERTA-base model
○ Classification Architecture: pass the final layer [CLS] token representation to 

a task-specific feedforward layer for prediction
○ Results
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Domain-Adaptive Pretraining
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Domain-Adaptive Pretraining

● Experiments - Results

38



Domain-Adaptive Pretraining

● Domain Relevance for DAPT
● Domain Overlap
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Task-Adaptive Pretraining 

● Task-adaptive pretraining (TAPT) focuses on pretraining with task-specific 
datasets, which are usually narrow subsets of a broader domain, making 
TAPT more cost-effective and often comparable to domain-adaptive 
pretraining (DAPT) in performance.
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Task-Adaptive Pretraining

● Experiments
○ Task-adaptive pretraining (TAPT), conducted with task-specific data for 100 epochs, 

consistently outperforms the ROBERTA baseline across all domains and even surpasses 
domain-adaptive pretraining (DAPT) in certain tasks, showing TAPT as a more efficient 
adaptation method.

○ Combined DAPT and TAPT: Combining DAPT and TAPT by first applying DAPT and then 
TAPT provides the best performance across tasks, maximizing both domain and task-specific 
adaptation, though it is the most computationally expensive. Future work may explore more 
efficient pretraining strategies.

○ Cross-Task Transfer: The study finds that TAPT enhances single-task performance but limits 
cross-task transfer within the same domain, underscoring domain data distribution differences 
and supporting the benefit of applying TAPT after DAPT.
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Task-Adaptive Pretraining
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Augmenting Training Data for Task-Adaptive Pretraining 

● The study explores augmenting task-adaptive pretraining data by using a 
larger pool of human-curated, unlabeled data for certain tasks or retrieving 
related data from in-domain corpora when human-curated data is unavailable.
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Augmenting Training Data for Task-Adaptive Pretraining

● Human Curated-TAPT
○ Human-curated TAPT involves using a 

large, unlabeled corpus collected from 
known sources, which is similar to the task's 
training data, to aid in task-adaptive 
pretraining.

○ Data: The study simulates a low-resource 
setting by downsampling labeled data and 
using additional unlabeled data for fine-
tuning across RCT, HYPERPARTISAN, and 
IMDB tasks.

○ Results: Curated-TAPT greatly improves 
task performance, achieving near DAPT + 
TAPT results with minimal labeled data, 
underscoring the value of large, task-specific 
unlabeled datasets for effective model 
adaptation.
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Augmenting Training Data for Task-Adaptive Pretraining

● Automated Data Selection for TAPT
○ The study proposes an automated data 

selection method for TAPT in low-resource 
settings, embedding task and domain data 
to retrieve task-relevant text, creating a 
lightweight candidate pool for efficient 
pretraining.

○ Results indicate that kNN-TAPT 
outperforms TAPT across all cases, with its 
performance improving as k increases, 
approaching that of DAPT.
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Augmenting Training Data for Task-Adaptive Pretraining

● Automated Data Selection for TAPT
○ Result
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Augmenting Training Data for Task-Adaptive Pretraining

● Computational Requirements : 
TAPT is much faster and more 
storage-efficient than DAPT, with 
Curated-TAPT offering the best 
cost-effectiveness, while kNN-
TAPT provides a more affordable 
alternative to DAPT. 
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Related Work

● Transfer learning for domain adaptation
○ This study extends domain-specific pretraining research by examining the impact of 

adapting a diverse pretrained model to target domains in a cost-effective way.
● Task-adaptive pretraining

○ This section evaluates TAPT and DAPT's effectiveness for domain adaptation, comparing 
their performance based on data size, relevance, and transferability across tasks.

● Data selection for transfer learning
○ This section highlights the role of data selection in transfer learning, comparing various 

methods, including VAMPIRE for TAPT data augmentation and kNN-LMs for domain 
adaptation without further training.

● What is a domain?
○ DAPT and TAPT complement each other, which suggests a spectra of domains defined 

around tasks at various levels of granularity.
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Conclusion

● Adapting pretrained LMs to specific domains 
and tasks provides significant benefits for task 
performance.

● Large models may still struggle with domain 
complexity.

● Combining model scaling with domain-
relevant data could enhance model 
specialization

● The adaptation techniques tested on 
ROBERTA are generalizable to other 
pretrained LMs.

● Future work should focus on improving data 
selection for TAPT, adapting large LMs to 
diverse domains, and creating reusable 
models post-adaptation.
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Introduction

● LLMs have shown great potential in various fields, but their application in 

medicine was limited due to the high safety and accuracy standards required.

● Existing medical question-answering benchmarks are often limited and do not 

capture the nuances of real-world clinical applications.

● The authors aim to address these limitations by introducing MultiMedQA, a 

comprehensive benchmark for evaluating LLMs in the medical domain.
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Background

● The use of language is crucial in medicine for communication between 
clinicians, researchers, and patients.

● Current AI models in healthcare often lack the expressivity and interactive 
capabilities of LLMs.

● LLMs have the potential to learn from extensive medical datasets and help 
with a variety of tasks, including retrieving information, supporting clinical 
decisions, and triaging patients.

● However, ensuring the safety and ethical use of LLMs in medicine is crucial, 
as they can generate inaccurate or biased information.
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Research Questions

● How well do LLMs encode clinical knowledge?

● What are the limitations of LLMs in answering medical questions?

● How can LLMs be better aligned with the medical domain to improve their 

safety and accuracy?
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Overview of contributions
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Datasets

MultiMedQA benchmark, comprising 6+1 medical question-answering datasets:

● MedQA: USMLE-style questions.
● MedMCQA: Medical entrance exam questions from India.
● PubMedQA: Questions requiring comprehension of medical research.
● LiveQA: Consumer medical questions.
● MedicationQA: Questions about medications.
● MMLU clinical topics: Questions covering various clinical knowledge areas.
● HealthSearchQA: A new dataset of commonly searched health questions.
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Framework for human evaluation

● agreement with the scientific and clinical consensus

● the likelihood and possible extent of harm

● reading comprehension

● recall of relevant clinical knowledge

● manipulation of knowledge via valid reasoning

● completeness of responses

● potential for bias

● relevance and helpfulness
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Performance
60
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Modelling

● PaLM and Flan-PaLM, two LLMs, on MultiMedQA.

● Use of few-shot, chain-of-thought, and self-consistency prompting 

strategies to improve LLM performance.

● Introduction of instruction prompt tuning, a technique to adapt LLMs to 

the medical domain.
● Putting it all together: Med-PaLM
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Instruction prompt tuning 
63
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Evaluation of comprehension, retrieval and reasoning capabilities by 

clinicians
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Lay user assessment of answers
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Limitations

● Current benchmark covers diverse but limited medical exam, research, and 

consumer sources

● Current study limited to English-language datasets

● Improving Human Evaluation Methods

● Fairness and Equity

● Ethical Considerations
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Takeaways

● Transformative Potential:
Large Language Models (LLMs) could revolutionize medical AI, enhancing clinical support and 

patient care.

● Challenges & Ethics:
Safe and ethical deployment requires addressing LLM limitations and aligning them closely with 

medical needs.

● Call for Action:

Further research and cross-disciplinary collaboration are essential to responsibly apply these 

advancements to healthcare.
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Thanks for your time.

Questions?
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