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Background
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● LLM facing big challenge: the Contamination of Dataset

● Whether LLMs are Memorize the Answers or Generalization

● Closed source dataset



Aim
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● Provide provable tests of test set contamination in black box language models



Aim
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A well-known property is introduced to detect contamination: 

Exchangeability: the order of examples in the dataset can be shuffled without affecting its joint 

distribution



Aim
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Compare the log probability of the model:

1. With a standard dataset (no change)

2. With a dataset of shuffled examples



Contributions
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1. Exchangability could be used to identify test set contamination

2. An sliced hypothesis test for test set contamination

3. Empirical demonstration of black-box detection of contamination for small 

datasets that appear few times during pretraining



Problem Setting
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Provably identifying test set contamination can be viewed as a hypothesis test in 

which the goal is to distinguish between two hypotheses:

θ  is the training process of a language model

X is the dataset

If a model satisfies Exchangability, we have:

seq(X) means the sequence of whole dataset X, π is one of the permutation

No contamination

Contamination

No contamination

Contamination



Method
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Computational Complexity :  

It is clearly impractical to count all possible permutations of a data set

1. Cut the dataset into several pieces:

Solution:  

2. Permute the examples within each cut, estimate of the average 

likelihood of the shuffled order :

Where π is one of the permutation



Experiment

11

Size means the number of examples, Dup Count means the Frequency of injection of test set

Higher p means higher probability of choosing hypothesis H0



Experiment
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Experiment
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Method can not detect contamination with too many cuts More cuts lead to more accurate detection



Experiment
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Mistral-7B seems to have some level of contamination on Arc-Easy.

Note that those datasets are not guaranteed to have Exchangeability.



Limitations
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● No guarantee on the Exchangeability of off-the-shelf benchmark dataset.

We cannot know that a dataset is exchangable without knowing its data generating process

● Only direct contamination can be detected.
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Problem Statement
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As advances in LLMs have significantly improved the ability to generate code, researchers have come to 

rely on these models for program synthesis. However, existing code evaluation benchmarks (e.g., 

HUMANEVAL) have limitations in terms of the number and quality of tests, making it difficult to 

comprehensively assess the functional correctness of generated code.

● Insufficient testing

● Imprecise problem description



Overview of EvalPlus
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● Automated Test Input Generation

- Seed initialization via ChatGPT

- Type-aware input mutation

● Test-Suite Reduction

- Code coverage

- Mutant killings

- LLM sample killings

● Program Input Contracts



Seed initialization via ChatGPT
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● Constructed prompts containing real solutions 

to problems for ChatGPT to examine and refer 

to.

● Provide a set of test inputs as examples to help 

ChatGPT understand the task.

● Add instructions to encourage ChatGPT to 

create interesting input content.



Type-aware input mutation
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● Input generation and mutation process: initialize the generation pool based on seed inputs 

(generated by ChatGPT) and generate new inputs by randomly selecting seeds for mutation.

● Diversified mutation strategy: apply specific mutation methods based on different types of data (e.g., 

integers, floats, and composite types).  



HUMANEVAL+ And HUMANEVAL+-MINI
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Based on HUMANEVAL+ which on average obtains 764.1 tests 

for each programming task (Table 2), our test-suite reducer 

(§2.2) minimizes it to HUMANEVAL+MINI which only has 16.1 

tests for each task (smaller by 47×).



Overview of EvalPlus
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● Code Coverage: Code coverage measures the 

amount of code elements (e.g., statements or 

branches) executed by tests to assess test 

effectiveness. In this strategy, branch coverage is 

used as the testing requirement, with the goal of 

retaining a minimal subset of tests that covers the 

same set of branches as the full test suite.



Overview of EvalPlus
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● Mutant Killings: While code coverage indicates 

code execution, it doesn’t necessarily reveal 

critical defects. Mutation testing addresses this by 

injecting subtle bugs (mutants) into the code to 

create artificial faulty programs. The ratio of 

mutants detected (or “killed”) by tests is used to 

measure test effectiveness. This approach 

generally outperforms code coverage in 

evaluating test quality.



Overview of EvalPlus
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● LLM Sample Killings: Different LLMs may exhibit 

similar failures on certain test cases. To measure 

test effectiveness, we also consider sample 

killings, which reflect the number of incorrect LLM 

outputs a test case can detect. For new LLMs, 

since we lack execution results, we rely on results 

from other LLMs' samples to ensure the reduced 

test suite still detects all incorrect samples.



Evaluation(1)

25



Evaluation(2)
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Reduced test-suite for HUMANEVAL+
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● Test-Suite Reduction

- Code coverage

- Mutant killings

- LLM sample killings



Pass rate distribution
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X-axis spans bars for all 164 problems, sorted by the HUMANEVAL pass rate. Y-axis shows the log-scale 

pass rates averaged by all LLM-generated samples.



Exemplary incorrect-logic in HUMANEVAL
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This is implemented incorrectly as “and” in Python5 has higher precedence than “or”, 

leading to the ground-truth function to check if either conditions satisfies instead of the 

desired both conditions must satisfy.



Conclusion
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● EvalPlus improves the rigor of code generation evaluation: EvalPlus is an automated test-driven evaluation 

framework that more accurately evaluates the correctness of LLM-generated code by generating diverse test cases.

● Creation of HUMANEVAL+ and HUMANEVAL+-MINI Benchmarks: EvalPlus expands on HUMANEVAL by 

generating HUMANEVAL+, which dramatically improves test coverage by adding high-quality, automatically-

generated test cases, and HUMANEVAL+-MINI, which further reduces the test set to achieve close test results at a 

smaller HUMANEVAL+-MINI was generated by further reducing the test set to achieve closer test results at a smaller 

scale.

● HUMANEVAL+ significantly improves error detection: the evaluation of HUMANEVAL+ identifies a large amount of 

previously undetected erroneous code, proving the effectiveness of the framework in improving the accuracy of code 

generation evaluations.
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Background
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● Key challenge in AI research: reliable evaluation of AI assistants

● Traditional metrics fail to measure alignment with human intent

- BLEU, ROUGE, BERTScore, and BARTScore

● Consider LLM as evaluators

LLM-as-evaluator

Pointwise Pairwise

● Score the response

● Challenging to establish a 

detailed and accurate standard 

● More convenient 

● Compare two responses

● May struggle with scalability as 

responses increase

● More accurate and stable



Problem Statement
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Positional Bias

● Simply change the order of candidate responses leads to 

overturned comparison results even GPT-4 has been told 

to ignore the response order

- “Ensuring that the order in which the responses were 

presented does not affect your judgment” in command

● GPT-4 tends to favor the first response in pairwise 

evaluations, while ChatGPT favors the second response

- Compromise their fairness as evaluators



Revealing the Positional Bias
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Emphasizes not 

letting the order 

affect the results

Evaluation Template  T(Q, R1, R2)

Dataset

Manually annotate “win/tie/lose” 

outcomes for ChatGPT and Vicuna-13B 

responses on 80 questions across 9 

categories in the Vicuna benchmark.

Based on Helpfulness, 

relevance, and accuracy



Revealing the Positional Bias
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● LLMs are sensitive to the position of responses

● Positional Bias

- They prefer the response in the specific position

● The degree of positional bias varies based on the 

difference in response quality

- The smaller the score gap between them, the 

more likely GPT-4 is to produce conflicting 

results



Proposed solutions
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Multiple Evidence Calibration

Balanced Position Calibration

Human-in-the-Loop Calibration

Calibration of the Positional Bias

● Model conclusions lack support from 

subsequent explanations

● Requires the model to generate explanation 

first, and then give the score

● Alleviate the bias by swapping the order of 

responses and calculating the average score 

● Introduce manual labeling

● Stabilize the evaluation result

● Balanced Position Diversity Entropy

- Higher BPDE score indicates manual 

correction needed

- Top-β most likely biased evaluations



Proposed solutions
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The calibration framework with three calibration methods



Experiment
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● Human annotations are consistent

● GPT-4 aligns better with human judgments than ChatGPT

● Calibration Improvements

- MEC + BPC improves ChatGPT accuracy by 14.3% and kappa from 

0.06 to 0.31

- MEC (k=3) + BPC (k=3) outperforms MEC (k=6), indicating that 

positional bias is effectively reduced

● By adding 20% human assistance, ChatGPT achieves similar human 

alignment with 39% cost reduction (from $30 to $18.3)

Dataset: Annotated “win/tie/lose” for ChatGPT and Vicuna-13B 

on 80 Vicuna questions

Models: ChatGPT (gpt-3.5-turbo) & GPT-4 (gpt-4)

Temperature: 0 (deterministic), 1 with k=3 (multiple evidence)

Metrics: Accuracy & kappa vs. human annotations

Non-BPC: Randomized response order, 100-run average

Setup



Analysis
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● k = 3 for best balance of performance and API cost

● Best temperature range: 0.6 - 1.0 for optimal alignment

- low temperature eliminates the randomness of sampling, 

weakening the effect of MEC, while high temperature 

compromises the quality of generation results.

● BPDE outperforms Random and Vanilla DE

● Being sensitive to position, the results of BPC can significantly 

improve the performance of HITLC compared to relying solely 

on the results of MEC



Analysis
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● Extend the analysis to Comparing template

● The calibration methods reduce the 6% accuracy gap 

and conflict rate of the VANILLA method of two 

templates, enhancing LLM robustness

● Fine-grained analysis of evaluation quality

● GPT-4 outperforms ChatGPT in areas like common 

sense, coding, and math

● MEC+BPC strategy significantly improves the 

performance of ChatGPT on complex tasks, achieving 

good results with low API cost



Contribution and Conclusion
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● Revealed positional bias in LLM evaluations, which affects fairness and reliability.

● Developed a calibration framework with three strategies to mitigate bias, improving alignment with human 

judgments.

● Experiments and manual annotations on the Vicuna benchmark to validate the effectiveness and show improved 

alignment with human judgments.

● Limitations - Did not explore underlying causes of bias, which could be the future direction of research.
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Introduction
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● Need for Comprehensive Evaluation: Current benchmarks lack scope, missing many aspects of language model 

capabilities, risks, and limitations, underscoring the need for a holistic approach

● Diverse Scenarios and Metrics: Language models must be evaluated across varied application scenarios, 

balancing multiple metrics like accuracy, robustness, and fairness for a well-rounded assessment

● Importance of Standardization: Consistent, standardized evaluation is critical for fair comparison across 

models, enabling a clearer understanding of their relative strengths and weaknesses



The importance of the taxonomy to HELM
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Many metrics for each use case
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In comparison to most prior benchmarks of language technologies, which primarily center accuracy and often relegate 

other desiderata to their own bespoke datasets (if at all), in HELM we take a multi-metric approach. This foregrounds 

metrics beyond accuracy and allows one to study the tradeoffs between the metrics.



46



25 high-level findings
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● 1. Benefits of Instruction-Tuning

● 2. Model Accuracy and Access Levels

● 3. Calibration

● 4. Robustness and Fairness Perturbations

● 5. Performance Disparities

● 6. Generative Harms

● 7. Accuracy vs. Efficiency

● 8. Question Answering

● 9. Information Retrieval

● 10. Summarization

● 11. Sentiment Analysis

● 12. Toxicity Detection

● 13. Miscellaneous Text Classification

● 14. Linguistic Understanding

● 15. Knowledge

● 16. Reasoning

● 17. Memorization of Copyrighted Content

● 18. Disinformation Generation

● 19. Targeted Biases

● 20. Toxicity Generation

● 21. Comprehensiveness

● 22. Prompt Sensitivity

● 23. Multiple Choice Adaptation Method

● 24. Upstream Perplexity and Downstream Accuracy

● 25. Trends for Model Scale



Metrics
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Accuracy
Uncertainty & 
Calibration

Bias & Stereotypes

Robustness

Toxicity Efficiency

Accuracy and precision 

of the model

Calibration and model 

uncertainty

Model performance in the 

face of disturbances or 

unusual inputs

Fairness

Fairness of the model to 

different social groups

Social biases and stereotypes 

in generated content of 

models

Harmful or offensive content 

in model output

Energy and computational 

costs of the model in the 

training and inference phases



Metrics - Robustness

49

● Models face diverse, noisy inputs (e.g., typos, syntax changes) that 

can degrade performance.

● Measure worst-case performance across input transformations.

Invariance

● Tests stability under small, meaning-preserving changes (e.g., 

typos, capitalization).

● Used in text classification, QA, and info retrieval.

Equivariance

● Tests if changes in semantics lead to appropriate changes in the 

model’s behavior.

● Uses Contrast Sets, such as datasets in the BoolQ question-

answering and IMDB sentiment analysis scenarios.



Metrics - Fairness
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● Fairness ensures technology positively impacts social change.

● Evaluation Methods

- Counterfactual Fairness: Tests model’s behavior on modified social 

group attributes (e.g., race, gender).

- Performance Disparities: Compares accuracy across groups using 

group-level metadata.

● Discussion

- Should models adapt to specific dialects (e.g., African American 

English)?

- Should models match input language variety or use a standard?



Targeted Evaluations
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Language Knowledge

DisinformationMemorization & 
Copyright

Reasoning

ToxicityBias

Evaluates English 

understanding through 

language modeling and 

minimal pairs

Tests knowledge via 

question answering and 

text completion

Assesses reasoning skills in 

synthetic and real-world 

tasks

Checks for memorization 

of copyrighted content

Assesses risk of generating 

false information

Identifies potential biases in 

model output

Evaluates risk of producing 

harmful content



Targeted Evaluations - Knowledge
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Evaluation

Knowledge-intensive QA

Fact completion

Assess practical knowledge using 

existing QA benchmarks that 

require significant knowledge.

Evaluate model knowledge 

independently from language 

understanding/reasoning by 

using simple factual prompts.

Based on Wikidata, covering 12 domains and 86 

relationship types.

5-shot Accuracy@K: Measures if the ground-truth 

label is among the model’s top K predictions.

HellaSwag, OpenBookQA: General common sense

TruthfulQA: Focus on factuality

MMLU: Specialized knowledge across 57 domains 

(humanities, social sciences, STEM).

Datasets

Challenge: Multiple correct answers (e.g., different names or aliases for the same entity)

Example: The capital of France is __.



Experiment
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Experiment

54 Model accuracies as a function of time



Experiment

55 Relationship between Model Parameter Size and Best Model Accuracy
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