
Evaluation of Language Models

Presenters: Yuqi Chen, Siqi Ma, Meichuan Yin

Date: 11/05/2024

Overview

2

Proving Test Set Contamination in Black Box Language Models

Is Your Code Generated by ChatGPT Really Correct? Rigorous

Evaluation of Large Language Models for Code Generation

Large Language Models are not Fair Evaluators

Holistic Evaluation of Language Models

01

02

03

04

PROVING TEST SET CONTAMINATION
IN BLACK BOX LANGUAGE MODELS

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak,
Tatsunori B. Hashimoto

ICLR2024

https://arxiv.org/abs/2310.17623

Background

4

● LLM facing big challenge: the Contamination of Dataset

● Whether LLMs are Memorize the Answers or Generalization

● Closed source dataset

Aim

5

● Provide provable tests of test set contamination in black box language models

Aim

6

A well-known property is introduced to detect contamination:

Exchangeability: the order of examples in the dataset can be shuffled without affecting its joint

distribution

Aim

7

Compare the log probability of the model:

1. With a standard dataset (no change)

2. With a dataset of shuffled examples

Contributions

8

1. Exchangability could be used to identify test set contamination

2. An sliced hypothesis test for test set contamination

3. Empirical demonstration of black-box detection of contamination for small

datasets that appear few times during pretraining

Problem Setting

9

Provably identifying test set contamination can be viewed as a hypothesis test in

which the goal is to distinguish between two hypotheses:

θ is the training process of a language model

X is the dataset

If a model satisfies Exchangability, we have:

seq(X) means the sequence of whole dataset X, π is one of the permutation

No contamination

Contamination

No contamination

Contamination

Method

10

Computational Complexity :

It is clearly impractical to count all possible permutations of a data set

1. Cut the dataset into several pieces:

Solution:

2. Permute the examples within each cut, estimate of the average

likelihood of the shuffled order :

Where π is one of the permutation

Experiment

11

Size means the number of examples, Dup Count means the Frequency of injection of test set

Higher p means higher probability of choosing hypothesis H0

Experiment

12

Experiment

13

Method can not detect contamination with too many cuts More cuts lead to more accurate detection

Experiment

14

Mistral-7B seems to have some level of contamination on Arc-Easy.

Note that those datasets are not guaranteed to have Exchangeability.

Limitations

15

● No guarantee on the Exchangeability of off-the-shelf benchmark dataset.

We cannot know that a dataset is exchangable without knowing its data generating process

● Only direct contamination can be detected.

Is Your Code Generated by ChatGPT Really
Correct? Rigorous Evaluation of Large
Language Models for Code Generation

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, Lingming Zhang

NIPS '23

https://arxiv.org/abs/2305.01210

https://dl.acm.org/doi/proceedings/10.5555/3666122

Problem Statement

17

As advances in LLMs have significantly improved the ability to generate code, researchers have come to

rely on these models for program synthesis. However, existing code evaluation benchmarks (e.g.,

HUMANEVAL) have limitations in terms of the number and quality of tests, making it difficult to

comprehensively assess the functional correctness of generated code.

● Insufficient testing

● Imprecise problem description

Overview of EvalPlus

18

● Automated Test Input Generation

- Seed initialization via ChatGPT

- Type-aware input mutation

● Test-Suite Reduction

- Code coverage

- Mutant killings

- LLM sample killings

● Program Input Contracts

Seed initialization via ChatGPT

19

● Constructed prompts containing real solutions

to problems for ChatGPT to examine and refer

to.

● Provide a set of test inputs as examples to help

ChatGPT understand the task.

● Add instructions to encourage ChatGPT to

create interesting input content.

Type-aware input mutation

20

● Input generation and mutation process: initialize the generation pool based on seed inputs

(generated by ChatGPT) and generate new inputs by randomly selecting seeds for mutation.

● Diversified mutation strategy: apply specific mutation methods based on different types of data (e.g.,

integers, floats, and composite types).

HUMANEVAL+ And HUMANEVAL+-MINI

21

Based on HUMANEVAL+ which on average obtains 764.1 tests

for each programming task (Table 2), our test-suite reducer

(§2.2) minimizes it to HUMANEVAL+MINI which only has 16.1

tests for each task (smaller by 47×).

Overview of EvalPlus

22

● Code Coverage: Code coverage measures the

amount of code elements (e.g., statements or

branches) executed by tests to assess test

effectiveness. In this strategy, branch coverage is

used as the testing requirement, with the goal of

retaining a minimal subset of tests that covers the

same set of branches as the full test suite.

Overview of EvalPlus

23

● Mutant Killings: While code coverage indicates

code execution, it doesn’t necessarily reveal

critical defects. Mutation testing addresses this by

injecting subtle bugs (mutants) into the code to

create artificial faulty programs. The ratio of

mutants detected (or “killed”) by tests is used to

measure test effectiveness. This approach

generally outperforms code coverage in

evaluating test quality.

Overview of EvalPlus

24

● LLM Sample Killings: Different LLMs may exhibit

similar failures on certain test cases. To measure

test effectiveness, we also consider sample

killings, which reflect the number of incorrect LLM

outputs a test case can detect. For new LLMs,

since we lack execution results, we rely on results

from other LLMs' samples to ensure the reduced

test suite still detects all incorrect samples.

Evaluation(1)

25

Evaluation(2)

26

Reduced test-suite for HUMANEVAL+

27

● Test-Suite Reduction

- Code coverage

- Mutant killings

- LLM sample killings

Pass rate distribution

28

X-axis spans bars for all 164 problems, sorted by the HUMANEVAL pass rate. Y-axis shows the log-scale

pass rates averaged by all LLM-generated samples.

Exemplary incorrect-logic in HUMANEVAL

29

This is implemented incorrectly as “and” in Python5 has higher precedence than “or”,

leading to the ground-truth function to check if either conditions satisfies instead of the

desired both conditions must satisfy.

Conclusion

30

● EvalPlus improves the rigor of code generation evaluation: EvalPlus is an automated test-driven evaluation

framework that more accurately evaluates the correctness of LLM-generated code by generating diverse test cases.

● Creation of HUMANEVAL+ and HUMANEVAL+-MINI Benchmarks: EvalPlus expands on HUMANEVAL by

generating HUMANEVAL+, which dramatically improves test coverage by adding high-quality, automatically-

generated test cases, and HUMANEVAL+-MINI, which further reduces the test set to achieve close test results at a

smaller HUMANEVAL+-MINI was generated by further reducing the test set to achieve closer test results at a smaller

scale.

● HUMANEVAL+ significantly improves error detection: the evaluation of HUMANEVAL+ identifies a large amount of

previously undetected erroneous code, proving the effectiveness of the framework in improving the accuracy of code

generation evaluations.

Large Language Models are not
Fair Evaluators
Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai
Lin, Yunbo Cao, Lingpeng Kong, Qi Liu, Tianyu Liu, Zhifang Sui

ACL 2024

https://arxiv.org/abs/2305.17926

Background

32

● Key challenge in AI research: reliable evaluation of AI assistants

● Traditional metrics fail to measure alignment with human intent

- BLEU, ROUGE, BERTScore, and BARTScore

● Consider LLM as evaluators

LLM-as-evaluator

Pointwise Pairwise

● Score the response

● Challenging to establish a

detailed and accurate standard

● More convenient

● Compare two responses

● May struggle with scalability as

responses increase

● More accurate and stable

Problem Statement

33

Positional Bias

● Simply change the order of candidate responses leads to

overturned comparison results even GPT-4 has been told

to ignore the response order

- “Ensuring that the order in which the responses were

presented does not affect your judgment” in command

● GPT-4 tends to favor the first response in pairwise

evaluations, while ChatGPT favors the second response

- Compromise their fairness as evaluators

Revealing the Positional Bias

34

Emphasizes not

letting the order

affect the results

Evaluation Template T(Q, R1, R2)

Dataset

Manually annotate “win/tie/lose”

outcomes for ChatGPT and Vicuna-13B

responses on 80 questions across 9

categories in the Vicuna benchmark.

Based on Helpfulness,

relevance, and accuracy

Revealing the Positional Bias

35

● LLMs are sensitive to the position of responses

● Positional Bias

- They prefer the response in the specific position

● The degree of positional bias varies based on the

difference in response quality

- The smaller the score gap between them, the

more likely GPT-4 is to produce conflicting

results

Proposed solutions

36

Multiple Evidence Calibration

Balanced Position Calibration

Human-in-the-Loop Calibration

Calibration of the Positional Bias

● Model conclusions lack support from

subsequent explanations

● Requires the model to generate explanation

first, and then give the score

● Alleviate the bias by swapping the order of

responses and calculating the average score

● Introduce manual labeling

● Stabilize the evaluation result

● Balanced Position Diversity Entropy

- Higher BPDE score indicates manual

correction needed

- Top-β most likely biased evaluations

Proposed solutions

37

The calibration framework with three calibration methods

Experiment

38

● Human annotations are consistent

● GPT-4 aligns better with human judgments than ChatGPT

● Calibration Improvements

- MEC + BPC improves ChatGPT accuracy by 14.3% and kappa from

0.06 to 0.31

- MEC (k=3) + BPC (k=3) outperforms MEC (k=6), indicating that

positional bias is effectively reduced

● By adding 20% human assistance, ChatGPT achieves similar human

alignment with 39% cost reduction (from $30 to $18.3)

Dataset: Annotated “win/tie/lose” for ChatGPT and Vicuna-13B

on 80 Vicuna questions

Models: ChatGPT (gpt-3.5-turbo) & GPT-4 (gpt-4)

Temperature: 0 (deterministic), 1 with k=3 (multiple evidence)

Metrics: Accuracy & kappa vs. human annotations

Non-BPC: Randomized response order, 100-run average

Setup

Analysis

39

● k = 3 for best balance of performance and API cost

● Best temperature range: 0.6 - 1.0 for optimal alignment

- low temperature eliminates the randomness of sampling,

weakening the effect of MEC, while high temperature

compromises the quality of generation results.

● BPDE outperforms Random and Vanilla DE

● Being sensitive to position, the results of BPC can significantly

improve the performance of HITLC compared to relying solely

on the results of MEC

Analysis

40

● Extend the analysis to Comparing template

● The calibration methods reduce the 6% accuracy gap

and conflict rate of the VANILLA method of two

templates, enhancing LLM robustness

● Fine-grained analysis of evaluation quality

● GPT-4 outperforms ChatGPT in areas like common

sense, coding, and math

● MEC+BPC strategy significantly improves the

performance of ChatGPT on complex tasks, achieving

good results with low API cost

Contribution and Conclusion

41

● Revealed positional bias in LLM evaluations, which affects fairness and reliability.

● Developed a calibration framework with three strategies to mitigate bias, improving alignment with human

judgments.

● Experiments and manual annotations on the Vicuna benchmark to validate the effectiveness and show improved

alignment with human judgments.

● Limitations - Did not explore underlying causes of bias, which could be the future direction of research.

Holistic Evaluation of Language Models

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang
Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré,
Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda
Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert
Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli,
Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang,
Xuechen Li, Yifan Mai, Yuhui Zhang, Yuta Koreeda

TMLR, 2023

https://arxiv.org/abs/2211.09110

Introduction

43

● Need for Comprehensive Evaluation: Current benchmarks lack scope, missing many aspects of language model

capabilities, risks, and limitations, underscoring the need for a holistic approach

● Diverse Scenarios and Metrics: Language models must be evaluated across varied application scenarios,

balancing multiple metrics like accuracy, robustness, and fairness for a well-rounded assessment

● Importance of Standardization: Consistent, standardized evaluation is critical for fair comparison across

models, enabling a clearer understanding of their relative strengths and weaknesses

The importance of the taxonomy to HELM

44

Many metrics for each use case

45

In comparison to most prior benchmarks of language technologies, which primarily center accuracy and often relegate

other desiderata to their own bespoke datasets (if at all), in HELM we take a multi-metric approach. This foregrounds

metrics beyond accuracy and allows one to study the tradeoffs between the metrics.

46

25 high-level findings

47

● 1. Benefits of Instruction-Tuning

● 2. Model Accuracy and Access Levels

● 3. Calibration

● 4. Robustness and Fairness Perturbations

● 5. Performance Disparities

● 6. Generative Harms

● 7. Accuracy vs. Efficiency

● 8. Question Answering

● 9. Information Retrieval

● 10. Summarization

● 11. Sentiment Analysis

● 12. Toxicity Detection

● 13. Miscellaneous Text Classification

● 14. Linguistic Understanding

● 15. Knowledge

● 16. Reasoning

● 17. Memorization of Copyrighted Content

● 18. Disinformation Generation

● 19. Targeted Biases

● 20. Toxicity Generation

● 21. Comprehensiveness

● 22. Prompt Sensitivity

● 23. Multiple Choice Adaptation Method

● 24. Upstream Perplexity and Downstream Accuracy

● 25. Trends for Model Scale

Metrics

48

Accuracy
Uncertainty &
Calibration

Bias & Stereotypes

Robustness

Toxicity Efficiency

Accuracy and precision

of the model

Calibration and model

uncertainty

Model performance in the

face of disturbances or

unusual inputs

Fairness

Fairness of the model to

different social groups

Social biases and stereotypes

in generated content of

models

Harmful or offensive content

in model output

Energy and computational

costs of the model in the

training and inference phases

Metrics - Robustness

49

● Models face diverse, noisy inputs (e.g., typos, syntax changes) that

can degrade performance.

● Measure worst-case performance across input transformations.

Invariance

● Tests stability under small, meaning-preserving changes (e.g.,

typos, capitalization).

● Used in text classification, QA, and info retrieval.

Equivariance

● Tests if changes in semantics lead to appropriate changes in the

model’s behavior.

● Uses Contrast Sets, such as datasets in the BoolQ question-

answering and IMDB sentiment analysis scenarios.

Metrics - Fairness

50

● Fairness ensures technology positively impacts social change.

● Evaluation Methods

- Counterfactual Fairness: Tests model’s behavior on modified social

group attributes (e.g., race, gender).

- Performance Disparities: Compares accuracy across groups using

group-level metadata.

● Discussion

- Should models adapt to specific dialects (e.g., African American

English)?

- Should models match input language variety or use a standard?

Targeted Evaluations

51

Language Knowledge

DisinformationMemorization &
Copyright

Reasoning

ToxicityBias

Evaluates English

understanding through

language modeling and

minimal pairs

Tests knowledge via

question answering and

text completion

Assesses reasoning skills in

synthetic and real-world

tasks

Checks for memorization

of copyrighted content

Assesses risk of generating

false information

Identifies potential biases in

model output

Evaluates risk of producing

harmful content

Targeted Evaluations - Knowledge

52

Evaluation

Knowledge-intensive QA

Fact completion

Assess practical knowledge using

existing QA benchmarks that

require significant knowledge.

Evaluate model knowledge

independently from language

understanding/reasoning by

using simple factual prompts.

Based on Wikidata, covering 12 domains and 86

relationship types.

5-shot Accuracy@K: Measures if the ground-truth

label is among the model’s top K predictions.

HellaSwag, OpenBookQA: General common sense

TruthfulQA: Focus on factuality

MMLU: Specialized knowledge across 57 domains

(humanities, social sciences, STEM).

Datasets

Challenge: Multiple correct answers (e.g., different names or aliases for the same entity)

Example: The capital of France is __.

Experiment

53

Experiment

54 Model accuracies as a function of time

Experiment

55 Relationship between Model Parameter Size and Best Model Accuracy

References

56

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2019). BERTScore: Evaluating Text Generation with BERT. ArXiv.

https://arxiv.org/abs/1904.09675

Yuan, W., Neubig, G., & Liu, P. (2021). BARTScore: Evaluating Generated Text as Text Generation. ArXiv. https://arxiv.org/abs/2106.11520

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: a method for automatic evaluation of machine translation. In Proceedings of

the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar, A., Newman,B., Yuan, B., Yan,
B., Zhang, C., Cosgrove, C., Manning, C. D., Ré, C., Hudson, D. A., Zelikman, E., . . . Koreeda, Y. (2022). Holistic Evaluation of Language Models.
ArXiv. https://arxiv.org/abs/2211.09110

Wang, P., Li, L., Chen, L., Cai, Z., Zhu, D., Lin, B., ... & Sui, Z. (2023). Large language models are not fair evaluators. arXiv preprint
arXiv:2305.17926.

Oren, Y., Meister, N., Chatterji, N., Ladhak, F., & Hashimoto, T. B. (2023). Proving Test Set Contamination in Black Box Language Models. ArXiv.

https://arxiv.org/abs/2310.17623

Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2023). Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language
Models for Code Generation. ArXiv. https://arxiv.org/abs/2305.01210

https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2106.11520
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2310.17623
https://arxiv.org/abs/2305.01210

Questions?

	Slide 1: Evaluation of Language Models
	Slide 2: Overview
	Slide 3: PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS
	Slide 4: Background
	Slide 5: Aim
	Slide 6: Aim
	Slide 7: Aim
	Slide 8: Contributions
	Slide 9: Problem Setting
	Slide 10: Method
	Slide 11: Experiment
	Slide 12: Experiment
	Slide 13: Experiment
	Slide 14: Experiment
	Slide 15: Limitations
	Slide 16: Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
	Slide 17: Problem Statement
	Slide 18: Overview of EvalPlus
	Slide 19: Seed initialization via ChatGPT
	Slide 20: Type-aware input mutation
	Slide 21: HUMANEVAL+ And HUMANEVAL+-MINI
	Slide 22: Overview of EvalPlus
	Slide 23: Overview of EvalPlus
	Slide 24: Overview of EvalPlus
	Slide 25: Evaluation(1)
	Slide 26: Evaluation(2)
	Slide 27: Reduced test-suite for HUMANEVAL+
	Slide 28: Pass rate distribution
	Slide 29: Exemplary incorrect-logic in HUMANEVAL
	Slide 30: Conclusion
	Slide 31: Large Language Models are not Fair Evaluators
	Slide 32: Background
	Slide 33: Problem Statement
	Slide 34: Revealing the Positional Bias
	Slide 35: Revealing the Positional Bias
	Slide 36: Proposed solutions
	Slide 37: Proposed solutions
	Slide 38: Experiment
	Slide 39: Analysis
	Slide 40: Analysis
	Slide 41: Contribution and Conclusion
	Slide 42: Holistic Evaluation of Language Models
	Slide 43: Introduction
	Slide 44: The importance of the taxonomy to HELM
	Slide 45: Many metrics for each use case
	Slide 46
	Slide 47: 25 high-level findings
	Slide 48: Metrics
	Slide 49: Metrics - Robustness
	Slide 50: Metrics - Fairness
	Slide 51: Targeted Evaluations
	Slide 52: Targeted Evaluations - Knowledge
	Slide 53: Experiment
	Slide 54: Experiment
	Slide 55: Experiment
	Slide 56: References
	Slide 57: Questions?

