T
x5

Washington
University in St.Louis

JAMES MCKELVEY
SCHOOL OF ENGINEERING

CSE 561A: Large Language
Models

Spring 2024

Lecture 2: Language Model Architectures and Pre-training

Content

 Transformers: Self-Attention

e Different Architectures of Pre-trained Language Models
e Decoder-Only Models (GPT)
* Encoder-Only Models (BERT)
 Encoder-Decoder Models (T5, BART)

Recap: Context-Free Embedding

e 1) Each word is mapped to only one vector regardless of its context!
* E.g. “bank” is a polysemy, but only has one representation

Share representation
 2) It does not consider the order of words
 3) It treats the words in the context window equally

* Solution: We need contextualized text representations!
* Injecting context information into words via advanced model architectures

Attention is all you need (Transformer)

* Self-Attention: Each token attends to every other token in the
sentence, but with different weights

« Demo: https://github.com/jessevig/bertviz yer. [0 ¥ atention: (i

[CLS] . [CLS]

- | W) ¢) - e - ! the the
LSy T LS [CLS) rabbit rabbit
the the the the quickly quickly
rabbit rabbit rabbit rabbit
quickly quickly quickly quickly hopped hopped
hopped hopped hopped hopped [SEP] [SEP]
[SEP] [SEP] [SEP] [SEP]
the the the the the the
turtle turtle turtle turtle turtle turtle
slowly slowly slowly slowly
crawled crawled crawled crawled slowly slowly
[SEP] [SEP] [SEP] [SEP] crawled crawled

[SEP] [SEP]

Self-Attention

* Each word is represented as a query, key and value vector. The vectors are
obtained from the input embeddings multiplied by a weight matrix.

Eg., Represent “rabbit” with its context:

~ | S—

Embedding (T 1T 1] (T T 1] =

[CLS] [CLS]

the the

rabbit rabbit

. quickly quickly
Queries [::I::I::] [::[::[:] hopped hopped
[SEP] [SEP]

the the

turtle turtle

slowly slowly
crawled crawled

[SEP] [SEP]

Keys [:I:I:] [:I:j:]
Z a(qa kz)vz
i=1 l

Values (T 1] [T T] Attention: normalized dot
product of g and k;

Self-Attention: Matrix Calculation
Q

Wwa

Q

softmax(

T
x)
AV (lk-
First token Last token
(key vector) (key vector)
First token

(query vector)

Last token

(query vector)

Attention Matrix

Multi-Head Attention

* Input: Multiple Independent sets of query, key, value matrices
e Qutput: Concatenate the outputs of attention heads
* Advantage: Each attention head focus on one subspace

MultiHead(Q, K, V) = Concat(head;, ..., head;,)W
where head; = Attention(QWiQ, KWE vwY)
R . . L I I

B [Layer Attention: [All O ~ (CLS] OLS]
[CLS] [CLS] the the
the the [CLS] [CLS]) rabbit cabbit
rabbit rabbit the the Concatenation . !
. = quickly quickly
quickly quickly rabbit rabbit
hopped hopped quickly quickly _ hopped hopped
[SEP] [SEP] hopped hopped [SEP] [SEP]
the the [SEP] [SEP] the the
turtle turtle the the turtle turtle
slowly slowly turtle turtle slowly slowly
crawled crawled slowly slowly crawled crawled
[SEP] [SEP] crawled crawled [SEP] [SEP]

[SEP] [SEP]

Transformer Model Architecture

* Input Embedding
* Positional Encoding

e 12 Transformer layers
* 6 encoder layers: text understanding
* 6 decoder layers: text generation

e Qutput: Linear + SoftMax layer for next
word prediction

Output
Probabilities
[Linear |
(")
Add & Norm
Feed
Forward
4 | ~\ | Add & Norm |::
Al VBT Mutti-Head
Feed Attention
Forward 7 N x
—
R Add & Norm
f—>| Add & Norm | BeRed
Multi-Head Multi-Head
Attention Attention
At At
—_— J _ _
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder Layer

* Multi-head attention layer captures information from different subspaces

at different positions .
r\

Feed

MultiHead(Q, K, V) = Concat(heady, ..., heady,)W Forward

where head; = Attention(QWiQ, KWkE, VWiV) k
Nx | —(Add&Nom)

* Feed-forward layer is applied to each token position EH_(;
without interaction with other positions - EEESEE;Q' ! ’
FFN(z) = max (0, zW; + by)Wy + by 1 R T
* Bidirectional attention: 'nptuts
* Every token attends to all tokens {/ ; }
(A Je Joe -

Decoder Layer

* Demo from https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1@3 456 OUTPUT

?

Kencdec Vencdec (Linear + Softmax

)
[ENCODERS] [DECODERS]
o ~/

EMBEDDING t U 4 f
WITHTIME [OIO0 [T [T
SIGNAL
EMBEDDINGS [[[l RN
INPUT Je suis étudiant PREVIOUS

OUTPUTS

https://jalammar.github.io/illustrated-transformer/

Decoder Layer

 Unidirectional Self-Attention:

* Every token attends to its previous tokens

e Attention Matrix

First token Last token
(key vector) (key vector)
First token

(query vector)

Last token
(query vector)
Attention Matrix (Encoder)

4
3 ¥
LA e J e
First token Last token
(key vector) (key vector)

First token

(query vector)

Last token

(query vector)

Attention Matrix (Decoder)

Content

* Transformers: Self-Attention

* Different Architectures of Pre-trained Language Models
e Decoder-Only Models (GPT)
* Encoder-Only Models (BERT)
 Encoder-Decoder Models (T5, BART)

Pretrain-Finetune Paradigm

* “Pretraining”: Train deep language models (usually Transformer models) via self-
supervised objectives on large-scale general-domain corpora

* “Fine-tuning”: Adapt the pretrained language models (PLMs) to downstream tasks by
further training on task-specific data

* The power of PLMs: Encode generic Iinf%uistic features and knowledge learned through
large-scale pretraining, which can be effectively transferred to the target applications

Large corpus (like Task-specific
Wikipedia) dataset (like Q/A) Test dataset
Language .| FIne tuning + Final Model

Model the model

Overview of Pretraining

* Self-supervised learning
* Make a part of the input unknown to the model
* Let the model predict that unknown part based on the known part

4 o)
Mask/Corrupt —,g- Reconstruct
> < Pretrained Model >
1\ Y

Original data Corrupted data Original data

Different Architectures for PLMSs

* Decoder-Only (Unidirectional) PLM (e.g., GPT): Predict the next token
based on previous tokens, usually used for language generation tasks

* Encoder-Only (Bidirectional) PLM (e.g., BERT, XLNet, ELECTRA): Predict
masked/corrupted tokens based on all other (uncorrupted) tokens,
usually used for language understanding/classification tasks

* Encoder-Decoder (Sequence-to-Sequence) PLM (e.g., T5, BART):
Generate output sequences given masked/corrupted input sequences,
can be used for both language understanding and generation tasks

Decoder Pretraining (GPT) = B
- \/
* Model Architecture: A multi-layer transformer !
decoder Layer Norm
* Leverage unidirectional context (usually left-to-right) — onmard
for next token prediction (i.e., language modeling) . ¥
k previous tokens as context Layer Norm
fuse = = Y logp(e {717 —
i Masked Multi
* The Transformer uses unidirectional attention masks e
(i.e., every token can only attend to previous tokens) —
Text & Position Embed

* Decoder architecture is the prominent choice in
large language models

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by
generative pre-training. OpenAl blog.

Decoder Pretraining

LLM - Z lng((L'z | Liksy--) wi—l)
i

Original word : thank you forjinviting me to your party

6 stage thank you for inviting me to your party
e ——— ———— NG
5 stage thank you for inviting me to your
e e ~ ==
4 stage thank you for inviting me to
T ey

3 stage thank you for inviting me

ey
2 stage thank you for inviting

e Ty

1 stage thank you for

Usage of Decoder Models

* Question Answering

Translate English to French:

cheese =>

Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese =>

task description

prompt

task description

examples

prompt

Content

* Transformers (continued)

e Different Architectures of Pre-trained Language Models
e Decoder-Only Models (GPT)
* Encoder-Only Models (BERT)
* Encoder-Decoder Models (BART, T5)

BERT Model Architecture

* Pre-training objectives
* Masked language modeling (with bidirectional attention) + Next Sentence
Prediction

* 15% of tokens are randomly corrupted (masked) for model prediction

eating walking zZ0o
. 1 15% | 5% | ... | 0% |
Prediction
RoBERTa

Language Model

A A R T T

Random The cat is [MASK] some food

Masking

Input The cat is eating some food

[1] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Devlin et al. NAACL'19.

BERT Model Architecture

* Bidirectional attention: each token can attend to its left and right
context for self-attention

Output C Tl T2 cee TN
y Y
Trm Trm Trm - Trm
Network
structure of
BERT
Trm Trm Trm

Token

Embeddings

el En || Ea Ea En | [EA || Ea | | Es || Es | | Es | | EB
+ + + + + + + + + +

:E,::li)teigzings EO El E3 E4 ES E6 E7 E8 E9 ElO

Next Sentence Prediction

* Next Sentence Prediction (NSP)

Predict whether Sentence B is the
next sentence of Sentence A.

Positive samples: two contiguous
sentences in the corpus.

Negative samples: sample another
sentence for sentence A.

Class Labels: <is_next, not_next>

Class Label

C L N || Tsery || M Mm
[CLS]
token BERT
Ecls E1 EN E[SEP] El E’m
A A A A A A
[CLS] | | Tok 1 Tok N| [[SEP] || Tok 1 Tok N

First Sentence

Second Sentence

Usage of Encoder Models (l)

e Sentence classification tasks

* Text Classification Tasks
* Input: The bike is too small and | want to return it.
e QOutput: <refund, return, check_status>

* Sentiment Analysis

* Input: The restaurant is crowded and | waited my food for
30 minutes!

* Qutput: <positive, negative>

Language Model

E[CLS] E1 Ez EN
i g .y 1r
[CLS) Tok 1 Tok 2 Tok N

l

Single Sentence

Usage of Encoder Models (I1)

B-PER O

 Token-level tasks

(0]
5 &
 Named Entity Recognition (¢ | = #

* Input: St. Louis is located in the state of

Language Model

Missouri .
* Output: <Begin-Location> <Inside-location> O . =
0 0 O O O <Begin-Location> O —— =~
[CLS] (Tok 1 |l Tok 2 \ Tok N

Single Sentence

Comparison with GPT Model

* Training objective: MLM prediction vs. left-to-right token prediction

Google BERT OpenAl GPT

Performance comparison between BERT and

GPT-1

 GLUE Benchmark for natural language understanding
* BERT is better at language understanding

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsSE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Variants of BERT Model

 RoBERTa (RoBERTa: A Robustly Optimized BERT Pretraining Approach.
Liu et al. 2019)
* Training the model longer on more data with bigger batches
* Remove the next sentence prediction objective
* Dynamically change the [MASK] patterns in each epoch

Variants of BERT Model

 ELECTRA (ELECTRA: Pre-training Text Encoders as Discriminators
Rather Than Generators. Clark et al. 2020)

* Replaced token detection by corrupting text sequences with an auxiliary MLM

* Works better than BERT because the input text for ELECTRA does not contain
[MASK] tokens (no discrepancy between training and test data)

the —> [MASK] —>
chef — chef —>
cooked —>» [MASK] —>,
the — the —>

Generator

(typically a
small MLM)

meal — meal —>

sample

--> the —>

chef —>

-->» ate —>

the —>
meal —>

Discriminator
(ELECTRA)

—> original
—> original
—> replaced
—> original
—> original

Content

* Transformers

e Different Architectures of Pre-trained Language Models
e Decoder-Only Models (GPT)
* Encoder-Only Models (BERT)
* Encoder-Decoder Models (T5, BART)

T5 Model

* How to predict a span of masked tokens within a sentence?

 BERT model requires the number of [MASK] token to be given in prior,
while GPT models are causal left-to-right models

* T5: Text-to-Text Transfer Transformer (parameters: 60M~11B)

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in]

[Lily couldn't <M>. The waitress

had brought the largest <M> of believe her eyes <M=
chocolate cake <M> seen. piece <M> she had ever

Our <M> hand-picked and sun-dried
<M> orchard in Georgia.

peaches are <M> at our]

President Franklin D.

Pre-training Roosevelt was born
———————————————————— in January 1882. i i} o (o)] e
Fine-tunin

9 5

When was Franklin D.
[Roosevelt born? . |5 i

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer
learning with a unified text-to-text transformer. JMLR.

Training of T5 Model

* Pretraining: Mask out spans of texts; generate the original spans

* Fine-Tuning: Convert every task into a sequence-to-sequence
generation problem

* Text-to-Text: Uncertain number of tokens in the input, and uncertain
number of tokens in the output

Original text

Thank you fef inviting me to your party Jast week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<x> for inviting <v> last <7>

15 Attention

* A “fully-visible” attention mechanism is placed at the input sequence.

* Input Sequence:
* translate English to German : That is good . target :

* Target Output:

* Dasist gut.
Prefix LM
Fully-visible Causal Causal with prefix X, X; ¥, Y, -

BART Mode|

* BART: Denoising autoencoder for pretraining sequence-to-sequence
models

* Pretraining: Apply a series of noising schemes (e.g., masks, deletions,
permutations...) to input sequences and train the model to recover
the original sequences

????E CAicElED) (DE.ABC.) (c.DE.AB)
i . . Token Masking Sentence Permutation Document Rotation
Bidirectional Autoregressive
Encoder Decoder
R e (a.c.e.)) (aBC.DE.) <3 (A_.D_E.)
A_B_E <s>A B C D Token Deletion Text Infilling
BART architecture BART pretraining objectives

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O,, ... & Zettlemoyer, L. (2020). BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.

Performance Comparison

* Comparable to encoder models on language understanding tasks

 Better performance on language generation tasks
SQuAD 1.1 SQuAD 2.0 MNLI SST QQP OQNLI STS-B RTE MRPC ColLA

EM/F1 EM/F1 m/mm Acc Acc Acc Acc Acc Acc Mcc
BERT 84.1/90.9 79.0/81.8 86.6/- 93.2 91.3 92.3 90.0 70.4 88.0 60.6
UniLM -/- 80.5/83.4 87.0/85.9 94.5 - 92.7 - 70.9 - 61.1
XLNet 89.0/94.5 86.1/88.8 89.8/- 95.6 91.8 93.9 91.8 83.8 89.2 63.6
RoBERTa 88.9/94.6 86.5/89.4 90.2/90.2 964 922 94.7 92.4 86.6 90.9 68.0
BART 88.8/94.6 86.1/89.2 89.9/90.1 96.6 92.5 94.9 91.2 87.0 90.4 62.8
CNN/DailyMail XSum
R1 R2 RL R1 R2 RL
Lead-3 4042 17.62 36.67 1630 1.60 11.95
PTGEN (See et al., 2017) 3644 15.66 3342 29.70 9.21 23.24
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38 28.10 8.02 21.72
UniLM 43.33 20.21 40.51 - - -
BERTSUMABS (Liu & Lapata, 2019) 41.72 19.39 38.76 38.76 16.33 31.15

BERTSUMEXTABS (Liu & Lapata, 2019) 42.13 19.60 39.18 38.81 16.50 31.27
BART 44.16 21.28 4090 45.14 2227 37.25

Scaling up Language Models

* GPT-2 model size: 1.5 billion parameters

* Pre-trained models can be very, very large (GPT-3 has 175 billion
parameters!) and have very strong text generation abilities.

Model Name Nparams Mayers Omodel Theads Ohead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 104
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 1074
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 104
GPT-36.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074

GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Performance of Zero-Shot/Few-Shot GPT-3

SuperGLUE Performance

—8— Zero-shot
9 Human

Fine-tuned SOTA —®— One-shot
SuperGLUE BoolQ CB CB COPA RTE Few-shot (K=32)
Average Accuracy Accuracy F1 Accuracy Accuracy 5
Fine-tuned SOTA 89.0 91.0 96.9 93.9 94.8 92.5 o
Fine-tuned BERT-Large 69.0 77.4 83.6 Tl 70.6 71.7 3 T e
GPT-3 Few-Shot 71.8 76.4 756 520 920 69.0 =
WiC WSC MultiRC ~ MultiRC ReCoRD ReCoRD 7 60
Accuracy Accuracy Accuracy Fla Accuracy F1
Fine-tuned SOTA 76.1 93.8 62.3 88.2 92.5 93.3 _
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 71.3 72.0 Hendom.Guessing
GPT-3 Few-Shot 49.4 80.1 30.5 75.4 90.2 91.1

0.1 04 08 13 26 6.7 13 175

Billions of Parameters in LM

Next Class: Scaling Up Language Models

Model
Parameter

ElEE G :

MT-NLG PalM [
(530B) (540B). :
. : Decoder models

: L 4

- L 4

. 22

. o*

n *

n *
ﬁ @ TuringNLG ~ ,o*"

f GpT2 (17.2B) T

ROBERTa: (1.58) _..=*"""
!0-.§Bl . l‘-l-l B U T Tl i

2019 2020 2021 2022 2023

