

JAMES MCKELVEY School of Engineering

CSE 561A: Large Language Models

Spring 2024

Lecture 2: Language Model Architectures and Pre-training

Content

• Transformers: Self-Attention

- Different Architectures of Pre-trained Language Models
 - Decoder-Only Models (GPT)
 - Encoder-Only Models (BERT)
 - Encoder-Decoder Models (T5, BART)

Recap: Context-Free Embedding

- 1) Each word is mapped to only one vector regardless of its context!
 - E.g. "bank" is a polysemy, but only has one representation

- 2) It does not consider the order of words
- 3) It treats the words in the context window equally
- Solution: We need **contextualized** text representations!
 - Injecting context information into words via advanced model architectures

Attention is all you need (Transformer)

- Self-Attention: Each token attends to every other token in the sentence, but with different weights
- Demo: https://github.com/jessevig/bertviz

[CLS]	[CLS]	[CLS]
the	the	the
rabbit	rabbit	rabbit
quickly	quickly	quickly
hopped	hopped	hopped
[SEP]	[SEP]	[SEP]
the	the	the
turtle	turtle	turtle
slowly	slowly	slowly
crawled	crawled	crawled
[SEP]	[SEP]	[SEP]

Self-Attention

• Each word is represented as a query, key and value vector. The vectors are obtained from the input embeddings multiplied by a weight matrix.

Self-Attention: Matrix Calculation

Multi-Head Attention

- Input: Multiple Independent sets of query, key, value matrices
- Output: Concatenate the outputs of attention heads
- Advantage: Each attention head focus on one subspace

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$

where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

		∃ Layer: 0 ∨ Attention: All	V		[CLS]	
[CLS]	[CLS]				the	the
the	the	[CLS]	[CLS]		rabbit	rabbit
rabbit	rabbit	the	the	Concatenation	Tabbit	Tabbit
quickly	quickly	rabbit	rabbit	N	quickiy	quickly
hopped	hopped	quickly	quickly		hopped	hopped
[SEP]	[SEP]	hopped	hopped		[SEP]	[SEP]
the	the	[SEP]	[SEP]		the	the
turtle	turtlo	the	the		turtle	turtle
		turtle	turtle		slowly	slowly
Slowly	Slowly	slowly	slowly		crawled	crawled
crawled	crawled	crawled	crawled			
[SEP]	[SEP]	[SEP]	[SEP]		[SEP]	[SEP]

Transformer Model Architecture

- Input Embedding
- Positional Encoding
- 12 Transformer layers
 - 6 encoder layers: text understanding
 - 6 decoder layers: text generation
- Output: Linear + SoftMax layer for next word prediction

Encoder Layer

 Multi-head attention layer captures information from different subspaces at different positions

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)

• Feed-forward layer is applied to each token position without interaction with other positions

 $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$

- Bidirectional attention:
- Every token attends to all tokens

Decoder Layer

• Demo from https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1 2 3 4 5 6

OUTPUT

Decoder Layer

- Unidirectional Self-Attention:
- Every token attends to its previous tokens

• Attention Matrix

Content

- Transformers: Self-Attention
- Different Architectures of Pre-trained Language Models
 - Decoder-Only Models (GPT)
 - Encoder-Only Models (BERT)
 - Encoder-Decoder Models (T5, BART)

Pretrain-Finetune Paradigm

- "Pretraining": Train deep language models (usually Transformer models) via selfsupervised objectives on large-scale general-domain corpora
- "Fine-tuning": Adapt the pretrained language models (PLMs) to downstream tasks by further training on task-specific data
- The power of PLMs: Encode generic linguistic features and knowledge learned through large-scale pretraining, which can be effectively transferred to the target applications

Overview of Pretraining

- Self-supervised learning
- Make a part of the input unknown to the model
- Let the model predict that unknown part based on the known part

Different Architectures for PLMs

- **Decoder-Only (Unidirectional) PLM** (e.g., GPT): Predict the next token based on previous tokens, usually used for **language generation tasks**
- Encoder-Only (Bidirectional) PLM (e.g., BERT, XLNet, ELECTRA): Predict masked/corrupted tokens based on all other (uncorrupted) tokens, usually used for language understanding/classification tasks
- Encoder-Decoder (Sequence-to-Sequence) PLM (e.g., T5, BART): Generate output sequences given masked/corrupted input sequences, can be used for both language understanding and generation tasks

Decoder Pretraining (GPT)

- Model Architecture: A multi-layer transformer decoder
- Leverage unidirectional context (usually left-to-right) for next token prediction (i.e., language modeling)

k previous tokens as context

 $\mathcal{L}_{ ext{LM}} = -\sum_i \log p(x_i \mid x_{i-k}, \dots, x_{i-1})$

- The Transformer uses **unidirectional** attention masks (i.e., every token can only attend to previous tokens)
- Decoder architecture is the prominent choice in large language models

Decoder Pretraining

Usage of Decoder Models

• Question Answering

Content

- Transformers (continued)
- Different Architectures of Pre-trained Language Models
 - Decoder-Only Models (GPT)
 - Encoder-Only Models (BERT)
 - Encoder-Decoder Models (BART, T5)

BERT Model Architecture

- Pre-training objectives
 - Masked language modeling (with bidirectional attention) + Next Sentence Prediction
 - 15% of tokens are randomly corrupted (masked) for model prediction

[1] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Devlin et al. NAACL'19.

BERT Model Architecture

• Bidirectional attention: each token can attend to its left and right context for self-attention

Next Sentence Prediction

- Next Sentence Prediction (NSP)
 - Predict whether Sentence B is the next sentence of Sentence A.
 - Positive samples: two contiguous sentences in the corpus.
 - Negative samples: sample another sentence for sentence A.
 - Class Labels: <is_next, not_next>

Usage of Encoder Models (I)

- Sentence classification tasks
 - Text Classification Tasks
 - Input: The bike is too small and I want to return it.
 - Output: <refund, return, check_status>
 - Sentiment Analysis
 - Input: The restaurant is crowded and I waited my food for 30 minutes!
 - Output: <positive, negative>

Usage of Encoder Models (II)

- Token-level tasks
 - Named Entity Recognition
 - Input: St. Louis is located in the state of Missouri .
 - Output: <Begin-Location> <Inside-location> O
 O O O O <Begin-Location> O

Comparison with GPT Model

• Training objective: MLM prediction vs. left-to-right token prediction

Performance comparison between BERT and GPT-1

- GLUE Benchmark for natural language understanding
- BERT is better at language understanding

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Variants of BERT Model

- RoBERTa (RoBERTa: A Robustly Optimized BERT Pretraining Approach. Liu et al. 2019)
 - Training the model longer on more data with bigger batches
 - Remove the next sentence prediction objective
 - Dynamically change the [MASK] patterns in each epoch

Variants of BERT Model

- ELECTRA (ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. Clark et al. 2020)
 - Replaced token detection by corrupting text sequences with an auxiliary MLM
 - Works better than BERT because the input text for ELECTRA does not contain [MASK] tokens (no discrepancy between training and test data)

Content

- Transformers
- Different Architectures of Pre-trained Language Models
 - Decoder-Only Models (GPT)
 - Encoder-Only Models (BERT)
 - Encoder-Decoder Models (T5, BART)

T5 Model

- How to predict a span of masked tokens within a sentence?
- BERT model requires the number of [MASK] token to be given in prior, while GPT models are causal left-to-right models
- T5: Text-to-Text Transfer Transformer (parameters: 60M~11B)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR.

Training of T5 Model

- Pretraining: Mask out spans of texts; generate the original spans
- Fine-Tuning: Convert every task into a sequence-to-sequence generation problem
- Text-to-Text: Uncertain number of tokens in the input, and uncertain number of tokens in the output

T5 Attention

- A "fully-visible" attention mechanism is placed at the input sequence.
 - Input Sequence:
 - translate English to German : That is good . target :
 - Target Output:
 - Das ist gut .

BART Model

- BART: Denoising autoencoder for pretraining sequence-to-sequence models
- Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations...) to input sequences and train the model to recover the original sequences

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.

Performance Comparison

- Comparable to encoder models on language understanding tasks
- Better performance on language generation tasks

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1	MNLI m/mm	SST Acc	QQP Acc	QNLI Acc	STS-B Acc	RTE Acc	MRPC Acc	CoLA Mcc
BERT	84.1/90.9	79.0/81.8	86.6/-	93.2	91.3	92.3	90.0	70.4	88.0	60.6
UniLM	-/-	80.5/83.4	87.0/85.9	94.5	-	92.7	-	70.9	-	61.1
XLNet	89.0 /94.5	86.1/88.8	89.8/-	95.6	91.8	93.9	91.8	83.8	89.2	63.6
RoBERTa	88.9/ 94.6	86.5/89.4	90.2/90.2	96.4	92.2	94.7	92.4	86.6	90.9	68.0
BART	88.8/ 94.6	86.1/89.2	89.9/90.1	96.6	92.5	94.9	91.2	87.0	90.4	62.8

	CN	N/DailyI	Mail	XSum			
	R 1	R2	RL	R 1	R2	RL	
Lead-3	40.42	17.62	36.67	16.30	1.60	11.95	
PTGEN (See et al., 2017)	36.44	15.66	33.42	29.70	9.21	23.24	
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	28.10	8.02	21.72	
UniLM	43.33	20.21	40.51	-	-	-	
BERTSUMABS (Liu & Lapata, 2019)	41.72	19.39	38.76	38.76	16.33	31.15	
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19.60	39.18	38.81	16.50	31.27	
BART	44.16	21.28	40.90	45.14	22.27	37.25	

Scaling up Language Models

- GPT-2 model size: 1.5 billion parameters
- Pre-trained models can be very, very large (GPT-3 has 175 billion parameters!) and have very strong text generation abilities.

Model Name	$n_{\rm params}$	$n_{\rm layers}$	$d_{ m model}$	$n_{\rm heads}$	$d_{\rm head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

Performance of Zero-Shot/Few-Shot GPT-3

SuperGLUI	E BoolQ	CB	CB	COPA	RTE
Äverage	Accurac	y Accurac	y F1	Accuracy	Accuracy
89.0	91.0	96.9	93.9	94.8	92.5
69.0	77.4	83.6	75.7	70.6	71.7
71.8	76.4	75.6	52.0	92.0	69.0
WiC	WSC	MultiRC	MultiRC	ReCoRD	ReCoRD
Accuracy	Accuracy	Accuracy	F1a	Accuracy	F1
76.1	93.8	62.3	88.2	92.5	93.3
69.6	64.6	24.1	70.0	71.3	72.0
49.4	80.1	30.5	75.4	90.2	91.1
	SuperGLUI Average 89.0 69.0 71.8 WiC Accuracy 76.1 69.6 49.4	SuperGLUE BoolQ Average BoolQ 89.0 91.0 69.0 77.4 71.8 76.4 WiC WSC Accuracy WSC Accuracy 93.8 69.6 64.6 49.4 80.1	SuperGLUE BoolQ CB Average $Accurace Accurace 89.0 91.0 96.9 69.0 77.4 83.6 71.8 76.4 75.6 WiC WSC MultiRC Accuracy 69.6 64.6 93.8 62.3 69.6 64.6 24.1 49.4 80.1 30.5 $	SuperGLUE AverageBoolQ AccuraceCB AccuraceCB F1 89.0 91.0 96.9 93.9 69.0 77.4 83.6 75.7 71.8 76.4 75.6 52.0 WiC AccuracyWSC AccuracyMultiRC AccuracyMultiRC F1a 76.1 93.8 62.3 88.2 69.6 64.6 24.1 70.0 49.4 80.1 30.5 75.4	SuperGLUE AverageBoolQ AccuraceCB AccuraceCB

Next Class: Scaling Up Language Models

