
CSE 561A: Large Language 
Models

Spring 2024

Lecture 1: Course Overview



Content

• Course Logistics
• Language Model Basics
• Covered Topics Preview



Course Logistics

• Instructor: Jiaxin Huang (jiaxinh@wustl.edu)
• Teaching Assistants: 
• Tovi Tu (jianhong.t@wustl.edu)
• Nathan Suh (n.h.suh@wustl.edu)

• Course meeting times: 2:30pm – 3:50pm Tuesday / Thursday
• Location: Cupples I / 115



Course Logistics

• Course Syllabus: https://teapot123.github.io/CSE561A_2024sp/
• Canvas: https://wustl.instructure.com/courses/129974 (will be 

published soon)
• We will be using Canvas for announcements, discussions, and project 

report submissions.

https://teapot123.github.io/CSE561A_2024sp/
https://wustl.instructure.com/courses/129974


Course Structure

• Advanced Research-Oriented Course
• Pre-requisites: Students are expected to understand concepts in machine learning 

(CSE 417T/517A)

• We will be teaching and discussing state-of-the-art papers about large language 
models

• Lectures of fundamentals of Large Language Models (language model architecture 
and training framework)

• Lectures of Large Language Model Capabilities, Applications and Issues
• This part consists of a list of frontier research papers (will be released later), from which 

students will choose their interested papers to present in the class
• Students who are not presenters are expected to participate in discussion and submit 3 

preview questions

• Guest lectures on frontier research topics



Grading

• 15% Class Participation
• Regular class participation and discussion (10%)
• Preview question submissions (5%)

• 30% Class Presentation
• 55% Final Project 
• 10% Project Proposal
• 15% Mid-term Report
• 10% Final Course Presentation (Group-based)
• 5% Feedbacks for other groups’ final project presentations 
• 20% Final Project Report



In Class Presentation
• Starting from Week 3, each lecture will consist of one research topic of large language 

models, with 4 state-of-the-art papers. Each lecture will be covered by two students.
• Each student is required to do a 35-min presentation in class to cover two papers, 

followed by a 5-min Q&A/discussion session. 
• Sign-up sheet for paper presentation will be released later this week.
• Remember to send over your slides to the instructor (and cc the TAs) before your 

presentation:
• For Tuesday classes, send over your slides before the previous Friday 12:00PM
• For Thursday classes, send over your slides before the previous Monday 12:00PM

• When it is not your turn to present, you can preview the paper in advance. Each 
student is required to submit a preview question for a paper one day before the 
presentation for 3 times (need to be on 3 different classes). You are also encouraged 
to raise that question in class.
• Preview questions cannot be simple ones like “what is the aim of the paper?”



In Class Presentation

• How to present a paper:
• Think about the context of the research: introduce the background of the 

research topic
• What is the challenge and contribution of this paper, given the research 

background?
• The method: from framework to technical details
• What are some interesting experiment results and observations?
• What could be done in the future?
• Summarize the takeaways/highlights of this paper
• Please control your time(35min)! We will give you notice when your time is 

nearly used up.



Final Project

• Students need to form groups of 2-3 people to do a large language 
model research project.
• Project proposal deadline: 2/19 11:59PM
• Midterm project report deadline: 3/18 11:59PM
• Final project presentation deadline: 4/17 11:59PM
• We will use three lectures for project presentation: 4/18, 4/23, 4/25

• Final project report deadline: 4/26 11:59PM



Final Project

• There are typically two types of projects.
• 1) Designing a novel algorithm to train a medium-sized language model: 

BERT, GPT-2 for problems that you are interested in.
• https://huggingface.co/models

• 2) Designing a novel algorithm to do inference on large language models 
(white box models such as LLaMA2 models, or black box models such as 
GPT-4, CLAUDE, etc.) to solve some type of complex problems, and analyze 
their limitations. (We may not be able to reimburse for the API costs, so 
you can choose to use free APIs such as CLAUDE)
• https://platform.openai.com/docs/introduction
• https://docs.anthropic.com/claude/reference/getting-started-with-the-api



Final Project Presentation

• Near the end of the semester, we will create a signup sheet for the 
final project presentation.
• We anticipate to distribute project presentations into three courses 

(4/18, 4/23, 4/25), and you will need to signup for a time slot.
• Length of project presentation: 15-20min depending on the number 

of groups
• Students will need to submit feedback scores for other groups’ 

presentation (through Google Form).



Content

• Course Logistics
• Language Model Basics
• Covered Topics Preview



Language models

• The classic definition of a language model (LM) is a probability 
distribution over each token sequence 𝑤!, 𝑤", … , 𝑤# , whether it’s a 
good or bad one.
• Sally fed my cat with meat: P(I, feed, my, cat, with, meat) = 0.03,
• My cat fed Sally with meat: P(My, cat, fed, Sally, with, meat) = 0.005,
• fed cat meat my my with: P(fed, cat, meat, my, my, with) = 0.0001



Autoregressive language models
• The chain rule of probability:
• P(Sally, fed, my, cat, with, meat) = P(Sally)

* P(fed | Sally)
* P(my | Sally, fed)
* P(cat | Sally, fed, my)
* P(with | Sally, fed, my, cat)
* P(meat | Sally, fed, my, cat, with)



Generation

• If we already have a good language model, a given text prompt 𝑤 !:# , 
and we want the model to generate a good sentence completion with 
the length of L: How to find 𝑤 #%!:#%& with the highest probability? 
• Enumerate over all possible combinations?

• Next token prediction: generating the next token step by step, 
starting from 𝑤#%! using 𝑝 𝑤#%! 𝑤 !:#

• To select the next token with 𝑝 𝑤#%! 𝑤 !:# , there are also different 
decoding approaches.



Different Decoding Approaches

• Greedy decoding: At each step, always select 𝑤' with the highest 
𝑝 𝑤' 𝑤 !:'(! . 
• Beam Search: Keep track of k possible paths at each step instead of 

just one. Reasonable beam size k: 5-10 .



Different Decoding Approaches

• Top-k sampling: At each step, randomly sample the 
next token from 𝑝 𝑤! 𝑤 ":!$" , but restrict to only 
the k most probable tokens.
• Allows you to control diversity:

• Increase k gives you more creative / risky outputs.
• Decrease k gives you safer outputs.

• Top-p sampling: At each step, randomly sample the 
next token from 𝑝 𝑤! 𝑤 ":!$" , but restrict to the set 
of tokens with a cumulative probability of p
• throw away long-tailed tokens

• Top-k and Top-p can be used together!



Q: How to train a good language model?



Q: How to train a good language model?

A: Maximizing the language model probability of an observed large corpus.



How to represent text?
• A milestone in NLP and ML: 
• Unsupervised learning of text representations—No supervision needed
• Embed one-hot vectors into lower-dimensional space—Address “curse of 

dimensionality”
• Word embedding captures useful properties of word semantics
• Word similarity: Words with similar meanings are embedded closer
• Word analogy: Linear relationships between words (e.g. king - queen = man -

woman)

Word AnalogyWord Similarity



Distributed Representations: Word2Vec

• Assumption: If two words have similar contexts, then 
they have similar semantic meanings!
• Word2Vec Training objective:
• To learn word vector representations that are good 

at predicting the nearby words.

Co-occurred words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their 
Compositionality. NIPS.

feed

my

cat

with

meat



Considering subwords: fastText
• fastText improves upon Word2Vec by incorporating subword information into word 

embedding

• fastText allows sharing subword representations across words, since words are represented 
by the aggregation of their n-grams

Tri-gram extraction

Represent a word by the sum of the
vector representations of its n-grams

N-gram embedding

Word2Vec probability expression

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association for 
Computational Linguistics, 5, 135-146.



Limitations of Word2Vec embeddings 

• 1) They are context-free embeddings: each word is mapped to only 
one vector regardless of its context!
• E.g. “bank” is a polysemy, but only has one representation

• 2) It does not consider the order of words
• 3) It treats the words in the context window equally

“Open a bank account” “On the river bank”

Share representation



Attention is all you need (Transformer)

• Self-Attention: Each token attends to every other token in the 
sentence, but with different weights
• Demo: https://github.com/jessevig/bertviz



Self-Attention

• To calculate the attention weight from a query 
word 𝑤) (e.g, “rabbit”) to another word 𝑤*
• Each word is represented as a query, key and 

value vector. The vectors are obtained from 
the input embeddings multiplied by a weight 
matrix.



Multi-Head Attention
• Input: Multiple Independent sets of query, key, value matrix
• Output: Concatenate the outputs of attention heads
• Advantage: Each attention head focus on one subspace

Concatenation



Content

• Course Logistics
• Language Model Basics
• Covered Topics Preview



Language Model Architectures (will be 
covered in the next course)

Encoder Models Decoder Models Encoder-Decoder Models



Large Language Model Pre-training 
Framework



Efficient Fine-Tuning

Unsupervised/Self-supervised; 
On large-scale general domain corpus

Task-specific supervision; 
On target corpus



Topics of Language Model Capabilities



Solving Quantitative Reasoning Problems with 
Language Models
• Google’s Minerva 

Model



Language Models as Agents



Integration of pre-trained vision model and 
language model



Issues and Future Directions of Language 
Models



Bias of Language Models

• Different language models may have different political views.


