
CSE 561 Paper Review

Kriti Bhattarai
02/15/2024

1

2

Overview

• Retrieval Augmented Generation
(RAG)

• Model Setup

• Results

• Performance comparison

Overview MethodsRAG ConclusionResults

3

Retrieval Augmented Generation (RAG)
• Retrieval-augmented generation (RAG) is a technique for enhancing

the accuracy and reliability of generative AI models with facts fetched
from external sources

Query Encoder

Document Index

Pre-trained Retriever

Generator

Pre-trained Seq2seq model

+Input Data Output DataFine-tune

Overview MethodsRAG ConclusionResults

4

Importance

• Updated world knowledge
• Providing insights into their predictions
• Hallucinations

5

Overview MethodsRAG ConclusionResults

Overview RAG ArchitectureRAG ConclusionResults

Input data Retriever Model
Architecture

Generator Model
Architecture Output Data

RAG implementations showed better performance in all tested tasks .

For query x, Maximum Inner
Product Search (MIPS) is used to
find the top-K documents zi.

For final prediction y, z is treated as
a latent variable and marginalized
over seq2seq predictions given
different documents

6

Models RAG

RAG-Sequence
RAG-Token

Retrieved passages are treated as
sequences of text

Each retrieved passage is concatenated with
the input data or prompt to form a longer
sequence

This combined sequence is then fed into the
generator model (e.g., BART) for generating
the final output

Retrieved passages are represented as
token-level embeddings

Instead of concatenating the passages with
the input data, token-level representations
of the passages are directly integrated into
the input embeddings

The generator model (BART) then operates
on these modified input embeddings,
considering the additional information from
the retrieved passages during generation.

Overview RAG ArchitectureRAG ConclusionResults

7

2 variations

• Tasks:
• Open-domain Question Answering
• Abstractive Question Answering
• Jeopardy Question Generation
• Fact Verification

Experimental Results

Overview RAG ArchitectureRAG ConclusionResults

8

Experimental Results

RAG implementations showed better performance showing improved performance on all except one open-domain question
answering task.

Task: Open-domain Question Answering

Table 1: Open-Domain QA Test Scores.

Table 2: Generation and classification Test Scores.

Overview RAG ArchitectureRAG ConclusionResults

9

Experimental Results

Figure 2: RAG-Token document posterior p(zi|x, yi, yi) for each generated token for input “Hemingway" for Jeopardy
generation with 5 retrieved documents.

Task: Fact Verification

Overview RAG ArchitectureRAG ConclusionResults

10

Experimental Results

Table 3: Table 3: Examples from generation tasks. RAG models generate more specific and factually accurate
responses. ‘?’ indicates factually incorrect responses, * indicates partially correct responses.

Task: Fact Verification

Overview RAG ArchitectureRAG ConclusionResults

11

Experimental Results

Table 4: Human assessments for the
Jeopardy Question Generation Task

Table 5: Ratio of distinct to total tri-grams for generation tasks

Task: Jeopardy Question Generation Task: Generation Diversity

Overview RAG ArchitectureRAG ConclusionResults

12

Experimental Results

Table 6: Ablations on the dev set. As FEVER is a classification task, both RAG models are equivalent.

Task: Retrieval Ablations

Overview RAG ArchitectureRAG ConclusionResults

13

Experimental Results

Task: Index hot-swapping

• Built an index using the DrQA Wikipedia dump from December 2016 and compare outputs from RAG using this index
 to the newer index from our main results (December 2018).

• RAG answers 70% correctly using the 2016 index for 2016 world leaders and 68% using the 2018 index for 2018 world
 leaders.

• This shows that RAG’s world knowledge can be updated by simply replacing its non-parametric memory.

Overview RAG ArchitectureRAG ConclusionResults

14

Effect of Retrieving more documents

Retrieving more documents can lead to improved relevance of the retrieved passages. The model shows diminishing
returns when it comes to the number of documents retrieved after retrieving a certain number of documents.

Overview RAG ArchitectureRAG ConclusionResults

15

Conclusion

• Hybrid generation models with access to parametric and non-
parametric memory.

• Obtains state of the art results on open-domain QA

• Improved generation compared to parametric BART, with RAG more
factual and specific

Overview RAG ArchitectureRAG ConclusionResults

16

Overview MethodskNN-LM ConclusionResults

• kNN-LM

• Model Setup

• Experimental Results

• Performance comparison

Overview

17

kNN-LM
• An approach that extends a pre-trained LM by linearly interpolating its next word

distribution with a k-nearest neighbors (kNN) model

• The nearest neighbors are computed according to distance in the pre-trained
embedding space and can be drawn from any text collection, including the
original LM training data.

• This approach allows rare patterns to be memorized explicitly, rather than
implicitly in model parameters.

• It also improves performance when the same training data is used for learning
the prefix representations and the kNN model, strongly suggesting that the
prediction problem is more challenging than previously appreciated.

Overview MethodskNN-LM ConclusionResults

18

Model Architecture

Overview kNN-LM ArchitecturekNN-LM ConclusionResults

Datastore
Construction Inference

Computing
distribution over

targets

Interpolation

19
Figure 1. Illustration of kNN-LM

Experimental Results
Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Table 1. Performance on WIKITEXT-103

The kNN-LM model shows improvement compare to the baselines with lower perplexity scores

Table 2. Performance on BOOKS

20

Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Table 3. Experimental results on WIKI-3B Figure 2. Varying size on the datastore

Task : Training Data as the datastore

21

As the size of the datastore increases, a higher weight on the
retrieved training examples (controlled by λ) becomes more
beneficial in improving model performance

Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Task : Additional Data without training

Table 4. Performance on in-domain BOOKS data Table 5. WIKITEXT-103 validation results using
different states from the final layer of the LM as
the representation function for keys and queries

Figure 3. Transformer layer of the LM

22

Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Task: Tuning Nearest neighbor search

Figure 4. Effect of the number of nearest
neighbors returned per word on WIKITEXT-
103 (validation set).

Figure 4. Effect of interpolation parameter λ
on in-domain (left y-axis) and out-of-domain
(right y-axis) validation set performances.

23

Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Figure 6. Example where the kNN model has much higher confidence in the correct target than the LM. 24

Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Figure 7. Interpolating the Transformer LM with n-
gram LMs on WIKITEXT-103 (validation set) .

Figure 8. Training curves for the Transformer LM with
and without dropout.

25

Conclusion

• kNN-LM outperform standard language models by directly quering
training examples at test time

• Learning similarity functions between contexts may be an easier
problem than predicting the next word from some given context.

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

26

Questions?

27

