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• Retrieval Augmented Generation 
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Retrieval Augmented Generation (RAG)
• Retrieval-augmented generation (RAG) is a technique for enhancing 

the accuracy and reliability of generative AI models with facts fetched 
from external sources 
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Importance

• Updated world knowledge 
• Providing insights into their predictions 
• Hallucinations 
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Input data Retriever Model 
Architecture

Generator Model 
Architecture Output Data 

RAG implementations showed better performance in all tested tasks . 

For query x, Maximum Inner 
Product Search (MIPS) is used to 
find the top-K documents zi. 

For final prediction y, z is treated as 
a latent variable and marginalized 
over seq2seq predictions given 
different documents 
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Models RAG

RAG-Sequence 
RAG-Token 

Retrieved passages are treated as 
sequences of text

Each retrieved passage is concatenated with 
the input data or prompt to form a longer 
sequence 

This combined sequence is then fed into the 
generator model (e.g., BART) for generating 
the final output 

Retrieved passages are represented as 
token-level embeddings 

Instead of concatenating the passages with 
the input data, token-level representations 
of the passages are directly integrated into 
the input embeddings

The generator model (BART) then operates 
on these modified input embeddings, 
considering the additional information from 
the retrieved passages during generation. 
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• Tasks: 
• Open-domain Question Answering
• Abstractive Question Answering 
• Jeopardy Question Generation
• Fact Verification 

Experimental Results 
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Experimental Results 

RAG implementations showed better performance showing improved performance on all except one open-domain question 
answering task. 

Task: Open-domain Question Answering

Table 1: Open-Domain QA Test Scores. 

Table 2: Generation and classification Test Scores.
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Experimental Results 

Figure 2: RAG-Token document posterior p(zi|x, yi, yi) for each generated token for input “Hemingway" for Jeopardy 
generation with 5 retrieved documents. 

Task: Fact Verification
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Experimental Results

Table 3: Table 3: Examples from generation tasks. RAG models generate more specific and factually accurate 
responses. ‘?’ indicates factually incorrect responses, * indicates partially correct responses. 
 

Task: Fact Verification
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Experimental Results

Table 4: Human assessments for the 
Jeopardy Question Generation Task 

Table 5: Ratio of distinct to total tri-grams for generation tasks 

Task: Jeopardy Question Generation Task: Generation Diversity
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Experimental Results

Table 6: Ablations on the dev set. As FEVER is a classification task, both RAG models are equivalent. 

Task: Retrieval Ablations 
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Experimental Results

Task: Index hot-swapping 

• Built an index using the DrQA Wikipedia dump from December 2016 and compare outputs from RAG using this index
 to the newer index from our main results (December 2018). 

• RAG answers 70% correctly using the 2016 index for 2016 world leaders and 68% using the 2018 index for 2018 world
 leaders.
 
• This shows that RAG’s world knowledge can be updated by simply replacing its non-parametric memory. 
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Effect of Retrieving more documents 

Retrieving more documents can lead to improved relevance of the retrieved passages. The model shows diminishing 
returns when it comes to the number of documents retrieved after retrieving a certain number of documents. 
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Conclusion

• Hybrid generation models with access to parametric and non-
parametric memory. 

• Obtains state of the art results on open-domain QA 

• Improved generation compared to parametric BART, with RAG more 
factual and specific 
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• kNN-LM

• Model Setup

• Experimental Results 

• Performance comparison
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kNN-LM
• An approach that extends a pre-trained LM by linearly interpolating its next word 

distribution with a k-nearest neighbors (kNN) model 

• The nearest neighbors are computed according to distance in the pre-trained 
embedding space and can be drawn from any text collection, including the 
original LM training data. 

• This approach allows rare patterns to be memorized explicitly, rather than 
implicitly in model parameters. 

• It also improves performance when the same training data is used for learning 
the prefix representations and the kNN model, strongly suggesting that the 
prediction problem is more challenging than previously appreciated. 
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Model Architecture
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Figure 1. Illustration of kNN-LM



Experimental Results
Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Table 1. Performance on WIKITEXT-103 

The kNN-LM model shows improvement compare to the baselines with lower perplexity scores

Table 2. Performance on BOOKS
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Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Table 3. Experimental results on WIKI-3B Figure 2. Varying size on the datastore

Task : Training Data as the datastore
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As the size of the datastore increases, a higher weight on the 
retrieved training examples (controlled by  λ) becomes more 
beneficial in improving model performance



Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Task : Additional Data without training

Table 4. Performance on in-domain BOOKS data Table 5. WIKITEXT-103 validation results using 
different states from the final layer of the LM as 
the representation function for keys and queries

Figure 3. Transformer layer of the LM
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Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Task: Tuning Nearest neighbor search

Figure 4. Effect of the number of nearest 
neighbors returned per word on WIKITEXT-
103 (validation set). 

Figure 4. Effect of interpolation parameter λ 
on in-domain (left y-axis) and out-of-domain 
(right y-axis) validation set performances. 
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Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Figure 6. Example where the kNN model has much higher confidence in the correct target than the LM. 24



Experimental Results

Overview ConclusionResultskNN-LM ArchitecturekNN-LM

Figure 7. Interpolating the Transformer LM with n-
gram LMs on WIKITEXT-103 (validation set) . 

Figure 8. Training curves for the Transformer LM with 
and without dropout. 
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Conclusion

• kNN-LM outperform standard language models by directly quering 
training examples at test time 

• Learning similarity functions between contexts may be an easier 
problem than predicting the next word from some given context. 

Overview ConclusionResultskNN-LM ArchitecturekNN-LM
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Questions?
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