Decoding Strategy in LLM	
Chengsong Huang 1	

What is decoding

The basic method: sampling words from

 $w_t \sim P(w|w_{1:t-1})$

Sampling Methods

• Add Temperature in logits

$$p'(y_t|y_{< t}, x) = \frac{\exp(\frac{(u(y_t|y_{< t}, x))}{T})}{\sum_{j=1}^n \exp(\frac{(u(y_j|y_{< t}, x))}{T})}$$

.

Top-k/Top-p

Top-K sampling works like this:

1.Order the tokens in descending order of probability.

2.Select the first K tokens to create a new distribution.

3.Sample from those tokens.

Top-p sampling works like this

1.Order the tokens in descending order of probability.

2.Select the smallest number of top tokens such that their cumulative probability is at least *p*.

3.Sample from those tokens.

Contrastive Decoding: Open-ended Text Generation as Optimization

• Contrastive: using negative sample to better learn

Two potential problems

• False positives : Some tokens have both small probabilities in Expert model and weak model, but the probability in weak model is very very very small to make $\log p_{\text{EXP}} - \log p_{\text{AMA}}$ large.

• False negatives: Weak model are also very confident in some easy predictions, making $\log p_{\text{EXP}} - \log p_{\text{AMA}}$ small.

Solution to these problems

• Adaptive plausibility constraint

Similar to top-p sampling

•

 $\mathcal{V}_{\text{head}}(x_{< i}) = \tag{1}$ $\{x_i \in \mathcal{V} : p_{\text{EXP}}(x_i \mid x_{< i}) \ge \alpha \max_w p_{\text{EXP}}(w \mid x_{< i})\}$

$$CD-score(x_i; x_{< i})$$

$$= \begin{cases} \log \frac{p_{\text{EXP}}(x_i|x_{< i})}{p_{\text{AMA}}(x_i|x_{< i})}, & \text{if } x_i \in \mathcal{V}_{\text{head}}(x_{< i}), \\ -\inf, & \text{otherwise.} \end{cases}$$
(3)

Evaluation

		wikinews			wikitext			story		
	name	DIV	MAUVE	СОН	DIV	MAUVE	СОН	DIV	MAUVE	СОН
OPT-13B	max prob	0.08	0.3	0.65	0.03	0.08	0.63	0.02	0.05	0.51
	k=50	0.91	0.92	0.64	0.72	0.77	0.64	0.91	0.9	0.51
	p=0.95	0.92	0.92	0.62	0.92	0.89	0.55	0.93	0.91	0.48
	typical=0.95	0.94	0.9	0.59	0.89	0.86	0.58	0.95	0.91	0.46
	CS(Su et al., 2022)	0.92	0.87	0.59	0.87	0.77	0.52	0.81	0.78	0.47
	CD	0.94	0.94	0.69	0.91	0.91	0.69	0.89	0.94	0.62
GPT2-XL	max prob	0.04	0.14	0.65	0.02	0.05	0.62	0.01	0.03	0.49
	k=50	0.92	0.88	0.64	0.87	0.79	0.61	0.91	0.87	0.51
	p=0.95	0.94	0.9	0.6	0.92	0.87	0.57	0.94	0.91	0.46
	typical=0.95	0.95	0.91	0.56	0.95	0.84	0.53	0.96	0.88	0.43
	CS(Su et al., 2022)	0.93	0.82	0.62	0.86	0.75	0.59	0.88	0.78	0.48
	CD	0.92	0.94	0.69	0.89	0.92	0.69	0.83	0.94	0.64

More Important Analysis

temperature 0.900 0.875 0.75 0.80 0.85 Diversity

The larger gap between two models, the better performance improvement

The temperature will influence the diversity and generation quality

Using Reward model in Decoding

• LLM as policy model

• When decoding, we use LLM alone

Liu, Jiacheng et al. "Don't throw away your value model! Making PPO even better via Value-Guided Monte-Carlo Tree Search decoding." (2023).

Proximal Policy Optimization

- To train a policy network(LLM)
- Reward model is for the whole sentences. Policy loss is for the next words.

Policy Objective Function

$$L^{PG}(\theta) = E_t[\log \pi_{\theta}(a_t|s_t) * A_t]$$

log probability of taking that action at that state

Advantage if A>0, this action is better than the other action possible at that state

How to Used the Reward Model

Figure 2: The four stages of one simulation in MCTS. Note: we displayed the node visit count N(s) on its parenting edge as the number of "paws" (e.g., in the bad token in the backup stage).

Select Stage

• Polynomial Upper Confidence Trees:

$$a^* = \arg\max_{a} \left[Q(s,a) + c_{\text{puct}} \cdot p_{\theta}(a|s) \frac{\sqrt{N(s)}}{1 + N(s')} \right]$$

Evaluate Stage

• Using reward model to get the value of the modes, then using the average value as the value of the father nodes.

Backup Stage

• Update the visit counts and the value in the line to this nodes.

$$Q(s,a) \leftarrow r + \gamma \overline{V}(s'),$$

$$\overline{V}(s) \leftarrow \sum_{a} N(s')Q(s,a) / \sum_{a} N(s'),$$

$$N(s) \leftarrow N(s) + 1.$$

Main Results

Table 1: Results on *sentiment steering*. **Upper:** automatic evaluation (the middle lines are ablation results discussed later in §5.1). **Lower:** human evaluation.

	Desired sentiment: POSITIVE				Desired sentiment: NEGATIVE				
	% Desired	Fluency	Diversity		% Desired	Fluency Di		versity	
	(†)	output ppl (\downarrow)	dist-2 (†)	dist-3 (†)	(†)	output ppl (\downarrow)	dist-2 (†)	dist-3 (†)	
PPO (Lu et al., 2022)	52.44	3.57	0.82	0.81	65.28	3.57	0.83	0.83	
PPO + best-of- n	51.47	3.56	0.83	0.82	65.62	3.57	0.83	0.83	
PPO-MCTS[R]	81.00	3.80	0.85	0.84	-	_	-	-	
PPO + stepwise-value	62.47	4.94	0.89	0.87	_	_	_	_	
PPO (4x more steps)	75.50	3.87	0.83	0.82	83.63	3.37	0.82	0.83	
PPO-MCTS (ours)	86.72	3.42	0.79	0.81	91.09	3.44	0.80	0.82	

