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Sampling Methods

The basic method: sampling words from
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Sampling Methods
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Top-k/Top-p

Top-K sampling works like this:
1.0Ozrder the tokens in descending order of probability.

2.Select the first K tokens to create a new distribution.
3.Sample from those tokens.

Top-p sampling works like this
1.Ozrder the tokens in descending order of probability.
2.Select the smallest number of top tokens such that their cumulative probability 1s at
least p.

3.Sample from those tokens.




Contrastive Decoding: Open-ended Text
Generation as Optimization
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Two potential problems =

* Talse positives : Some tokens have both small probabilities in Expert model

- and weak model, but the probability in weak model is very very very small to

make log pexr — 10g pama large.

* Talse negatives: Weak model are also very confident in some easy predictions,
making log pexp — lOg pama small.




Solution to these problems

* Adaptive plausibility constraint Vhead (T<i) = ey
{zi €V pexe(i | 2i) 2 a max pexp(wlz<i)}

® Similar to top-p sampling
CD-score(z;; T<;) (3)

Pexe(Ti|T<i :
_ log m\%ﬁl@%, if Z; € Vhead(T<i)s

— inf, otherwise.




Evaluation

wikinews wikitext story
name piv.  MAUVE coH | biv MAUVE coH | biv MAUVE COH
max prob 0.08 0.3 0.65 | 0.03 0.08 0.63 | 0.02 0.05 0.51
k=50 0.91 0.92 0.64 | 0.72 0.77 0.64 | 0.91 0.9 0.51
- p=0.95 0.92 0.92 0.62 | 0.92 0.89 0.55 | 0.93 0.91 0.48
D typical=0.95 0.94 0.9 0.59 | 0.89 0.86 0.58 | 0.95 091 0.46
%‘) CS(Suetal., 2022) 0.92 0.87 0.59 | 0.87 0.77 0.52 | 0.81 0.78 0.47
CD 0.94 0.94 0.69 | 091 0.91 0.69 | 0.89 0.94 0.62
max prob 0.04 0.14 0.65 | 0.02 0.05 0.62 | 0.01 0.03 0.49
k=50 0.92 0.88 0.64 | 0.87 0.79 0.61 | 0.91 0.87 0.51
~  p=0.95 0.94 0.9 0.6 | 0.92 0.87 0.57 | 0.94 0.91 0.46
z typical=0.95 0.95 0.91 0.56 | 0.95 0.84 0.53 | 0.96 0.88 0.43
& CS(Suetal., 2022) 0.93 0.82 0.62 | 0.86 0.75 0.59 | 0.88 0.78 0.48
© D 0.92 0.94 0.69 | 0.89 0.92 0.69 | 0.83 0.94 0.64
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More Important Analysis
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Using Reward model in Decoding

Prompts Dataset
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Liu, Jiacheng et al. “Don't throw away your value model! Making PPO even better via Value-Guided Monte-Carlo Tree Search
decoding.” (2023).



Proximal Policy
Optimization

To train a policy
network(LLM)

Reward model is for the

whole sentences. Policy
loss is for the next words.

Policy Objective Function

L"(0) = Ei[log mg(ass;) * Ay

log probability of
taking that action at
that state

Advantage 1if A>0, this action 1s

better than the other action
ossible at that state
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How to Used the Reward Model
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Figure 2: The four stages of one simulation in MCTS. Note: we displayed the node visit count
N (s) on its parenting edge as the number of “paws” (e.g., in the bad token in the backup stage).
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Select Stage

* Polynomial Upper Confidence Trees:
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Expand Stage

* Using top-k to find new nodes S
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Ewvaluate Stage

* Using reward model to get the value of
the modes, then using the average value
as the value of the father nodes.
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Backup Stage

* Update the visit counts and the value

- in the line to this nodes. o
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Main Results

Table 1: Results on sentiment steering. Upper: automatic evaluation (the middle lines are ablation
results discussed later in §5.1). Lower: human evaluation.

Desired sentiment: POSITIVE Desired sentiment: NEGATIVE
% Desired  Fluency Diversity % Desired  Fluency Diversity
T output ppl (}) dist-2 (1) dist-3 (1) ) output ppl (|) dist-2 (1) dist-3 (1)
PPO (Lu et al., 2022) 52.44 3.57 0.82 0.81 65.28 3.57 0.83 0.83
PPO + best-of-n 51.47 3.56 0.83 0.82 65.62 3.57 0.83 0.83
PPO-MCTS|R] 81.00 3.80 0.85 0.84 - - - -
PPO + stepwise-value 62.47 4.94 0.89 0.87 - - - -
PPO (4x more steps) 75.50 3.87 0.83 0.82 83.63 3.37 0.82 0.83
PPO-MCTS (ours) 86.72 342 0.79 0.81 91.09 3.44 0.80 0.82
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Questions?




