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Introduction

´Zero-shot:
´No training data for some tasks

´Zero-shot code filling:
´Facing completely new code requirements
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Introduction

´GitHub Copilot

´AI Coding
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Introduction

´How does a machine generate code?

´Program synthesis: Left → Right
´Program editing: Performed in the middle
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Masking Model

´Books and friends [MASK:0] be few
but good. [MASK:0]would[EOM]

´Casual Masking
´Casual models: Automatically regress
´Masking method: Limited content

´Combine together

Sentinel Token
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• Autoregressive: Generated from left 
to right, ignoring scenarios where 
code is filled in the middle.

• Masking method: Great for filling in
the middle.

• We combine instead of using the
mask rather than autoregressive.



Token Segmentation

´Masked TOKEN in natural language inference:
´A single word / phrase

´Masked TOKEN in coding:
´Code fragments

´How to create token? BPE tokenizer
´Common code idioms are counted as a single token
´Reduce the number of tokens
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• Mask the fragment, not randomly masking substring
• Providing better training data, better suitable for inference.



Masking Model -- Training

´How to train the
model?

´Random masking

Creating spans

Count of “span”s: Manually construct the long-tailed distribution
Poisson distribution, but truncated to 256.

8



Masking Model -- Training
´Some notations

´Text: D -> multiple splitted token: D0, D1, D2, …
´Part of tokens: Di:j

´Mask part of fragments (i:j):
´Left context: D0:i

´Right context: Dj:N

´When training, we maximize the probability of the
existing data:
´Loss: Cross entropy error (except mask tokens)
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Masking Model -- Inference

´Mask: code to be filled
´Generate context:

´Stop Condition:
´<EOM> reached
´Maximum tokens, etc.
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D: The full document,
the returned type part is masked.



Masking Model -- Inference

´Mask: code to be filled
´Generate context:

´Insert a <Mask:1>,
indicating that there will
still be something after the
context. [1]
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D: The full document,
the returned type part is masked.



Experiments

´Primary Model: InCoder-6.7B (base: 6.7B)
´Dataset: GitHub, GitLab, StackOverflow
´Compare w/ 2 inference methods:

´Casual Infilling
´Left-to-right Single
´Left-to-right Reranking
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Experiments

´Categories of Tasks:
´Infilling lines of code
´Docstring generation
´Return type prediction
´Variable name prediction

´Test datasets: HumanEval & CodeXGlue
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Experiment 1: Infilling lines of code
´Generating code
´Categories:

´Single-line Infilling
´Multi-line Infilling

´Evaluation:
´Passing rate: same in - out
´Exact matching: masks = original code
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Experiment 1:
Infilling lines of code

´Results: Single line

´Overall Performance
´CM is better

´Performance by the
position of the mask
´CM shows less influence
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Experiment 1:
Infilling lines of code

´Results: Multiple line

´Overall: CM still better
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Experiment 2:
Docstring Generation

´Summarizing code snippet
´Evaluation: BLEU scores
´Result:

´CM better than LR
´Existing finetuned model

have better performance
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Experiment 3: Return type prediction
´Predict the possible type returned in the function

or some variable prediction
´Additional Dataset: Typewriter OSS
´Evaluation: If the return type is correct

´Using AST (syntax tree algorithm)
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Experiments – Return type prediction

´Performance: CM infilling still better.
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Experiments – Variable
name prediction
´Predict what the variable
represents according to the
context

´Method
´Mask all the variables in this
task using AST

´Predict according to the code /
fragment
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Experiments – Variable name 
prediction
´Performance: CM made full use of the right 

context -- important in this task
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Ablation Experiments

´Prove:
´It is casual masking (CM), rather than language

modeling (LM), makes the model better!

´Comparison:
´1.3B parameter model
´Using CM and LM, comparing the passing rate.
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Ablation Experiments

´Results:
´CM shows significantly better performance
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• For certain languages, using a 
single language as the 
training set may be better

• For languages w/ more
constraints (Java…), the 
training data required is 
generally less than that with 
fewer constraints (Python…).



Conclusion

´New Method in InCoder: Casual Masking
´Better performance for right context identifying
´Established a basis for future research on 

supervised infilling and editing
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Introduction
´Llama 2

´a large language model developed by Meta

´Code Llama
´program synthesis – just like the InCoder before

´Same concepts in program synthesis as InCoder
´Infilling (masking)
´Long input contexts
´Fine-tuning
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Model Mechanics

´Training pipeline example

´Differences? Let’s start with the model
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Model Mechanics

´Dataset: Llama 2 Sample
´With code and natural language related to code
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Model Mechanics

´Training infilling models
´Causal masking, but slightly different

´Split:
´Prefix, middle and suffix
´ The split positions of the tokens are uniformly 

distributed
´Tokenizer: PSM and SPM

´In PSM, token is likely to be splitted into subtokens
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Model Mechanics
´Fine-tuning

´Long context fine-tuning: support more tokens
´Principle: Rotary Position Encoding

´position interpolation -> linear transformation

´Instruction fine-tuning
´Add realistic natural language problems

´Using Llama 2 and Code Llama to solve them

31



Performance Results
´Test Datasets: HumanEval, MBPP, etc.
´Multiple Languages
´Results focusing

´Impact of Llama 2 and Llama 2 -> Code Llama (and its
specialization models)

´Impact of fine-tuning
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Performance Results: Specialization

´Llama 2 vs. Code Llama
´Llama 2: 2 trillion tokens
´Code Llama: 500B extra tokens
´Llama 2 70B <- -> Code Llama 7B
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Performance Results: Specialization
´General Model vs. specialized model

´CL vs. CL-Instruct vs. CL-Python

´Higher Pass@1 / 10 /100 score in CL-Python
´Analog InCoder: w/ StackOverflow, multi languages
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Performance Results: Infilling
´Code Llama without Long Context fine-tuning
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• Question response: Infilling training incurs no cost on autoregressive 
test set loss, only small cost on pass@k where k is large



Performance Results: fine-tuning

´Long context fine-tuning (LCFT)
´Obvious perplexity decrease in large source files
´Better completion performance
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Safety Consideration

´Another objective of fine-
tuning

´Fine-tune bad data
´Fake code
´Malicious code
´Biased code
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Safety Consideration

´Truthfulness
´TruthfulQA -> ensure the truth percent

´Toxicity
´ToxiGen -> reduce hate speech

´Bias
´BOLD datasets
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Safety Consideration

´Red teaming: avoid hacking
´Avoid false refusal: the safety can't go too high

´Results:
´After fine-tuning using the three datasets, a clear 

optimization is obtained
´Ranked #2 safety performance
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• Evaluation such as “Dual

intent prompts”.
• Some possible ways to

reduce the risk? Collect
data? Simulation?



Comparison

´Compared with traditional NLP methods:
´More important in context, especially right context

´ InCoder:
´Based on InCoder Transformer
´Infilling: Casual Masking
´Different sequence

´Code Llama:
´Based on Llama 2 model
´Infilling: multi-task filling
´Pipelines for generating different models, better fine-tuning
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Summary

´Code Llama: another zero-shot code synthesis
model

´Different pipelines
´Safety Consideration
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