Zero-shot Code Language Models

CSE 561A: Large Language Models

Shangyu Chen

Introduction

Zero-shot:

2

- No training data for some tasks
- Zero-shot code filling:
 - Facing completely new code requirements

Introduction

GitHub Copilot

Al Coding

42	SUD TII, I
43	jmp loop2
44	endloop2:
45	
46	mov rsp, rbp
47	ret
48	*/
49	
50	<pre>#include <stdio.h></stdio.h></pre>
51	<pre>#include <stdlib.h></stdlib.h></pre>
52	<pre>#include <string.h></string.h></pre>
53	
54	void print_array(char *array, int size) {
	for (int i = 0; i < size; i++) {
	printf("%d ", array[i]);
	}
	<pre>printf("\n");</pre>
	}

4

How does a machine generate code?

Program synthesis: Left → Right
 Program editing: Performed in the middle

InCoder: A Generative Model for Code Infilling and Synthesis

CSE 561A: Large Language Models

Shangyu Chen

5

Masking Model Sentinel Token Books and friends [MASK:0] be few but good. [MASK:0]would[EOM]

Casual Masking

- Casual models: Automatically regress
- Masking method: Limited content
- Combine together

🔸 Inference API 🛈	
🔁 Fill-Mask	Examples 🗸
Mask token: [MASK]	
Books and friends [MASK] be few but good.	1
Compute Computation time on cpu: 0.243 s	
would	0.477
will	0.112
might	0.104
can	0.093
could	0.092
JSON Output	🛛 Maximize

- Autoregressive: Generated from left to right, ignoring scenarios where code is filled in the middle.
- Masking method: Great for filling in the middle.
- We combine instead of using the mask rather than autoregressive.

Token Segmentation

Masked TOKEN in natural language inference:

- A single word / phrase
- Masked TOKEN in coding:
 - Code fragments

7

- How to create token? BPE tokenizer
 - Common code idioms are counted as a single token
 - Reduce the number of tokens
 - Mask the fragment, not randomly masking substring
 - Providing better training data, better suitable for inference.

Masking Model -- Training

How to train the model?

Random masking

Count of "span"s: Manually construct the long-tailed distribution Poisson distribution, but truncated to 256.

Masking Model -- Training

- Some notations Randomly select fragments to mask
 - Text: D -> multiple splitted token: D_0 , D_1 , D_2 , ...
 - Part of tokens: D_{i:j}
 - Mask part of fragments (i:j):
 - Left context: D_{0:i}
 - Right context: D_{j:N}
- When training, we maximize the probability of the existing data:
 - Loss: Cross entropy error (except mask tokens)

log P([Left; <Mask:0>; Right; <Mask:0>; Span; <EOM>])

Masking Model -- Inference

def func(i: int, j: int) -> int: return i * 2 + j * 4

D: The full document, the returned type part is masked.

- Mask: code to be filled
- Generate context:
 - P(| [Left; <Mask:0>; Right; <Mask:0>])
- Stop Condition:
 - EOM> reached
 - Maximum tokens, etc.

Masking Model -- Inference

def func(i: int, j: int) -> int: return i * 2 + j * 4

11

D: The full document, the returned type part is masked.

- Mask: code to be filled
- Generate context:

P(· | [Left; <Mask:0>; Right; <Mask:0>])

Insert a <Mask:1>,
 indicating that there will
 still be something after the
 context. [1]

P(| [Left; <Mask:0>; Right; <Mask:1>;

Experiments

- Primary Model: InCoder-6.7B (base: 6.7B)
 Dataset: GitHub, GitLab, StackOverflow
- Compare w/ 2 inference methods:
 - Casual Infilling
 P(· | [Left; <Mask:0>; Right; <Mask:0>])
 - Left-to-right Single $P(\cdot | \text{Left})$
 - Left-to-right Reranking $\log P([Left; Span_k; Right])$

Experiments

- Categories of Tasks:
 - Infilling lines of code
 - Docstring generation
 - Return type prediction
 - Variable name prediction
- Test datasets: HumanEval & CodeXGlue

Experiment 1: Infilling lines of code

- Generating code
 - Categories:

14

- Single-line Infilling
- Multi-line Infilling
- Evaluation:
 - Passing rate: same in out
 - Exact matching: masks = original code

1	<pre>func test(a: int, b: int) -> int {</pre>
2	// Multiply a and b
3	return a * b
4	}

Experiment 1: Infilling lines of code

Results: Single line

15

- Overall Performance
 - CM is better
- Performance by the position of the mask
 - CM shows less influence

Method	Pass Rate	Exact Match
L-R single	48.2	38.7
L-R reranking	54.9	44.1
CM infilling	69.0	56.3

Experiment 1: Infilling lines of code

16

Results: Multiple line

Overall: CM still better

Method

L-R single

L-R reranking

code-cushman-001

code-davinci-001

CM infilling

PLBART

Method	Pass Rate	Exact Match
L-R single	24.9	15.8
L-R reranking	28.2	17.6
CM infilling	38.6	20.6

(a) Single-line infilling.

(b) Multi-line infilling.

Experiment 2: Docstring Generation

- Summarizing code snippet
 Evaluation: BLEU scores
- Result:
 - CM better than LR
 - Existing finetuned model have better performance

1	<pre>// test is a function that takes two integers, a and b, and returns the result of raising a to the power of b.</pre>
2	func test(a: int, b: int) -> int {
3	//
4	return a ** b
5	}

Method	BLEU
Ours: L-R single	16.05
Ours: L-R reranking	17.14
Ours: Causal-masked infilling	18.27
RoBERTa (Finetuned)	18.14
CodeBERT (Finetuned)	19.06
PLBART (Finetuned)	19.30
CodeT5 (Finetuned)	20.36

Experiment 3: Return type prediction

- Predict the possible type returned in the function or some variable prediction
- Additional Dataset: Typewriter OSS
- Evaluation: If the return type is correct

Using AST (syntax tree algorithm)

Experiments – Return type prediction

Performance: CM infilling still better.

Method	Accuracy	Method	Precision	Recall	F1
Left-to-right single Left-to-right reranking	12.0 12.4	Ours: Left-to-right single Ours: Left-to-right reranking	30.8 33.3	30.8 33.3	30.8 33.3
Causai-masked mining	56.1	Ours: Causai-masked infilling	59.2	59.2	59.2
↑CodeXGlue	Typewriter→	TypeWriter (Supervised)	54.9	43.2	48.3

Experiments – Variable name prediction

- Predict what the variable represents according to the context
- Method
 - Mask all the variables in this task using AST
 - Predict according to the code / fragment

Variable Name Prediction

```
def count_words(filename: str) -> Dict[str, int]:
    """Count the number of occurrences of each word in the file."""
    with open(filename, 'r') as f:
        word_count = {}
        for line in f:
            for word in line.split():
               if word in word_count:
                    word_count[word] += 1
                    else:
                          word_count[word] = 1
        return word_count
```

Experiments – Variable name prediction

Performance: CM made full use of the right context -- important in this task

Method	Accuracy
Left-to-right single	18.4
Left-to-right reranking	23.5
Causal-masked infilling	30.6

Ablation Experiments

Prove:

It is casual masking (CM), rather than language modeling (LM), makes the model better!

Comparison:

- 1.3B parameter model
- Using CM and LM, comparing the passing rate.

Ablation Experiments

- For certain languages, using a single language as the training set may be better
- For languages w/ more constraints (Java...), the training data required is generally less than that with fewer constraints (Python...).

Results:

CM shows significantly better performance

#	Size (B)	Obj.	Training Data	Data Size	Train Tokens	Train Compute	HumanEval Pass@1	MBPP Pass@1
1)	6.7	CM	multi lang + SO	204 GB	52 B	3.0 Z	15	19.4
2)	1.3	CM	multi lang + SO	204 GB	52 B	0.6 Z	8	10.9
3)	1.3	LM	multi lang + SO	204 GB	52 B	0.6 Z	6	8.9
4)	1.3	LM	Python + SO	104 GB	25 B	0.3 Z	9	9.8
5)	1.3	LM	Python	49 GB	11 B	0.1 Z	5	6.1
6)	2.3	LM	multi lang + SO	204 GB	52 B	1.1 Z	9	12.7

Conclusion

New Method in InCoder: Casual Masking
 Better performance for right context identifying
 Established a basis for future research on supervised infilling and editing

Any Questions?

26

Code Llama: Open Foundation Models for Code

CSE 561A: Large Language Models

Shangyu Chen

Introduction

Llama 2

a large language model developed by Meta

- Code Llama
 - program synthesis just like the InCoder before
- Same concepts in program synthesis as InCoder
 - Infilling (masking)
 - Long input contexts
 - Fine-tuning

Model Mechanics

Training pipeline example

Differences? Let's start with the model

Model Mechanics

Dataset: Llama 2 Sample

With code and natural language related to code

Dataset	Sampling prop.	Epochs	Disk size
Code Llama (500B tokens)			
Code	85%	2.03	$859~\mathrm{GB}$
Natural language related to code	e 8%	1.39	78 GB
Natural language	7%	0.01	$3.5 \ \mathrm{TB}$
Code Llama - Python (addi	tional 100B to	kens)	
Python	75%	3.69	$79~\mathrm{GB}$
Code	10%	0.05	$859~\mathrm{GB}$
Natural language related to code	10%	0.35	$78 \mathrm{GB}$
Natural language	5%	0.00	$3.5 \ \mathrm{TB}$

30

Model Mechanics

Training infilling models

- Causal masking, but slightly different
- Split:
 - Prefix, middle and suffix
 - The split positions of the tokens are uniformly distributed
- Tokenizer: PSM and SPM
 - In PSM, token is likely to be splitted into subtokens

Model Mechanics

- Fine-tuning
 - Long context fine-tuning: support more tokens
 - Principle: Rotary Position Encoding
 - position interpolation -> linear transformation
 - Instruction fine-tuning
 - Add realistic natural language problems
 - Using Llama 2 and Code Llama to solve them

Performance Results

- Test Datasets: HumanEval, MBPP, etc.
- Multiple Languages
- Results focusing
 - Impact of Llama 2 and Llama 2 -> Code Llama (and its specialization models)
 - Impact of fine-tuning

Performance Results: Specialization

Llama 2 vs. Code Llama

- **Llama 2**: 2 trillion tokens
- Code Llama: 500B extra tokens
- Llama 2 70B <- -> Code Llama 7B

Higher Pass@1 / 10 / 100 score in CL-Python

34

Analog InCoder: w/ StackOverflow, multi languages

	7B	33.5%	59.6%	85.9%	41.4%	66.7%	82.5%
Code Llama	13B	36.0%	69.4%	89.8%	47.0%	71.7%	87.1%
	34B	48.8%	76.8%	93.0%	55.0%	76.2%	86.6%
	7B	34.8%	64.3%	88.1%	44.4%	65.4%	76.8%
Code Llama - Instruct	13B	42.7%	71.6%	91.6%	49.4%	71.2%	84.1%
	34B	41.5%	77.2%	93.5%	57.0%	74.6%	85.4%
UNNATURAL CODE LLAMA	34B	$\underline{62.2\%}$	$\underline{85.2\%}$	$\underline{95.4\%}$	$\underline{61.2\%}$	$\underline{76.6\%}$	86.7%
	7B	38.4%	70.3%	90.6%	47.6%	70.3%	84.8%
Code Llama - Python	13B	43.3%	77.4%	94.1%	49.0%	74.0%	87.6%
	34B	53.7%	82.8%	94.7%	56.2%	76.4%	88.2%

Performance Results: Infilling

Code Llama without Long Context fine-tuning

Model	FIM	Size	HumanEval			MBPP			Test loss
			pass@1	pass@10	pass@100	pass@1	pass@10	pass@100	
Code Llama (w/o LCFT)	x	7B 13B	$33.2\%\ 36.8\%$	$43.3\%\ 49.2\%$	49.9% 57.9%	$44.8\%\ 48.2\%$	52.5% 57.4%	$57.1\%\ 61.6\%$	$0.408 \\ 0.372$
Code Llama (w/o LCFT)	1	7B 13B	$33.6\%\ 36.2\%$	$44.0\%\ 48.3\%$	$48.8\%\ 54.6\%$	$44.2\%\ 48.0\%$	51.4% 56.8%	$55.5\%\ 60.8\%$	$0.407 \\ 0.373$
Absolute gap	X - V	7B 13B	${-0.4\% \atop 0.7\%}$	$-0.7\%\ 0.9\%$	$1.1\%\ 3.3\%$	$0.6\%\ 0.2\%$	$1.1\%\ 0.6\%$	$1.6\%\ 0.8\%$	$0.001 \\ -0.001$

• Question response: Infilling training incurs no cost on autoregressive test set loss, only small cost on pass@k where k is large

Performance Results: fine-tuning

Long context fine-tuning (LCFT)

- Obvious perplexity decrease in large source files
- Better completion performance

Safety Consideration

Another objective of finetuning

- Fine-tune bad data
 - Fake code
 - Malicious code
 - Biased code

🄊 You

Do you know how to hack the `mv` command?

ChatGPT

The term "hack" can imply different contexts depending on usage. In a constructive context, "hacking" the `mv` command could mean finding creative or unconventional ways to use it for various tasks beyond its basic functionality of moving or renaming files in Unix/Linux systems. However, if you're referring to malicious hacking or unauthorized access, it's important to note that discussing or engaging in such activities is unethical and illegal.

38

Safety Consideration

Truthfulness

- TruthfulQA -> ensure the truth percent
- Toxicity
 - ToxiGen -> reduce hate speech
- Bias
 - BOLD datasets

Safety Consideration

Evaluation such as "Dual intent prompts".

 Some possible ways to reduce the risk? Collect data? Simulation?

Red teaming: avoid hacking

Avoid false refusal: the safety can't go too high

Results:

- After fine-tuning using the three datasets, a clear optimization is obtained
- Ranked #2 safety performance

Comparison

Compared with traditional NLP methods:

- More important in context, especially right context
- InCoder:
 - Based on InCoder Transformer
 - Infilling: Casual Masking
 - Different sequence
- Code Llama:
 - Based on Llama 2 model
 - Infilling: multi-task filling
 - Pipelines for generating different models, better fine-tuning

Summary

Code Llama: another zero-shot code synthesis model

- Different pipelines
- Safety Consideration

⁴² Any questions?

References

- Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., Yih, W.-t., Zettlemoyer, L., Lewis, M. (2023). InCoder: A Generative Model for Code Infilling and Synthesis. arXiv preprint arXiv:2204.05999.
- Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer, C. C., Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier, N., Scialom, T., Synnaeve, G. (2023). Code Llama: Open Foundation Models for Code. arXiv preprint arXiv:2308.12950.
- 3. Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir Karpukhin, Hu Xu, Naman Goyal, Dmytro Okhonko, Mandar Joshi, Gargi Ghosh, Mike Lewis, and Luke Zettlemoyer. CM3: A causal masked multimodal model of the Internet. arXiv preprint arXiv:2201.07520, 2022a.

Thank you!

Thank you!