TEACHING LARGE LANGUAGE
MODELS TO SELF- DEBUG

Presenter: Yuqgi Yan

Introduction

Prior Work Method Feature Performgnce
Evaluation

Introduction Advantages

Achieves state-of-the-art

Large Language Models
(LLMs) excel in code
generation.

Generating correct
solutions for complex
programming tasks in one
go is challenging.

Prior works have designed
program repair
approaches to enhance
code generation
performance.

Teaches LLMs to debug
their predicted program.

Debugging is done via few-
shot demonstrations.

Model can perform rubber
duck debugging.

Model identifies errors
and explains generated
code without human
feedback.

performance in multiple
code generation
benchmarks.

Improves baseline
accuracy on Spider,
TransCoder, and MBPP
benchmarks.

Enhances sample
efficiency.

Matches or outperforms
baseline models
generating over 10x
candidate programs.

Introduction

Step 2: Code execution

i=

Code Explanation

'}
Step 3: Code explanation —
-

=]

Executor

Step 1: Code
generation

Feedback

Problem

Model

Code Generation
1. An approach that uses multiple

input-output examples to guide @ oner 5a nimber |

rer_name text ,

language model in solving a task. details text ,

v (customer_id)

2. (PrOblem, SQL) A "St Of pairs. Jdstomers (customer_id, customer_name, customer_details) value

, ’rerum’) ;

3. Prompts can also contain FABLE orders (

_id number ,

instructions that provide tomer_id number ,

. . srder_status text ,

advanced task descriptions. date_order_placed time ,
order_details text ,

primary key (order_id),

. . . foreign key (customer_id) references customers (customer_id)
Which customers have both "On Road" and "Shipped" as order status? List the customer names.)

[Question Explanation]
"List the customer names" returns 1 column. The question returns the customer names who have both "On Road" and "Shipped" as
order status. So the question returns 1 column.

Few-shot

prompting

insert into orders (order_id, customer_id, order_status, date_order_placed
order_details) values (1, 2, ’Shipped’, ’2009-02-21 15:26:19’, NULL);

Step 2: Code explanation . . .
S arize the return type of the execution P L Question: Which customers have both "On Road" and "Shipped" as order statu

List the customer names.
[SQL]

SELECT ustomers.customer_name FROM customers JOIN orders ON customers.customer_id = orders.customer_id

WHERE orders.order_status = "On Road" OR orders.order_status = "Shipped"
Execution: Output SQL

| George |

[SQL Explanation] SQL: SELECT customers.customer_name FROM customers JOIN orders ON customer
The execution of the SQL query above would return a table with 1 column. customer_id = orders.customer_id

The first column, "customers.customer _name" would contain the customer names. WHERE orders.order_status = "On Road"

With "customers JOIN orders", the table would contain the data about customers with orders. INTERSECT SELECT Castome rs.customer name FROM customers JOIN orders ON

With "WHERE orders.order_status = 'On Road' OR orders.order_status = 'Shipped", the table filters the records to only include
customers who have order status "On Road" or "Shipped".
So the SQL query returns a table with 1 column, the customer names who have the order status "On Road" or "Shipped".

customers.customer_id = orders.customer_id
WHERE orders.order_status = "Shipped"

Step 3: Self-Debugging with explanation
[Question]
[Explanation summary]
As in your explanation, the SQL query returns a table with 1 column, the customer names who have the order status "On Road" or
"Shipped". The question returns 1 column, the customer names who have both "On Road" and "Shipped" as order status.

Code Generation

1. This approach is used to improve the performance of
large language models.

2. Use majority voting of execution results to select the
final prediction code

3. Some code generation tasks come with unit tests that
specify the execution behavior of the program

For input data X, the execution result of A is "Result 1", the execution result of B
is "Result 2", and the execution result of Cis "Result 1";

For input data Y, the execution result of A is "Result 2", the execution result of B is
"Result 2", and the execution result of Cis "Result 2";

For input data Z, the execution result of A is "Result 1", the execution result of B
is "Result 1", and the execution result of Cis "Result 1".

Self-Debugging Framework

Simple

feedback

Code

Explanation
feedback (Expl)

Just an indication of whether the code is
correct or not, without providing more
detailed information

Code execution results can enrich debugging
feedback by verifying code correctness and
offering additional insights.

Large language models can describe solutions
by explaining the code and matching it with
the problem description.

When unit tests are present, the large
language model is guided to provide step-by-
step explanations of intermediate execution.

Applications

-= TEXt'tO-SQL Generation (Text to SQL generation represents a situation where no unit tests are available)

Evaluating SELF-DEBUGGING on the development set of the Spider benchmark

e Step 1

Summarize the question and infer the return type

* Step 2

Execute the SQL query and add the returned table for code explanation

* Step 3

Compare inferred SQL explanation with question description and predict correctness

Applications

-- Text-to-Python Generation

Evaluation on the MBPP test set

e Each problem contains 3 unit tests.

* The first unit test is included in the prompt as part of the problem description and the remaining
2 unit tests are reserved for full evaluation.

* Even if the predicted code passes the given unit tests, the model still needs to infer the
correctness of the code.

Experiment

e SELF-DEBUGGING was evaluated on several models with 155 billion parameters,
including code- davinci-002, gpt-3.5-turbo, gpt-4, StarCoder.

Comparing SELF-DEBUGGING with two types of code reranking baselines

Models trained for a given task

» Comparing SELF-DEBUGGING with T5-3B + N-best Reranking
e Compared with LEVER

Prompting-based approaches

e Comparing SELF-DEBUGGING with MBR-Exec and Coder-Reviewer

Experiment

--Main Result
Table 1: Comparing SELF-DEBUGGING to prior ranking techniques.
(a) Results on the Spider development set. (b) Results on MBPP dataset.
Spider (Dev) n samples
W/raining ___ ____________ Prorwork _ _ _ _____ __
T5-3B + N-best Reranking 80.6 MBR-Exec 63.0 (n = 25)
LEVER (Ni et al., 2023) 81.9 Reviewer 66.9 (n = 25)
_ Prompting only w/o debugging LEVER 68.9 (n = 100)
Coder-Reviewer 74.5 _ SELF-DEBUGGING (this work)
MBR-Exec 75.2 Codex 72.2 (n = 10)
_SELF-DEBUGGING (this work)__ Simple 736
Codex 81.3 UT 75.2
+ Expl. 84.1 UT + Expl. 75.6

Comparing SELF-DEBUGGING to prior code reranking approaches in Table 1,
where both SELF-DEBUGGING and prior prompting-based approaches use Codex.

We demonstrate that SELF- DEBUGGING consistently improves performance.

10

Experiment

--Main Result
Table 2: Results of SELF-DEBUGGING with different feedback formats.
(a) Results on the Spider development set. (b) Results on TransCoder.
Spider Codex GPT-3.5 GPT-4 StarCoder TransCoder Codex GPT-3.5 GPT-4 StarCoder
Baseline 81.3 71.1 73.2 64.7 Baseline 80.4 89.1 77.3 70.0
Simple 81.3 72.2 73.4 64.9 Simple 89.3 91.6 80.9 72.9
+Expl. 84.1 72.2 73.6 64.9 UT 91.6 927 88.8 76.4
+ Expl. 92.5 92.7 90.4 76.6
+ Trace. 87.9 92.3 89.5 73.6
(¢) Results on MBPP.
MBPP Codex GPT-3.5 GPT-4 StarCoder

Baseline 61.4 67.6 72.8 47.2

Simple 68.2 70.8 78.8 50.6

UT 69.4 72.2 80.6 52.2

+ Expl. 69.8 74.2 80.4 52.2

+ Trace. 70.8 72.8 80.2 53.2

By comparing the feedback format of SELF-DEBUGGING on the Spider benchmark, we see
that simple feedback is of very limited use in the absence of unit tests.

11

Experiment

--Main Result
Table 2: Results of SELF-DEBUGGING with different feedback formats.
(a) Results on the Spider development set. (b) Results on TransCoder.
Spider Codex GPT-3.5 GPT-4 StarCoder TransCoder Codex GPT-3.5 GPT-4 StarCoder
Baseline 81.3 71.1 73.2 64.7 Baseline 80.4 89.1 77.3 70.0
Simple 81.3 72.2 73.4 64.9 Simple 89.3 91.6 80.9 72.9
+Expl. 84.1 72.2 73.6 64.9 UT 91.6 927 88.8 76.4
+ Expl. 92.5 92.7 90.4 76.6
+ Trace. 87.9 92.3 89.5 73.6
(¢) Results on MBPP.
MBPP Codex GPT-3.5 GPT-4 StarCoder

Baseline 61.4 67.6 72.8 47.2

Simple 68.2 70.8 78.8 50.6

UT 69.4 72.2 80.6 52.2

+ Expl. 69.8 74.2 80.4 52.2

+ Trace. 70.8 72.8 80.2 53.2

1.0n the Spider dataset, GPT-4 outperforms Codex in both initial SQL generation and self debugging.

2.0n the MBPP dataset, GPT-4 outperforms Codex and GPT-3.5 in initial Python code generation.

Experiment
--Ablation Studies (Self-debugging improves the sample efficiency)

90 B w/o debugging
—- Self-debugging 80/5/ self-debugging
88 —@— Codex 80 7640
/72‘9
> 86
§ 84.1 > 60 63.9 /
Y 60 -
g% 82.5 82:9 5
< 5
o 8278038 ©
[
% © 401
'S 807 80.7 813 &
)
781 78.7 |
77.5 20
76 1 / / / /
1 8 16 32 0 // // A A
Samples Easy Medium Hard Extra hard

(a) (b)

Figure 6: Ablation studies on the Spider development set with Codex. (a) Accuracies with different
numbers of initial samples. (b) Breakdown accuracies on problems with different hardness levels.

Experiment

--Ablation Studies (Importance of code execution)

Table 3: Results of SELF-DEBUGGING without unit test execution.

(a) Results on Transcoder. (b) Results on MBPP
TransCoder Codex GPT-3.5 GPT-4 MBPP Codex GPT-3.5 GPT4
Baseline 80.4 89.1 77.3 Baseline 61.4 67.6 72.8
Simple 83.4 89.1 78.2 Simple 57.6 68.2 76.0
+ Expl. 83.9 89.1 78.0 + Expl. 64.4 68.2 76.0
+ Trace. 83.9 89.1 78.4 + Trace. 66.2 69.2 76.4

* With Codex, SELF-DEBUGGING still improves the performance by up to 5%, and the execution trace feedback
consistently improves over the simple feedback performance.

* GPT-4 without unit test execution improves the MBPP accuracy by 3.6%, and the improvement on other benchmarks
is up to around 1%.

* Compared to Codex, GPT-3.5 and GPT-4 don't benefit much from few-shot prompting in SELF-DEBUGGING, relying
solely on their internal code knowledge. Without unit test execution, they tend to be overconfident, with GPT-4
outperforming GPT-3.5 in Python generation.

14

Experiment
--Ablation Studies (Error Types Fixed by Self-Debugging)

Table 4: Breakdown on percentages of error types fixed by SELF-DEBUGGING.

(a) Breakdown on Spider with code-davinci-002. (b) Breakdown on Transcoder with gpt-3.5-turbo,
and MBPP with gpt-4.

Error type %

Wrong WHERE conditions 25.7 Error type Transcoder MBPP
Missing the DISTINCT keyword 17.1 Output mismatch 61.9 69.2
Wrong JOIN clauses 14.3 Runtime errors 38.1 30.8
Wrong number of SELECT columns 11.4

Wrong INTERSECT/UNION clauses 8.6

Wrong aggregate functions and keywords 5.8

Wrong COUNT columns 5.7

Wrong column selection 5.7

Missing nested conditions 5.7

Conclusion

e SELF-DEBUGGING helps large language models fix code errors by themselves.

* |n text-to-SQL tasks, it improves performance by 2-3% on average and 9% on tougher problems.
* For translating code and text-to-Python tasks, it boosts accuracy by up to 12%.

* Teaching models self-debugging improves coding performance.

* Future work aims to enhance model's code explanation and feedback for better debugging.

* Initial findings suggest model-generated error feedback needs improvement for more helpful messages.

16

LEVER: LEARNING TO VERIFY
LANGUAGE-TO-CODE GENERATION
WITH EXECUTION

Presenter: Yuqi Yan

Introduction

4 ‘ 4

Method Performance

Prior Work Introduction Evaluation

o : N N
The LEVER method
Obtaining test cases can be Proposing the LEVER consistently outperforms
challenging method baseline code language

models

Improves language-to-code
generation by learning to
verify the relationship
between generated
programs and their
execution results

Heuristic methods often
struggle to capture the
semantic features of
execution results
effectively.

Establishing new state-of-
the-art performance across
all datasets.

18

Introduction

Generation Prob.

. r}'_'_' - :'_'_',I'E .
s Ul :?t“"al % _| SELECT name FROM students me - I P
o o =2NEUAEERGUESEION a where age > 20 AND age < 30 ! i 2 2
S &| into SQL Query i ' N
¢ 8 IMs — . : Executor Verifier
é £ P b = oo oy i PR
@ 2| -- Example . i Pl = =
Lt | N :‘EDN SELECT COUNT(name) FROM students 1 9.27 ! 2 &l s
a where age > 20 AND age < 3@ |! P 2
SELECT ... N S
— it —[-]
[::—> ——l
X —'G # | SELECT COUNT(*) FROM students |!, . ! Ell Verif
enerate | £ ™ yhere age < 30 AND age > 20 | Execute = erity
w |-- Example T E T with
3 . 1
& | ey - T "
E| e ey @ _| SELECT student_num FROM studentsi | ¥ S | Err: No
® |class are between 20 o x % o s 0.11 ¢ n x Code
= a where age_interval = “20-30” ! by 2 column..
and 30 years old? i 0
| — | — — T

Final Score

Figure 1: The illustration of LEVER using text-to-SQL as an example. It consists of three steps: 1) Generation: sample
programs from code LLMs based on the task input and few-shot exemplars; 2) Execution: obtain the execution results with
program executors; 3) Verification: using a learned verifier to output the probability of the program being correct based on
the NL, program and execution results.

Approach

-- Language-to-Code Generation with Code LLMs

Prm(y|z) = P(y| prompt(z, {(Z4,Yi) Fi<m))

Prompt(x, {(xi, Vi) }i<m) is a string representation of the overall input

(generation is also often conditioned on a fixed set of m exemplars)

ygreed ~ argmaxyPLM (Y|x)

20

Approach

-- Reranking of Program Candidates

The idea of discriminative reranking is to learn a scoring function R(x,)

that measures how likely y” is the best output for input x

@rerank = arg max R(CC, @)
yeSs

Given R(:), the reranker outputs the program with the highest reranking
score among the set of candidates S

21

Approach

-- Reranking of Program Candidates
-- Program Sampling from Code LLMs

Give the input x

instead of performing a greedy search, obtain k programs from
P_LM(y|x) with temperature sampling

{yi}{'{:lNPLM(le)

Deduplication to form a set of n (As the same programs may be
sampled more than once)

S=itizin<k

22

Approach

-- Reranking of Program Candidates
-- Verification with Execution

Parameterizing the discriminative reranker as a verification model

Py(vlz,§,€(9) v €101}

The reranking probability is the joint probability of generating and passing validation.

Pgr(§,v=1]z) = Pum(9J|z) - Po(v=1|z,9, (7)) yES

23

Approach

-- Learning the Verifiers
-- Training Data Creation

For language-to-code datasets, each example is typically a triplet of (x, y*, z*) where z* = g(y™) is
the gold execution result and y” is the gold program.

Collecting training data:

« Obtaining a set of n unique programs candidates S = {y:}- for each input x in the
training set, by first sampling k programs from P; ,,(¥|x) and then remove all the duplicated
programs.

* For each program candidate y € S:

* Obtain its execution result Z = (9).

* Compare its execution result Z with the gold standard execution result z* to obtain its
binary verification label v.

e ie,v=I(Z=2z").

* For the dataset containing the gold program y* , use (x, y*, z*, v;—1) as additional
validation training samples.

* With the above steps, a set of validation training samples {(x,V;, Z;, v;) | ¥; €S) is created
for each input x.

24

Approach

-- Learning the Verifiers
-- Learning Objective

Given this set of verification training examples, we formulate the loss for input x with
the negative log-likelihood function, normalized by the number of program candidates

1

59(5575) - _m

: Z log Py (vi|z, Ji, 2:)
J; €S

25

Experimental Setup

--Datasets

Conducting experiments on four language-to-
code datasets across domains of semantic

parsing, table QA, math reasoning and basic
Python programming.

main settings of these four datasets

Spider WikiTQ GSM8k MBPP
Domain Table Table Math Basic
QA QA QA Coding
Has program v v X v
Target SQL SQL Python Python
Data Statistics
Train 7,000 11,321 5,968 378
Dev 1,032 2,831 1,448 90
Test - 4,336 1,312 500
Few-shot Generation Settings
Input For- Schema Schema NL Assertion
mat + NL + NL + NL
Shots 8! 8 8 3
Samples 5050t 50150 50/100 100/100
(train / test)
Generation
Length 128 128 256 256

Table 1: Summary of the datasets used in this work. *:
About 80% examples in WikiTableQuestions are annotated
with SQL by Shi et al. (2020). f: 50/100 for InCoder and
CodeGen for improving the upper-bound. *: Only the first 2
of the 8 exemplars are used for InCoder and CodeGen due

to limits of context length and hardware.

26

Experimental Setup

--Code LLMs
-- Baselines and Evaluation Metric

Evaluating LEVER with three code LLMs: Codex, InCoder-6B, and CodeGen-16B-multi

Comparing LEVER to several baseline approaches for generating programs using code LLMs:

* Greedy

* Maximum Likelihood (ML)

* Error Pruning + ML (EP + ML)

* Error Pruning + Voting (EP + Votingmost)

Evaluation metric: Use execution accuracy as the main evaluation metric for all datasets

27

Experimental Setup

-- Implementation Details

Verifier training: Validation training data is created by sampling from LLMs in the training set. However, a
large number of samples may lead to a memory shortage. Therefore, random downsampling is
performed for each example at each iteration. This ensures that the validator sees a different program in
each cycle.

Execution result representation:
e For Spider and WikiTQ, use the linearized resulting tables from SQL execution as the execution
results.

* For GSM8Kk, use the value of the variable named “answer” after executing the program as the
execution results.

* For MBPP, use the type and value (cast to string) returned by the functions.
All execution errors are represented as “ERROR: [reason]”, such as “ERROR: Time out”

28

Main Result

Methods Dev Test
E f f . f L EV E R Previous Work without Finetuning
- PAL (Gao et al., 2022) - 72.0
€ Ct IVENESS O Codex + SC' (Wang et al., 2022) - 78.0
Methods Dev Test PoT-SC (Chen et al., 2022b) - 80.0
Previous Work without Finetuning Previous Work with Finetuning
Codex QA™ (Cheng et al., 2022) 50.5 48.7 Neo-2.7B + SS (Ni et al., 2022) 20.7 19.5
Codex SQL (Cheng et al., 2022) 60.2 61.1 Neo-1.3B + SC (Welleck et al., 2022) - 24.2
Codex Binder (Cheng et al., 2022) 65.0 64.6 DiVeRSe* ' (Li et al., 2022b) - 83.2
Previous Work with Finetuning This Work with codex-davinci-002
Methods Dev TaPEX* (Liu et al., 2021) 60.4 59.1 Greedy 68.1 67.2
Previous Work without Finetuning TaCube (ZhOll et al., 2022) 61.1 61.3 EP + ML 72.1 72.6
Rajkumar et al. (2022) 67.0 OmniTab™ (Jiang et al., 2022) - 63.3 LEVER®” 84.1.0> 84.5:03
MBR'EXCC_ (Shi et al., 2022) 75.2 This Work with code-davinci-002
Coder-Reviewer (Zhang et al., 2022) 74.5 Greedy 49.6 53.0 Table 4: Execution accuracy on the GSM8k dataset. *: fine-
Previous Work with Finetuning EP + ML 52.7 54.9 tuned model combined with Codex (similar to LEVER); |:
T5-3B (Xie et al., 2022) 71.8 LEVER%~ 64.6:+02 658102 generating natural language solutions instead of programs.
PICARD (Scholak et al., 2021) 75.5
RASAT (Qi et al., 2022 80.5 . . 13
(Qieta) Table 3: Execution accuracy on the WlhTQ dataset. Methods InCoder-6B CodeGen-16B
This Work with code-davinci-002 modeled as end-to-end QA without generating programs as Spider GSMSK Spider GSMSk
Greedy 753 a medium. Previous work:
EP + ML 717.3
LEVER®® 81.9 MBR-EXEC 382 - 30.6 -
401 Methods Dev Test Reviewer 41.5 - 31.7 -
Table 2: Execution accuracy on the Spider dataset. Standard Previous Work without Finetuning Bagﬁ:ﬁ;: 24.1 3.1 24.6 7.1
deviation is calculated over three runs with different random MBR-Exec (Shi et al., 2022) - 63.0 ML 33.7 38 312 926
seeds (same for the following tables when std is presented). =~ Reviewer (Zhang et al., 2022) - 66.9 EP + ML 41.2 44 371.7 114
: : — EP + Voting ~ 37.4 5.9 37.1 14.2
This Work with codex-davinci-002
Greedy 61.1 62.0 LEVER¥” 54.1 11.9 51.0 22.1
— gold prog. 53.4 - 52.3 -
EP + ML 62.2 60.2 — exec. info 48.5 5.6 43.0 13.4
LEVER®” 754107 68.9+0.4 —exec. agg. 54.7 10.6 51.6 183
Oracle 71.6 48.0 68.6 61.4

Table 5: Execution accuracy on the MBPP dataset.
Table 6: Results with InCoder and CodeGen as the Code
LLMs, evaluated on the dev set with T5-base as the verifier.
Previous work results were copied from Zhang et al. (2022).

29

Main Result

-- Ablations with LEVER

NGreedy EML

100.0

90.0

80.0

70.0

60.0

Execution Accuracy (%)

50.0

40.0

82.0 81.7

. | |7,.

EEP+ML

81.2

ZEP +Voting MWLEVER mLEVER w/ogold prog. mLEVER w/o exec. info LEVER w/o exec. agg. ---- Oracle
98.4
...................................... e o1
841841 g,4
74.4 i 76.1 750
.. 71.1 70.5 -
68.1 5 .2

64.8 65.0 64.3 ?

58.2 ; /

50.5 S 50.0 ‘ i é
49.6 50- 7 X NN

NE o |

WikiTQ GSM8k MBPP

Spider

Figure 2: Comparison of LEVER%* and baselines with Codex-Davinci. LEVER and its ablation results are in solid bars.

e Effect of including execution results
e Effect of execution result aggregation

* Weakly-supervised settings

Methods InCoder-6B CodeGen-16B
Spider GSMS8k Spider GSMS8k
Previous work:
MBR-EXEC 38.2 - 30.6
Reviewer 41.5 - 31.7
Baselines:
Greedy 24.1 3.1 24.6 7.1
ML 33.7 38 312 9.6
EP + ML 41.2 4.4 37.7 114
EP + Voting 374 59 37.1 14.2
LEVER%” 54.1 119 51.0 22.1
— gold prog. 534 - 52.3 -
— exec. info 48.5 5.6 43.0 13.4
— exec. agg. 54.7 10.6 51.6 18.3
Oracle 71.6 48.0 68.6 61.4

Table 6: Results with InCoder and CodeGen as the Code
LLM:s, evaluated on the dev set with T5-base as the verifier.
Previous work results were copied from Zhang et al. (2022).

30

Analysis

-- Training Example Scaling

—&— Codex + LEVER ——&—InCoder-6B + LEVER CodeGen-16B + LEVER
--o--T5-small generation --o--T5-base generation Ts-large generation Demonstrates the change in LEVER's
1538 generation %0 performance on the Spider dataset as the
= o o > * 480 & number of training samples decreases.
70 &
e ——— - == N N N :2 ;§° * LEVER can work with limited resources.
e e B 40 §
e e @ - For harder datasets and weaker LLMs,
““““““ °~~\f_‘j; - : LEVER has a greater impact of training
5 samples.
6400 3200 1600 800 400 Few-shot (8)

Training Examples

e Compare LEVER's performance to a TS
Figure 3: Verification vs. generation performance when model fine-tuned directly for generation,
decreasing the number of training examples for Spider. Data using the same number of training
markers on the y-axis denote the EP+ML baseline, and the
x-axis is on the logarithmic scale. T5-base is used as the
base model for LEVER. WikiTQ and GSM8k results can be
found in Figure 7/in the Appendix.

examples. When there are fewer training
examples, the performance of the fine-
tuned TS5 model drops dramatically.

31

Analysis
-- Sample Size Scaling

ML+EP Oracle —e—LEVER Greedy

Spider wTQ GSM
95 75 100

70 95

©
o

90

65 "
85

60
80

55

75

o
«

\

Execution Accuracy (%)

~
v

50 70

~
o

45 65

0 25 50 0 25 50 0 50 100

Sample Size

(a) Ablation on sample size at inference time for LEVER, while
sample size at training time is fixed as in Table 1!

ML+EP Oracle —a—LEVER Greedy
Spider WTQ GSM
95 75 100
£ 95
Ego 70
g 65 ———— 90
385 s
< P 60 e —
g0 " ®
§ 75
275 50
] 70
70 45 65
5 15 25 0 2 50 0 25 50
Sample Size

(b) Performance with different number of programs to sample per
example for training the verifiers. Sample size at inference time is
fixed as in|Table 1|

Figure 4: How sample size during training and inference
time affects the performance, with LEVER + Codex-Davinci.

4a: It was found that during inference, LEVER is highly
sensitive to the sample size. When the sample size per

example is reduced from 50 to 10, LEVER's performance drops
by 1.8% (Spider) to 5.2% (WikiTQ).

4b: In contrast, LEVER is highly insensitive to the sample size
of training data. The performance gap across the three
datasets remains below 1%.

32

Analysis

-- Verifier and Generator Calibration

% Correct Program Spider % Correct Program WIleQ
95% 75%
90% 70%
85% 65%

60%

= / - * At lower percentile thresholds, the verifier typically

o L2 - exhibits better calibration than the generator.

ook - mere « When distinguishing among top-ranked programs, the
Z: generator is often better calibrated.

75% 70%

65% 60%

 Combining the probabilities from both the verifier and

o w = e generator yields the best results across all test datasets.
Verifier ~ - -Generator ——Verifier + Generator (LEVER) Oracle

e Especially on the GSM8k dataset.

Figure 5: Calibration of the verifier, generator (Codex-
Davinci), and their combined probability (used by LEVER).
The sampled programs are first ranked by the model prob-
abilities. The x-axis represents the percentage of samples
excluded after thresholding, and the y-axis represents the
percentage of correct programs in the remaining samples.
Execution aggregation is not applied in this group of plots
to ensure the scoring of different programs are independent.

33

Analysis

-- Qualitative Analysis

Exec. Err. in Greedy Prog. m Different Exec. Result Type Different Exec. Result Range Others
100%

s0% I

60% l

“ I
20%

0%

Spider + Spider + Spider+ WikiTQ+ GSM8k+ GSM8k+ GSM8k + MBPP +
Codex InCoder CodeGen Codex Codex InCoder CodeGen Codex

(a) When LEVER reranks a correct program at the top but the
greedy decoding fails.

Correct Greedy Prog. No Correct Prog. in Sample Exec. Err. in Rerank Program
m Same Exec. Result Type and Range = Others

100%
1
80% - - -
- L] I
40%
20%

0%
Spider + Spider + Spider+ WikiTQ+ GSM8k+ GSM8k+ GSMS8k + MBPP +
Codex InCoder CodeGen Codex Codex InCoder CodeGen Codex

(b) When LEVER fails to rank a correct program at the top.

Figure 6: Quantitative analysis on when LEVER succeeds
and fails to improve code LLLMs over greedy decoding.

The reasons for LEVER's success or failure in improving LLMs'
performance are as follows:

* LEVER often succeeds in reranking programs based on
crucial information provided by execution results, such as
execution errors, variable types, and ranges.

 LEVER may fail if there are no correct programs in the
samples, particularly with weaker LLMs.

* When the execution results of incorrect programs match

those of correct programs, LEVER may also fail to enhance
LLMs' performance.

34

Limitation

 LEVER needs execution data and a suitable environment, but not all applications have them.
* Running model-generated programs can be risky as not all code may be safe.
e PASS@1 metric is used in experiments for tasks like text-to-SQL and math reasoning. For

general programming tasks like MBPP, other metrics like PASS@k or N@k may show different
results.

35

Conclusion

* The paper suggests mixing generation and verification probabilities for reranking, instead of
directly rejecting samples based on verifier output.

e LEVER consistently improves the performance of code LLMs on four language-to-code tasks
and achieves new state-of-the-art results on all of them.

e Further analysis suggest s that the program execution results are crucial for verification and
the proposed approach is generalizable across different LLMs.

36

Questions?

37

