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Introduction

Prior Work

Large Language Models 
(LLMs) excel in code 

generation.

Generating correct 
solutions for complex 

programming tasks in one 
go is challenging.

Prior works have designed 
program repair 

approaches to enhance 
code generation 

performance. 

Method 
Introduction

Teaches LLMs to debug 
their predicted program.

Debugging is done via few-
shot demonstrations.

Feature

Model can perform rubber 
duck debugging.

Model identifies errors 
and explains generated 

code without human 
feedback.

Performance 
Evaluation

Achieves state-of-the-art 
performance in multiple 

code generation 
benchmarks.

Improves baseline 
accuracy on Spider, 

TransCoder, and MBPP 
benchmarks.

Advantages

Enhances sample 
efficiency.

Matches or outperforms 
baseline models 

generating over 10x 
candidate programs.
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Code Generation

Few-shot 
prompting 

1. An approach that uses multiple 
input-output examples to guide a 
language model in solving a task.
2. (Problem, SQL) A list of pairs.

3. Prompts can also contain 
instructions that provide 

advanced task descriptions.
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Code Generation

Execution-
based code 

selection 

1. This approach is used to improve the performance of 
large language models. 

2. Use majority voting of execution results to select the 
final prediction code

3. Some code generation tasks come with unit tests that 
specify the execution behavior of the program

For input data X, the execution result of A is "Result 1", the execution result of B 
is "Result 2", and the execution result of C is "Result 1";

For input data Y, the execution result of A is "Result 2", the execution result of B is 
"Result 2", and the execution result of C is "Result 2";

For input data Z, the execution result of A is "Result 1", the execution result of B 
is "Result 1", and the execution result of C is "Result 1".
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Self-Debugging Framework

Simple 
feedback 

Just an indication of whether the code is 
correct or not, without providing more 

detailed information

Unit test 
feedback (UT) 

Code execution results can enrich debugging 
feedback by verifying code correctness and 

offering additional insights.

Code 
Explanation 

feedback (Expl) 

Large language models can describe solutions 
by explaining the code and matching it with 

the problem description.

Execution trace 
feedback 

(Trace) 

When unit tests are present, the large 
language model is guided to provide step-by-
step explanations of intermediate execution.
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Applications
-- Text-to-SQL Generation (Text to SQL generation represents a situation where no unit tests are available)

Evaluating SELF-DEBUGGING on the development set of the Spider benchmark

• Step 1
Summarize the question and infer the return type

• Step 2
Execute the SQL query and add the returned table for code explanation

• Step 3
Compare inferred SQL explanation with question description and predict correctness
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Applications
-- Text-to-Python Generation

Evaluation on the MBPP test set

• Each problem contains 3 unit tests.

• The first unit test is included in the prompt as part of the problem description and the remaining 
2 unit tests are reserved for full evaluation.

• Even if the predicted code passes the given unit tests, the model still needs to infer the 
correctness of the code.
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Experiment

Comparing SELF-DEBUGGING with two types of code reranking baselines

Models trained for a given task

• Comparing SELF-DEBUGGING with T5-3B + N-best Reranking
• Compared with LEVER

Prompting-based approaches

• Comparing SELF-DEBUGGING with MBR-Exec and Coder-Reviewer

• SELF-DEBUGGING was evaluated on several models with 155 billion parameters,
including code- davinci-002, gpt-3.5-turbo, gpt-4, StarCoder.
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Experiment
--Main Result

Comparing SELF-DEBUGGING to prior code reranking approaches in Table 1, 
where both SELF-DEBUGGING and prior prompting-based approaches use Codex. 

We demonstrate that SELF- DEBUGGING consistently improves performance. 
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By comparing the feedback format of SELF-DEBUGGING on the Spider benchmark, we see 
that simple feedback is of very limited use in the absence of unit tests.

Experiment
--Main Result
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Experiment
--Main Result

1.On the Spider dataset, GPT-4 outperforms Codex in both initial SQL generation and self debugging.

2.On the MBPP dataset, GPT-4 outperforms Codex and GPT-3.5 in initial Python code generation.
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Experiment
--Ablation Studies (Self-debugging improves the sample efficiency)
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Experiment
--Ablation Studies (Importance of code execution)

• With Codex, SELF-DEBUGGING still improves the performance by up to 5%, and the execution trace feedback 
consistently improves over the simple feedback performance.

• GPT-4 without unit test execution improves the MBPP accuracy by 3.6%, and the improvement on other benchmarks 
is up to around 1%.

• Compared to Codex, GPT-3.5 and GPT-4 don't benefit much from few-shot prompting in SELF-DEBUGGING, relying 
solely on their internal code knowledge. Without unit test execution, they tend to be overconfident, with GPT-4 
outperforming GPT-3.5 in Python generation.
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Experiment
--Ablation Studies (Error Types Fixed by Self-Debugging)
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Conclusion

• SELF-DEBUGGING helps large language models fix code errors by themselves.

• In text-to-SQL tasks, it improves performance by 2-3% on average and 9% on tougher problems.

• For translating code and text-to-Python tasks, it boosts accuracy by up to 12%.

• Teaching models self-debugging improves coding performance.

• Future work aims to enhance model's code explanation and feedback for better debugging.

• Initial findings suggest model-generated error feedback needs improvement for more helpful messages.
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LEVER: LEARNING TO VERIFY 
LANGUAGE-TO-CODE GENERATION 

WITH EXECUTION
Presenter: Yuqi Yan
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Introduction

Prior Work

Obtaining test cases can be 
challenging

Heuristic methods often 
struggle to capture the 

semantic features of 
execution results 

effectively.

Method 
Introduction

Proposing the LEVER 
method

Improves language-to-code 
generation by learning to 

verify the relationship 
between generated 
programs and their 
execution results

Performance 
Evaluation

The LEVER method 
consistently outperforms 
baseline code language 

models

Establishing new state-of-
the-art performance across 

all datasets.
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Approach
-- Language-to-Code Generation with Code LLMs

𝑃𝑟𝑜𝑚𝑝𝑡(𝑥, {(𝑥! , 𝑦!)}!"#) is a string representation of the overall input

(generation is also often conditioned on a fixed set of m exemplars) 

.𝑦$%&&' ≈ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃)*(y|𝑥)

20



Approach
-- Reranking of Program Candidates

The idea of discriminative reranking is to learn a scoring function 𝑅 𝑥, .𝑦

that measures how likely yˆ is the best output for input x 

Given R(·), the reranker outputs the program with the highest reranking 
score among the set of candidates S 
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Approach
-- Reranking of Program Candidates
-- Program Sampling from Code LLMs 

Give the input x

instead of performing a greedy search, obtain k programs from 
P_LM(y|x) with temperature sampling

{ .𝑦!}!+,- ~𝑃)*(y|x)

Deduplication to form a set of n (As the same programs may be 
sampled more than once)

𝑆 = {.𝑦!}!+,. , 𝑛 < 𝑘
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Approach
-- Reranking of Program Candidates
-- Verification with Execution 

.𝑦 ∈ 𝑆

The reranking probability is the joint probability of generating and passing validation.

Parameterizing the discriminative reranker as a verification model

𝑣 ∈ {0,1}
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Approach
-- Learning the Verifiers
-- Training Data Creation 

For language-to-code datasets, each example is typically a triplet of 𝑥, 𝑦∗, 𝑧∗ where 𝑧∗ = 𝜀(𝑦∗) is 
the gold execution result and 𝑦∗ is the gold program.

Collecting training data：
• Obtaining a set of n unique programs candidates A𝑆 = B𝑦! !+,. for each input x in the 

training set, by first sampling k programs from 𝑃)*(.y|𝑥) and then remove all the duplicated 
programs.

• For each program candidate .𝑦 ∈ 𝑆:
• Obtain its execution result �̂� = 𝜀( .𝑦).
• Compare its execution result �̂� with the gold standard execution result 𝑧∗ to obtain its 

binary verification label v.
• i.e., v = 𝕝(�̂� = 𝑧∗ ). 

• For the dataset containing the gold program y∗ , use (x, 𝑦∗ , 𝑧∗ , 𝑣!+,) as additional 
validation training samples.

• With the above steps, a set of validation training samples {(x, .𝑦!, �̂�!, 𝑣!) | .𝑦! 	∈ S) is created 
for each input x.
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Approach
-- Learning the Verifiers
-- Learning Objective 

Given this set of verification training examples, we formulate the loss for input x with 
the negative log-likelihood function, normalized by the number of program candidates
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Experimental Setup
--Datasets

Conducting experiments on four language-to-
code datasets across domains of semantic 
parsing, table QA, math reasoning and basic 
Python programming. 

main settings of these four datasets
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Experimental Setup
--Code LLMs
-- Baselines and Evaluation Metric

Evaluating LEVER with three code LLMs: Codex, InCoder-6B, and CodeGen-16B-multi

Comparing LEVER to several baseline approaches for generating programs using code LLMs:

• Greedy
• Maximum Likelihood (ML)
• Error Pruning + ML (EP + ML)
• Error Pruning + Voting (EP + Votingmost)

Evaluation metric: Use execution accuracy as the main evaluation metric for all datasets
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Experimental Setup
-- Implementation Details

Verifier training: Validation training data is created by sampling from LLMs in the training set. However, a 
large number of samples may lead to a memory shortage. Therefore, random downsampling is 
performed for each example at each iteration. This ensures that the validator sees a different program in 
each cycle.

Execution result representation:
• For Spider and WikiTQ, use the linearized resulting tables from SQL execution as the execution 

results. 
• For GSM8k, use the value of the variable named “answer” after executing the program as the 

execution results. 
• For MBPP, use the type and value (cast to string) returned by the functions. 

All execution errors are represented as “ERROR: [reason]”, such as “ERROR: Time out”
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Main Result
--Effectiveness of LEVER
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Main Result
-- Ablations with LEVER

• Effect of including execution results

• Effect of execution result aggregation 

• Weakly-supervised settings 
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Analysis
-- Training Example Scaling

• Demonstrates the change in LEVER's 
performance on the Spider dataset as the 
number of training samples decreases.

• LEVER can work with limited resources.

• For harder datasets and weaker LLMs, 
LEVER has a greater impact of training 
samples.

• Compare LEVER's performance to a T5 
model fine-tuned directly for generation, 
using the same number of training 
examples. When there are fewer training 
examples, the performance of the fine-
tuned T5 model drops dramatically.
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Analysis
-- Sample Size Scaling

• 4a: It was found that during inference, LEVER is highly 
sensitive to the sample size. When the sample size per 
example is reduced from 50 to 10, LEVER's performance drops 
by 1.8% (Spider) to 5.2% (WikiTQ). 

• 4b: In contrast, LEVER is highly insensitive to the sample size 
of training data. The performance gap across the three 
datasets remains below 1%. 
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Analysis
-- Verifier and Generator Calibration

• At lower percentile thresholds, the verifier typically 
exhibits better calibration than the generator. 

• When distinguishing among top-ranked programs, the 
generator is often better calibrated. 

• Combining the probabilities from both the verifier and 
generator yields the best results across all test datasets. 

• Especially on the GSM8k dataset.
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Analysis
-- Qualitative Analysis

The reasons for LEVER's success or failure in improving LLMs' 
performance are as follows:

• LEVER often succeeds in reranking programs based on 
crucial information provided by execution results, such as 
execution errors, variable types, and ranges.

• LEVER may fail if there are no correct programs in the 
samples, particularly with weaker LLMs.

• When the execution results of incorrect programs match 
those of correct programs, LEVER may also fail to enhance 
LLMs' performance.
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Limitation

• LEVER needs execution data and a suitable environment, but not all applications have them.

• Running model-generated programs can be risky as not all code may be safe.

• PASS@1 metric is used in experiments for tasks like text-to-SQL and math reasoning. For 
general programming tasks like MBPP, other metrics like PASS@k or N@k may show different 
results.
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Conclusion

• The paper suggests mixing generation and verification probabilities for reranking, instead of 
directly rejecting samples based on verifier output.

• LEVER consistently improves the performance of code LLMs on four language-to-code tasks 
and achieves new state-of-the-art results on all of them. 

• Further analysis suggest s that the program execution results are crucial for verification and 
the proposed approach is generalizable across different LLMs.
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Questions？
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