
TEACHING LARGE LANGUAGE
MODELS TO SELF- DEBUG

Presenter: Yuqi Yan

1

Introduction

Prior Work

Large Language Models
(LLMs) excel in code

generation.

Generating correct
solutions for complex

programming tasks in one
go is challenging.

Prior works have designed
program repair

approaches to enhance
code generation

performance.

Method
Introduction

Teaches LLMs to debug
their predicted program.

Debugging is done via few-
shot demonstrations.

Feature

Model can perform rubber
duck debugging.

Model identifies errors
and explains generated

code without human
feedback.

Performance
Evaluation

Achieves state-of-the-art
performance in multiple

code generation
benchmarks.

Improves baseline
accuracy on Spider,

TransCoder, and MBPP
benchmarks.

Advantages

Enhances sample
efficiency.

Matches or outperforms
baseline models

generating over 10x
candidate programs.

2

Introduction

3

Code Generation

Few-shot
prompting

1. An approach that uses multiple
input-output examples to guide a
language model in solving a task.
2. (Problem, SQL) A list of pairs.

3. Prompts can also contain
instructions that provide

advanced task descriptions.

4

Code Generation

Execution-
based code

selection

1. This approach is used to improve the performance of
large language models.

2. Use majority voting of execution results to select the
final prediction code

3. Some code generation tasks come with unit tests that
specify the execution behavior of the program

For input data X, the execution result of A is "Result 1", the execution result of B
is "Result 2", and the execution result of C is "Result 1";

For input data Y, the execution result of A is "Result 2", the execution result of B is
"Result 2", and the execution result of C is "Result 2";

For input data Z, the execution result of A is "Result 1", the execution result of B
is "Result 1", and the execution result of C is "Result 1".

5

Self-Debugging Framework

Simple
feedback

Just an indication of whether the code is
correct or not, without providing more

detailed information

Unit test
feedback (UT)

Code execution results can enrich debugging
feedback by verifying code correctness and

offering additional insights.

Code
Explanation

feedback (Expl)

Large language models can describe solutions
by explaining the code and matching it with

the problem description.

Execution trace
feedback

(Trace)

When unit tests are present, the large
language model is guided to provide step-by-
step explanations of intermediate execution.

6

Applications
-- Text-to-SQL Generation (Text to SQL generation represents a situation where no unit tests are available)

Evaluating SELF-DEBUGGING on the development set of the Spider benchmark

• Step 1
Summarize the question and infer the return type

• Step 2
Execute the SQL query and add the returned table for code explanation

• Step 3
Compare inferred SQL explanation with question description and predict correctness

7

Applications
-- Text-to-Python Generation

Evaluation on the MBPP test set

• Each problem contains 3 unit tests.

• The first unit test is included in the prompt as part of the problem description and the remaining
2 unit tests are reserved for full evaluation.

• Even if the predicted code passes the given unit tests, the model still needs to infer the
correctness of the code.

8

Experiment

Comparing SELF-DEBUGGING with two types of code reranking baselines

Models trained for a given task

• Comparing SELF-DEBUGGING with T5-3B + N-best Reranking
• Compared with LEVER

Prompting-based approaches

• Comparing SELF-DEBUGGING with MBR-Exec and Coder-Reviewer

• SELF-DEBUGGING was evaluated on several models with 155 billion parameters,
including code- davinci-002, gpt-3.5-turbo, gpt-4, StarCoder.

9

Experiment
--Main Result

Comparing SELF-DEBUGGING to prior code reranking approaches in Table 1,
where both SELF-DEBUGGING and prior prompting-based approaches use Codex.

We demonstrate that SELF- DEBUGGING consistently improves performance.

10

By comparing the feedback format of SELF-DEBUGGING on the Spider benchmark, we see
that simple feedback is of very limited use in the absence of unit tests.

Experiment
--Main Result

11

Experiment
--Main Result

1.On the Spider dataset, GPT-4 outperforms Codex in both initial SQL generation and self debugging.

2.On the MBPP dataset, GPT-4 outperforms Codex and GPT-3.5 in initial Python code generation.

12

Experiment
--Ablation Studies (Self-debugging improves the sample efficiency)

13

Experiment
--Ablation Studies (Importance of code execution)

• With Codex, SELF-DEBUGGING still improves the performance by up to 5%, and the execution trace feedback
consistently improves over the simple feedback performance.

• GPT-4 without unit test execution improves the MBPP accuracy by 3.6%, and the improvement on other benchmarks
is up to around 1%.

• Compared to Codex, GPT-3.5 and GPT-4 don't benefit much from few-shot prompting in SELF-DEBUGGING, relying
solely on their internal code knowledge. Without unit test execution, they tend to be overconfident, with GPT-4
outperforming GPT-3.5 in Python generation.

14

Experiment
--Ablation Studies (Error Types Fixed by Self-Debugging)

15

Conclusion

• SELF-DEBUGGING helps large language models fix code errors by themselves.

• In text-to-SQL tasks, it improves performance by 2-3% on average and 9% on tougher problems.

• For translating code and text-to-Python tasks, it boosts accuracy by up to 12%.

• Teaching models self-debugging improves coding performance.

• Future work aims to enhance model's code explanation and feedback for better debugging.

• Initial findings suggest model-generated error feedback needs improvement for more helpful messages.

16

LEVER: LEARNING TO VERIFY
LANGUAGE-TO-CODE GENERATION

WITH EXECUTION
Presenter: Yuqi Yan

17

Introduction

Prior Work

Obtaining test cases can be
challenging

Heuristic methods often
struggle to capture the

semantic features of
execution results

effectively.

Method
Introduction

Proposing the LEVER
method

Improves language-to-code
generation by learning to

verify the relationship
between generated
programs and their
execution results

Performance
Evaluation

The LEVER method
consistently outperforms
baseline code language

models

Establishing new state-of-
the-art performance across

all datasets.

18

Introduction

19

Approach
-- Language-to-Code Generation with Code LLMs

𝑃𝑟𝑜𝑚𝑝𝑡(𝑥, {(𝑥! , 𝑦!)}!"#) is a string representation of the overall input

(generation is also often conditioned on a fixed set of m exemplars)

.𝑦$%&&' ≈ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃)*(y|𝑥)

20

Approach
-- Reranking of Program Candidates

The idea of discriminative reranking is to learn a scoring function 𝑅 𝑥, .𝑦

that measures how likely yˆ is the best output for input x

Given R(·), the reranker outputs the program with the highest reranking
score among the set of candidates S

21

Approach
-- Reranking of Program Candidates
-- Program Sampling from Code LLMs

Give the input x

instead of performing a greedy search, obtain k programs from
P_LM(y|x) with temperature sampling

{ .𝑦!}!+,- ~𝑃)*(y|x)

Deduplication to form a set of n (As the same programs may be
sampled more than once)

𝑆 = {.𝑦!}!+,. , 𝑛 < 𝑘

22

Approach
-- Reranking of Program Candidates
-- Verification with Execution

.𝑦 ∈ 𝑆

The reranking probability is the joint probability of generating and passing validation.

Parameterizing the discriminative reranker as a verification model

𝑣 ∈ {0,1}

23

Approach
-- Learning the Verifiers
-- Training Data Creation

For language-to-code datasets, each example is typically a triplet of 𝑥, 𝑦∗, 𝑧∗ where 𝑧∗ = 𝜀(𝑦∗) is
the gold execution result and 𝑦∗ is the gold program.

Collecting training data：
• Obtaining a set of n unique programs candidates A𝑆 = B𝑦! !+,. for each input x in the

training set, by first sampling k programs from 𝑃)*(.y|𝑥) and then remove all the duplicated
programs.

• For each program candidate .𝑦 ∈ 𝑆:
• Obtain its execution result �̂� = 𝜀(.𝑦).
• Compare its execution result �̂� with the gold standard execution result 𝑧∗ to obtain its

binary verification label v.
• i.e., v = 𝕝(�̂� = 𝑧∗).

• For the dataset containing the gold program y∗ , use (x, 𝑦∗ , 𝑧∗ , 𝑣!+,) as additional
validation training samples.

• With the above steps, a set of validation training samples {(x, .𝑦!, �̂�!, 𝑣!) | .𝑦! 	∈ S) is created
for each input x.

24

Approach
-- Learning the Verifiers
-- Learning Objective

Given this set of verification training examples, we formulate the loss for input x with
the negative log-likelihood function, normalized by the number of program candidates

25

Experimental Setup
--Datasets

Conducting experiments on four language-to-
code datasets across domains of semantic
parsing, table QA, math reasoning and basic
Python programming.

main settings of these four datasets

26

Experimental Setup
--Code LLMs
-- Baselines and Evaluation Metric

Evaluating LEVER with three code LLMs: Codex, InCoder-6B, and CodeGen-16B-multi

Comparing LEVER to several baseline approaches for generating programs using code LLMs:

• Greedy
• Maximum Likelihood (ML)
• Error Pruning + ML (EP + ML)
• Error Pruning + Voting (EP + Votingmost)

Evaluation metric: Use execution accuracy as the main evaluation metric for all datasets

27

Experimental Setup
-- Implementation Details

Verifier training: Validation training data is created by sampling from LLMs in the training set. However, a
large number of samples may lead to a memory shortage. Therefore, random downsampling is
performed for each example at each iteration. This ensures that the validator sees a different program in
each cycle.

Execution result representation:
• For Spider and WikiTQ, use the linearized resulting tables from SQL execution as the execution

results.
• For GSM8k, use the value of the variable named “answer” after executing the program as the

execution results.
• For MBPP, use the type and value (cast to string) returned by the functions.

All execution errors are represented as “ERROR: [reason]”, such as “ERROR: Time out”

28

Main Result
--Effectiveness of LEVER

29

Main Result
-- Ablations with LEVER

• Effect of including execution results

• Effect of execution result aggregation

• Weakly-supervised settings

30

Analysis
-- Training Example Scaling

• Demonstrates the change in LEVER's
performance on the Spider dataset as the
number of training samples decreases.

• LEVER can work with limited resources.

• For harder datasets and weaker LLMs,
LEVER has a greater impact of training
samples.

• Compare LEVER's performance to a T5
model fine-tuned directly for generation,
using the same number of training
examples. When there are fewer training
examples, the performance of the fine-
tuned T5 model drops dramatically.

31

Analysis
-- Sample Size Scaling

• 4a: It was found that during inference, LEVER is highly
sensitive to the sample size. When the sample size per
example is reduced from 50 to 10, LEVER's performance drops
by 1.8% (Spider) to 5.2% (WikiTQ).

• 4b: In contrast, LEVER is highly insensitive to the sample size
of training data. The performance gap across the three
datasets remains below 1%.

32

Analysis
-- Verifier and Generator Calibration

• At lower percentile thresholds, the verifier typically
exhibits better calibration than the generator.

• When distinguishing among top-ranked programs, the
generator is often better calibrated.

• Combining the probabilities from both the verifier and
generator yields the best results across all test datasets.

• Especially on the GSM8k dataset.

33

Analysis
-- Qualitative Analysis

The reasons for LEVER's success or failure in improving LLMs'
performance are as follows:

• LEVER often succeeds in reranking programs based on
crucial information provided by execution results, such as
execution errors, variable types, and ranges.

• LEVER may fail if there are no correct programs in the
samples, particularly with weaker LLMs.

• When the execution results of incorrect programs match
those of correct programs, LEVER may also fail to enhance
LLMs' performance.

34

Limitation

• LEVER needs execution data and a suitable environment, but not all applications have them.

• Running model-generated programs can be risky as not all code may be safe.

• PASS@1 metric is used in experiments for tasks like text-to-SQL and math reasoning. For
general programming tasks like MBPP, other metrics like PASS@k or N@k may show different
results.

35

Conclusion

• The paper suggests mixing generation and verification probabilities for reranking, instead of
directly rejecting samples based on verifier output.

• LEVER consistently improves the performance of code LLMs on four language-to-code tasks
and achieves new state-of-the-art results on all of them.

• Further analysis suggest s that the program execution results are crucial for verification and
the proposed approach is generalizable across different LLMs.

36

Questions？

37

