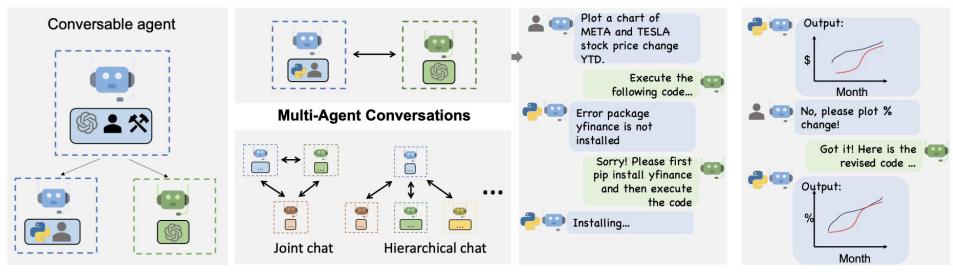
Integrating Multi-agent dynamic and Tool-enhanced reasoning in LLMs


Jiayu Huang 03/05/2024

Introduction

- Current LLMs struggle with complex reasoning, multi-step problem-solving, and integrating external knowledge or computations.
- Innovative frameworks: AutoGen facilitates multi-agent conversations to enhance LLM application, while ART focused on automatic multi-step reasoning and integrating tool use.
- Pros over RAG and CoT: Enhancing complex reasoning, offering improved adaptability and flexibility, and reducing human intervention.

AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation

- Wu et al.,. (2023)
- Customizable and conversable (receive, react, response) agents
- Conversation programming

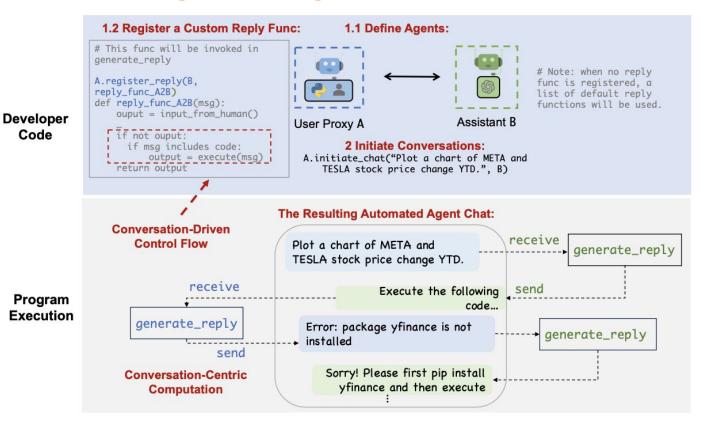
Agent Customization

Flexible Conversation Patterns

Example Agent Chat

Conversation Programming

- **Computation**: Agents compute responses based on their role.
- Conversation-centric actions: Agents' actions are relevant to their conversations, facilitating message passing for further interactions.
- Control Flow: Sequence or conditions under which computation occur.
- Conversation-driven control flow: Agents decide whom to send messages based on the ongoing conversation.


Conversation Programming

- Unified interfaces & Auto-reply mechanisms
 - Simplified agent interaction through send/receive and reply generation functions.
 - Auto-reply for continuous conversation flow, customizable with reply functions.

Control Fusion

- Programming and natural language for managing control flow.
- Flexible transitions between code and natural language controls.

Conversation Programming

Applications of AutoGen

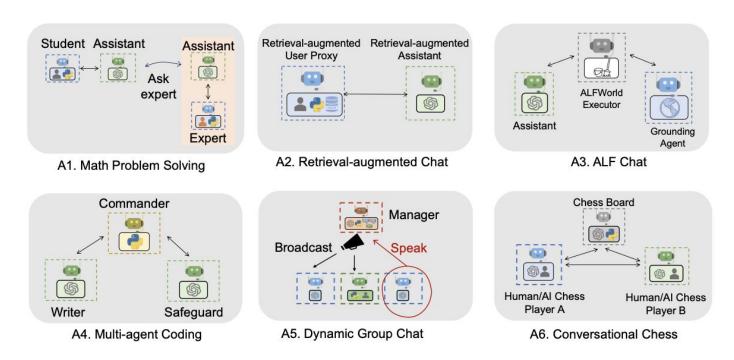
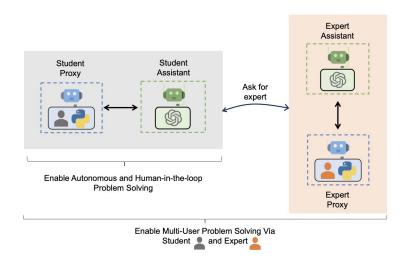
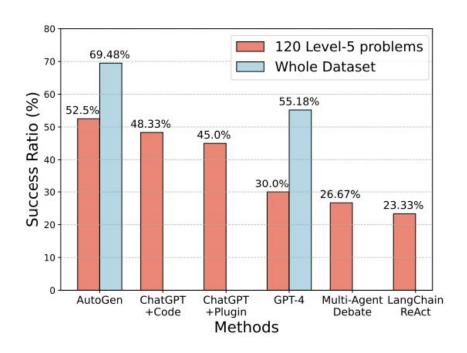
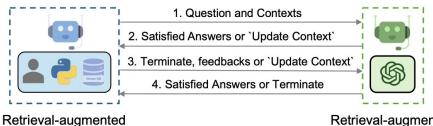




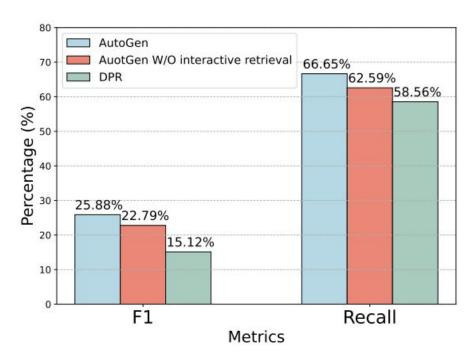
Figure 3: Six examples of diverse applications built using AutoGen. Their conversation patterns show AutoGen's flexibility and power.

Math Problem Solving

 A system for autonomous math problem solving by directly reusing two built-in agents from AutoGen.

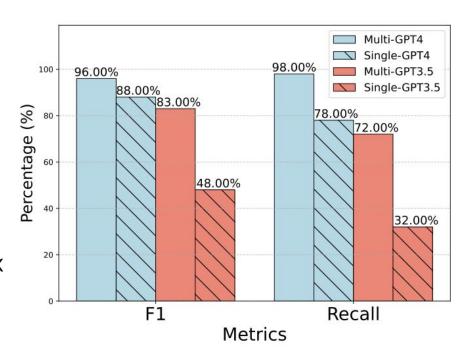


(a) A1: Performance on MATH (w/ GPT-4).


Retrieval-Augmented Question Answering

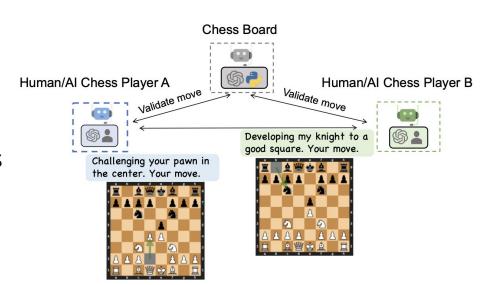
- Assess natural QA using the Natural Questions dataset, highlighting AutoGen's novel interactive retrieval feature that enhances retrieval attempts.
- "UPDATE CONTEXT"

User Proxy


Retrieval-augmented
Assistant

(b) A2: Q&A tasks (w/ GPT-3.5).

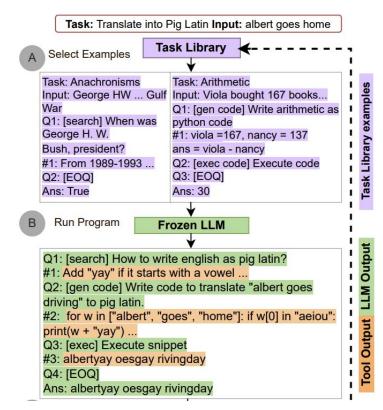
Multi-agent Coding


- AutoGen reduces workflow code of OptiGuide from 430 to 100 lines and streamlines optimization solution interpretation.
- Multi-agent approach increases safety and efficiency, saving users 3x time and reducing interactions by 3-5 times.

(d) A4: Performance on OptiGuide.

Conversational Chess

- Emphasizes natural, engaging gameplay through customizable agent, enabling seamless mode switching and maintaining game integrity by validating each move's legality.
- Removing the board agent will negatively affect gameplay and preventing illegal moves.


Future directions for AutoGen

- Integration and Customization: Enhance AutoGen to integrate and customize existing agents for broader application and dynamic cooperation.
- Automation vs. Human Control: Explore balancing automation and human involvement to optimize multi-agent workflows and interactions.
- Efficiency Optimization: Investigate strategies to refine agent topology and conversation patterns.

ART: Automatic Reasoning and Tool-use

Paranjape et al., (2023)

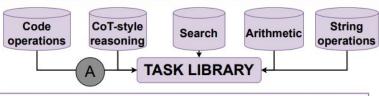
- CoT prompting requires
 hand-crafting task-specific
 demonstrations and carefully
 scripted interleaving of model
 generations with tool use.
- ART is a framework that uses frozen LLMs to automatically generate intermediate reasoning steps as a program.

Comparison between related approaches

Table 1: Comparing ART with related approaches for multi-step reasoning and tool-use

Feature	СоТ	Auto CoT	Tool- former	ART
Multi-step reasoning Limited supervision Tool use Extendable libraries Cross-task transfer Human feedback	✓ ✓	✓	√ √ √	✓ ✓ ✓ ✓ ✓ ✓ ✓

Task Library


- Tasks from Big-Bench: Arithmetic, Code, Search and question decomposition, Free-form reasoning, and String Operations.
- Program grammar
 - A flexible format to accommodate a wide variety of NLP tasks.
 - Consists of a series of nodes: input node (with task name, instruction, and input),
 sub-step nodes (QA pairs), and a final answer node.
- Dynamic retrieval system to select relevant tasks
 - Labeled examples
 - Crafted few-shot prompts

Tool Library

- ART pauses generation when a sub-task query matches a tool name.
- Seeded Tools
 - Search Tool: SerpAPI for Google Searches. Marked as "[search]"
 - Code Generation: Codex for generating Python Code. Marked as "[generate python code]"
 - Code Execution: Virtual Python Environment

New Task (Physics QA) Answer this high-school physics question

Input: Hector yanks on the chain with a 72.0 N force at an angle of 35.0° above the horizontal. Determine the horizontal components of the tension force.

Solve these arithmetic problems using python code

Input: Viola had 167 breads. Nancy took 137from him. How many does Viola have now?

Q1: [generate code] Write down arithmetic as python code

#1: viola_bought = 167, nancy_took = 137

ans = viola_bought - nancy_took

Q2: [code execute] Execute snippet #2: 30 Q3: [EOQ] Ans: No

Does the sentence contain an anachrornism? Yes/No.

Input: President George H. W. Bush called his generals at the outset of the Gulf War.

Q1: [search] When was President George H. W. Bush, president?

#1: George H. W. Bush's tenure started on January 20, 1989, and ended on January 20, 1993.

Q2: [search] When was the Gulf War fought? #2: The Gulf War was a 1990–1991

Q3: [subquestion] Could these entities have co-existed? #3: Yes. Their time periods intersect.

Q4: [generate output] Is this an anachronism? #4: No Q5: [EOQ] Ans: No

B

TOOL LIBRARY

Input: Hector yanks on the chain with a 72.0 N force at an angle of 35.0° above the horizontal. Determine the horizontal components of the tension force.

Q1: [search] What is the formula for the horizontal component of the tension force?

#1: The formula for the horizontal component of the tension force is Tcosθ. The horizontal

component (Fx) can be calculated as Ftens*cosine(θ) where θ is the angle which the force make s with the horizontal in radians.

LLM

Input: ... Q1: [search] ...

#1: ... can be calculated as Ftens*cosine(θ)where θ is ...

Q2: [generate code] Use the formula $Fx = Ftens*cosine(\theta)$ to solve: Hank ...

#2:T = 72.0, theta = 35.0

radians= math.pi*theta/180 Fx = T*math.cos(radians) OpenAI Codex

Input: ...Q1: [search] ...#1: ...

Q2: [generate code] Use the formula $Fx = Ftens*cosine(\theta)$ to solve: Hank ...

#2: ... Fx = T*math.cos(radians)

Q3: [code execute] Execute the python code and get the value of "Fx"

#3: 58.9789

Q4: [EOQ] Ans: 58.9789

python

Human Feedback

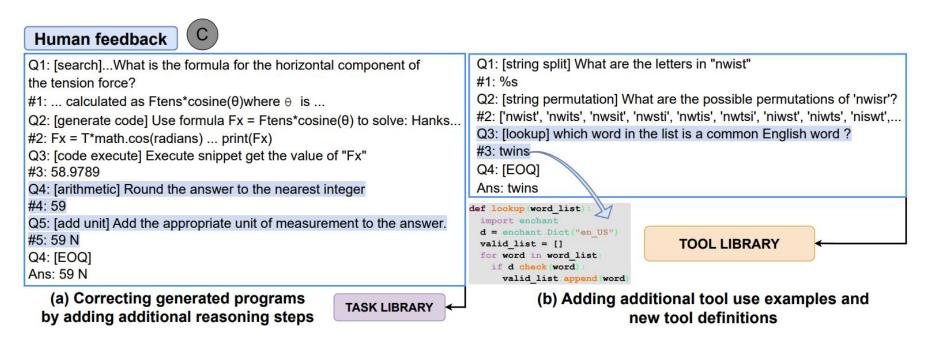


Figure 3: Human feedback to ART shown for (a) PQA where reasoning steps are added to the program and; (b) Word unscrambling where tool library is augmented with a new lookup tool.

Evaluation

• Tested on tasks from its own library, BigBench, MMLU, etc.

Task Name (Cluster)	Few Shot	AutoCot	ART w/o Tool Use	ART	GPT-3 Best
Anachronisms (Search)	71.3^{5}	51.48	70.87	75.66	-
Musique (Search)	2.03^{5}	12.88	10.04	19.19	15.2^3
Hindu Knowledge (Search)	85.02 ⁵	73.03	83.42	87.98	-
Known Unknown (Search)	68.90 ⁵	56.09	80.43	80.43	-
Δ with ART (Search)	+9.0	+17.44	+4.6		+4.0
Elementary Math QA (Arithmetic)	56.40 ⁷	74.52	58.04	68.04	
Aqua-rat (Arithmetic)	20.54^7	34.41	36.29	54.20	54.1 ⁴
GSM8K (Arithmetic)	7.79 ⁷	21.99	53.4	71.00	71.6^4
Navigate (Arithmetic)	60.7 ⁷	61.7	72.4	72.4	85.90^{1}
Δ with ART (Arithmetic)	+30.0	+18.25	+11.4		-4.7
K'th letter concatenation (String)	3.2^{5}	0.64	8.19	40.00	98.0^{2}
Language games (String)	35.14^5	18.58	11.19	23.08	-
Date Understanding (String)	37.53 ⁵	38.90	52.05	=	70.41 ¹
Auto Debugging (Code)	62.94 ⁵	38.24	55.29	62.94	-
Code Description (Code)	97.99 ⁷	88.67	84.67	88.00	-
Formal Fallacies (CoT)	44.84 ⁵	56.4	64.76	-	58.4 ¹
Hyperbation (CoT)	62.72^5	55.4	80.80	-	72.4 ¹
Δ with ART (Misc)	+9.6	+16.4	+13.7		-15.4
Δ with ART (Overall)	+14.90	+17.17	+7.91		-9.0

Evaluation

Evaluated on test tasks without explicit supervision.

Task Name (Cluster) Δ with ART (Overall)		Few Shot AutoC		ot ART w/o Tool Use		ART	GPT-3 Best
		+6.9	+24.6	+:	+16.7		-1.7
		MMLU	J	· · · · · · · · · · · · · · · · · · ·			
	College Computer Science (Search) Astronomy (Search) Business Ethics (Search) Virology (Search) Geography (Search) Mathematics (Arithmetic)	41.00 62.10 61.60 50.03 77.67 36.67	43.99 41.48 48.8 49.52 57.07 33.77	63.40 76.71 77.17 71.60 70.30 39.50	67.80 79.1 81.16 71.49 71.71 45.66	63.6 ⁶ 62.5 ⁶ 72.7 ⁶ 50.72 ⁶ 81.8 ⁶ 34.5 ⁶	
	Δ with ART (MMLU)	+14.6	+23.7	+3.0	45.00	+8.5	

Future directions for ART

- Implement Self-Consistency
 - Utilize generating multiple outputs for the same task and selecting the most common solution to enhance accuracy and reasoning depth.
- Enhance through human feedback
 - Integrate manual corrections and additions to programs based on task-specific feedback to rectify errors and enrich the tool and task libraries.
- Expand libraries with quality demo
 - Systematically incorporate corrected programs and new tools from human feedback into
 ART's libraries to boost its adaptability and effectiveness across a broader range of tasks.

Q & A

- Prevention of risky agent conversations leading to negative consequences
 - Built-in safety protocols to avoid engaging in harmful or unethical behaviors.
 - Human-in-the-loop to ensure human oversight to intervene.
- The program may have errors, such as package non-existence, data type error, etc. How does AutoGen correct errors and rewrite?
 - Handle by assistant agent.
- In dynamic group chat, how LLM decide the next speaker among agents with different expertise?
 - Relevance Assessment: Evaluate each agent's domain expertise
 - Contribution Potential: Provide most valuable information
 - Human Feedback