
Long-Context Language 
Models

Sam Pan

1



LongNet: Scaling Transformers to 1B Tokens 

2

2023



Self Attention

Vanilla Attention

Sparse Attention

Recurrent

3



Self Attention
Linear Complexity essential for mass scaling

4



Trend of Transformer sequence lengths

Sequence length, as the last atomic dimension of the neural network, is desirable to be 
unlimited 5



Vanilla Attention

6



LongNet: Dilated Attention

7



LongNet: Dilated Attention

Introduces new parameters w and r
w – segment length
r – dilation rate

w
r

8

{



LongNet: Dilated Attention

Introduces new parameters w and r

w
r

9



LongNet: Dilated Attention

Introduces new parameters w and r

w
r

Geometric Sequence: w = {w0,w1,w2,...,N} (wi < wi+1 < N) 
r = {1,r1,r2,...,rk}k (1 < ri < ri+1) 10



LongNet: Dilated Attention

11



Dilated Attention: Computational Complexity

12



Dilated Attention: Related Attention

Token 1

Token 15

Token 12

13



Dilated Attention: Related Attention

Attention allocation decreases exponentially as the distance between tokens grows 

L=

14



Multihead Attention
Different computation among different heads sparsify different parts of the query-key-value pairs 

15



Distributed Training

Parallelize training by partitioning the sequence dimension 

The computation and communication costs are nearly constant 
as the number of devices grows 

16



Distributed Training

The concatenation of the outputs across different devices 
becomes the final attention output:

17



Scaling up to 1B tokens
Increasing the sequence length during training generally leads to a better language model 

18



Results

19



Scaling up Model Size

Dense Transformer is not a prerequisite for scaling the language models 

Model Size Context Window

20



Memorizing Transformers 

21

2022



Growing Knowledge Base

Theorem database in mathematics Codebase in program synthesis

22



cat in the hatcat in the hatthesaid

local attention + FFN

k nearest neighbor lookup. dense attention + FFN

… more layers … 

input tokens

external memory: cached (key, value) pairs

Will be added to
external memory
after the current
training step. 

kNN & local attention + FFN

dense attention + FFNlocal attention + FFN

cat in the hatcat in the hatthe tooutput predictions

local context

kNN attention

embedding layer

softmax

Memorizing Transformers

Maintain a memory previously generated keys and values

23



cat in the hatcat in the hatthesaid

local attention + FFN

k nearest neighbor lookup. dense attention + FFN

… more layers … 

input tokens

external memory: cached (key, value) pairs

Will be added to
external memory
after the current
training step. 

kNN & local attention + FFN

dense attention + FFNlocal attention + FFN

cat in the hatcat in the hatthe tooutput predictions

local context

kNN attention

embedding layer

softmax

Memorizing Transformers

Maintain a memory previously generated keys and values

Approximate attention into memory via kNN for 
scalability

24



cat in the hatcat in the hatthesaid

local attention + FFN

k nearest neighbor lookup. dense attention + FFN

… more layers … 

input tokens

external memory: cached (key, value) pairs

Will be added to
external memory
after the current
training step. 

kNN & local attention + FFN

dense attention + FFNlocal attention + FFN

cat in the hatcat in the hatthe tooutput predictions

local context

kNN attention

embedding layer

softmax

Memorizing Transformers

Maintain a memory previously generated keys and values

Approximate attention into memory via kNN for 
scalability

Fast maximum inner product search algorithm – 
O(logN)

25



cat in the hatcat in the hatthesaid

local attention + FFN

k nearest neighbor lookup. dense attention + FFN

… more layers … 

input tokens

external memory: cached (key, value) pairs

Will be added to
external memory
after the current
training step. 

kNN & local attention + FFN

dense attention + FFNlocal attention + FFN

cat in the hatcat in the hatthe tooutput predictions

local context

kNN attention

embedding layer

softmax

Memorizing Transformers

Maintain a memory previously generated keys and values

Approximate attention into memory via kNN for 
scalability

Fast maximum inner product search algorithm – 
O(logN)

Do not backpropagate into memory

26



Memory update

• Split sequence into subsequences in consecutive order
• Store keys and values in memory after subsequence is read
• If memory is not empty, the current subsequence can attend to the 

memory

27



Attending to both context and memory

• Originally only attend to context’s key and value
• Perform a top-k attention using fast maximum inner search into 

memory
• Retrieve the top-k keys and value and perform attention on them

• Allows for large scale memory without computational constraint 
• This is approximate k-NN search

28



Attending to both context and memory

- Next token combined result of attention 

- Attention from external memory

- Attention from context

g – learnable parameter between 0 and 1

29



Results

Adding external memory results in 
substantial gains across datasets and 
architectures

Increasing the size of the memory 
increases the benefit of the memory 

30



Scaling Model
- Smaller Memorizing Transformer with just 8k tokens improves perplexity

- 8K Memory attained results comparable to 5-8x larger model

31



Finetuning transformer to use memory
Finetune 20K steps to obtain 85% of the benefits brought by memory

32



33


