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LongNet: Scaling Transformers to 1B Tokens 
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Self Attention

Vanilla Attention

Sparse Attention

Recurrent
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Self Attention
Linear Complexity essential for mass scaling
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Trend of Transformer sequence lengths

Sequence length, as the last atomic dimension of the neural network, is desirable to be 
unlimited 5



Vanilla Attention
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LongNet: Dilated Attention
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LongNet: Dilated Attention

Introduces new parameters w and r
w – segment length
r – dilation rate

w
r
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LongNet: Dilated Attention

Introduces new parameters w and r

w
r

Geometric Sequence: w = {w0,w1,w2,...,N} (wi < wi+1 < N) 
r = {1,r1,r2,...,rk}k (1 < ri < ri+1) 10



LongNet: Dilated Attention
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Dilated Attention: Computational Complexity
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Dilated Attention: Related Attention

Token 1

Token 15

Token 12
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Dilated Attention: Related Attention

Attention allocation decreases exponentially as the distance between tokens grows 

L=
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Multihead Attention
Different computation among different heads sparsify different parts of the query-key-value pairs 
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Distributed Training

Parallelize training by partitioning the sequence dimension 

The computation and communication costs are nearly constant 
as the number of devices grows 
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Distributed Training

The concatenation of the outputs across different devices 
becomes the final attention output:

17



Scaling up to 1B tokens
Increasing the sequence length during training generally leads to a better language model 
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Results
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Scaling up Model Size

Dense Transformer is not a prerequisite for scaling the language models 

Model Size Context Window
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Memorizing Transformers 
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Growing Knowledge Base

Theorem database in mathematics Codebase in program synthesis
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Memorizing Transformers

Maintain a memory previously generated keys and values

Approximate attention into memory via kNN for 
scalability

Fast maximum inner product search algorithm – 
O(logN)

Do not backpropagate into memory
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Memory update

• Split sequence into subsequences in consecutive order
• Store keys and values in memory after subsequence is read
• If memory is not empty, the current subsequence can attend to the 

memory
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Attending to both context and memory

• Originally only attend to context’s key and value
• Perform a top-k attention using fast maximum inner search into 

memory
• Retrieve the top-k keys and value and perform attention on them

• Allows for large scale memory without computational constraint 
• This is approximate k-NN search
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Attending to both context and memory

- Next token combined result of attention 

- Attention from external memory

- Attention from context

g – learnable parameter between 0 and 1
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Results

Adding external memory results in 
substantial gains across datasets and 
architectures

Increasing the size of the memory 
increases the benefit of the memory 
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Scaling Model
- Smaller Memorizing Transformer with just 8k tokens improves perplexity

- 8K Memory attained results comparable to 5-8x larger model
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Finetuning transformer to use memory
Finetune 20K steps to obtain 85% of the benefits brought by memory
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