Accelerating Inference in Dynamic Transformer Architectures

Alex Wollam

Depth-Adaptive Transformer

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli

Motivation + Contributions

• Modern neural sequence models large + expensive

• Propose transformer-models which adapt the number of layers to each input in order to achieve a good speed-accuracy trade off at inference time

Encoder-Decoder Transformer

Decoder

Classify at Each Layer

Aligned Training Regime

$$\begin{split} \mathbf{n} &:= \text{chosen exit, } \mathbf{t} := \text{time-step, } \mathbf{h} := \text{hidden state,} \\ \mathbf{x} := \text{source seq, } \mathbf{y} := \text{target seq} \\ \mathbf{LL}_t^n &= \log p(y_t | h_{t-1}^n), \\ \mathbf{LL}^n &= \sum_{t=1}^{|\boldsymbol{y}|} \mathbf{LL}_t^n, \\ \mathcal{L}_{dec}(\boldsymbol{x}, \boldsymbol{y}) &= -\frac{1}{\sum_n \omega_n} \sum_{n=1}^N \omega_n \, \mathbf{LL}^n \,. \end{split}$$

Mixed Training Regime

M := sampled exit sequences

$$LL(n_1, ..., n_{|\mathbf{y}|}) = \sum_{t=1}^{|\mathbf{y}|} \log p(y_t | h_{t-1}^{n_t}),$$
$$\mathcal{L}_{dec}(\mathbf{x}, \mathbf{y}) = -\frac{1}{M} \sum_{m=1}^{M} LL(n_1^{(m)}, ..., n_{|\mathbf{y}|}^{(m)}).$$

Adaptive Depth Estimation

Given $q_t(n) :=$ the probability of computing *n* blocks before exiting, for token *t* (exit distribution)

$$\mathcal{L}_{\text{exit}}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{t} H(q_{t}^{*}(\boldsymbol{x}, \boldsymbol{y}), q_{t}(\boldsymbol{x}))$$
 H := Cross-entropy
$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) = \mathcal{L}_{dec}(\boldsymbol{x}, \boldsymbol{y}) + \alpha \mathcal{L}_{\text{exit}}(\boldsymbol{x}, \boldsymbol{y}),$$

Model exit distribution q_t and infer oracle distribution q_t^* via:

- Sequence-specific depth
- Token-specific depth

Sequence-Specific Depth

s := encoder representation/output

Exit distribution q₊:

$$s = \frac{1}{|\boldsymbol{x}|} \sum_{t} s_{t}, \quad q(n|\boldsymbol{x}) = \operatorname{softmax}(W_{h}s + b_{h}) \in \mathbb{R}^{N},$$

Oracle q_t*: weights for halting mechanism

• Likelihood-based: Dirac delta

$$q^*(\boldsymbol{x}, \boldsymbol{y}) = \delta(\arg\max_n \operatorname{LL}^n - \lambda n).$$

• Correctness-based:

(a) Sequence-specific depth

$$C^n = \#\{t \mid y_t = \arg\max_y p(y|h_{t-1}^n)\}, \quad q^*(\boldsymbol{x}, \boldsymbol{y}) = \delta(\arg\max_n C^n - \lambda n).$$

Token-Specific Depth

Exit distribution q₊:

Multinomial:

 $q_t(n|\boldsymbol{x}, \boldsymbol{y}_{< t}) = \operatorname{softmax}(W_h h_t^1 + b_h),$

٨

Geometric-like:

$$\begin{aligned} \forall n \in [1..N-1], \ \chi_t^n &= \mathrm{sigmoid}(w_h^\top h_t^n + b_h), \\ q_t(n|\boldsymbol{x}, \boldsymbol{y}_{< t}) &= \begin{cases} \chi_t^n \prod_{n' < n} (1 - \chi_t^{n'}), \ \mathrm{if} \ n < N \\ \prod_{n' < N} (1 - \chi_t^{n'}), \ \mathrm{otherwise} \end{cases} \end{aligned}$$

Token-Specific Depth

Oracle q_t*:

• Likelihood-based (LL(σ, λ)): $\kappa(t, t') = e^{-\frac{|t-t'|^2}{\sigma}}, \quad \widetilde{\operatorname{LL}}_t^n = \sum_{t'=1}^{|y|} \kappa(t, t') \operatorname{LL}_{t'}^n, \quad q_t^*(x, y) = \delta(\arg\max_n \widetilde{\operatorname{LL}}_t^n - \lambda n),$ • Correctness-based: $C_t^n = \mathbb{1}[y_t = \arg\max_y p(y|h_{t-1}^n)], \quad \widetilde{C}_t^n = \sum_{t'=1}^{|y|} \kappa(t, t') C_t^n,$ $q_t^*(x, y) = \delta(\arg\max_v \widetilde{C}_t^n - \lambda n).$

Thresholded Depth

• Exit when token output probability exceeds hyper-parameter threshold T_n

- Thresholds $\mathbf{T} = (T_1, ..., T_n)$ tuned on valid set to maximize BLEU
 - Sample **T** uniformly across 10K iterations
 - Select that which maximizes performance

Experimental Setup

- Metric:
 - Tokenized BLEU

- Datasets:
 - IWSLT'14 German to English (De-En)
 - WMT'14 English to French (En-Fr)

Experimental Results

	Uniform	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	Average
Baseline	-	34.2	35.3	35.6	35.7	35.6	35.9	35.4
Aligned $(\omega_n = 1)$	35.5	34.1	35.5	35.8	36.1	36.1	36.2	35.6
Mixed $M = 1$	34.1	32.9	34.3	34.5	34.5	34.6	34.5	34.2
Mixed $M = 3$	35.1	33.9	35.2	35.4	35.5	35.5	35.5	35.2
Mixed $M = 6$	35.3	34.2	35.4	35.8	35.9	35.8	35.9	35.5

IWSLT'14 German to English (De-En)

Experimental Results: Adaptive Depth

Figure 3: Trade-off between speed (average exit or AE) and accuracy (BLEU) for depth-adaptive methods on the IWSLT14 De-En test set.

Hyperparameter Ablation

Figure 4: Effect of the hyper-parameters σ and λ on the average exit (AE) measured on the valid set of IWSLT'14 De-En.

Scaling The Depth-Adaptive Models

Figure 5: Speed and accuracy on the WMT'14 English-French benchmark (c.f. Figure 3).

Qualitative Results: Examples

(a) Src: Chi@@rac, the Prime Minister, was there. Ref: Chi@@rac, Premier ministre, est là.

(b) **Src:** But passengers shoul@@dn't expect changes to happen immediately .

Ref: Mais les passagers ne devraient pas s' attendre à des changements immédiats .

Src: diesen trick können sie ihren freunden und nachbarn vor@@führen . danke . Ref: there is a trick you can do for your friends and neighb@@ors . thanks .

Qualitative Results: Exit Distribution

Conclusion

• Simple methods sufficient for anytime prediction in transformers

• Correctness-based geometric classifier has best speed/accuracy tradeoff

• The number of decoder layers can be reduced by >75% w/out loss in accuracy

DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin

Motivation + Contribution

• Large pre-trained models (e.g. BERT) slow in inference

• Accelerate BERT inference w/ early exiting

BERT

- Bidirectional Transformer
 - Equivalent to the encoder portion of the original encoder-decoder transformer framework

 Masked pre-training strategy -> downstream fine-tuning

Encoder-Decoder Transformer

BERT / Encoder

Classify at Each Layer

Training

Training Regime:

- 1. Identical pre-training as in BERT
- 2. Identical fine-tuning as in BERT
- 3. Freeze fine-tuned parameters, optimize intermediate off-ramps (classifiers)

Loss: cross-entropy loss for each off-ramp

$$L_i(\mathcal{D}; \theta) = \frac{1}{|\mathcal{D}|} \sum_{(x,y)\in\mathcal{D}} H(y, f_i(x; \theta)),$$

Inference

• Define Entropy threshold *S*

- Stop if offramp entropy < S
 - Entropy ~== uncertainty

Algorithm 1 DeeBERT Inference (Input: x)

for i = 1 to n do $z_i = f_i(x; \theta)$ if entropy $(z_i) < S$ then return z_i end if end for return z_n

Experimental Setup

• DeeBert applied to pretrained BERT and RoBERTa models

- 6 classification datasets from GLUE benchmark
 - SST-2, MRPC, QNLI, RTE, QQP, and MNLI

Experimental Results

	SST-2	MRPC	QNLI	RTE	QQP	MNLI-(m/mm)						
	Acc Time	F ₁ Time	Acc Time	Acc Time	F ₁ Time	Acc Time						
BERT-base												
Baseline DistilBERT	93.6 36.72s -1.4 -40%	88.2 34.77s -1.1 -40%	91.0 111.44s -2.6 -40%	69.9 61.26s -9.4 -40%	71.4 145min -1.1 -40%	83.9/83.0 202.84s -4.5 -40%						
DeeBERT	-0.2 -21% -0.6 -40% -2.1 -47%	-0.3 - 14% -1.3 -31% -3.0 -44%	$\begin{array}{rrr} -0.1 & -15\% \\ -0.7 & -29\% \\ -3.1 & -44\% \end{array}$	$\begin{array}{r} -0.4 & -9\% \\ -0.6 & -11\% \\ -3.2 & -33\% \end{array}$	$\begin{array}{rrr} -0.0 & -24\% \\ -0.1 & -39\% \\ -2.0 & -49\% \end{array}$	$\begin{array}{rrrr} -0.0/-0.1 & -14\% \\ -0.8/-0.7 & -25\% \\ -3.9/-3.8 & -37\% \end{array}$						
RoBERTa-base												
Baseline LayerDrop	94.3 36.73s -1.8 -50%	90.4 35.24s	92.4 112.96s	67.5 60.14s	71.8 152min	87.0/86.3 198.52s -4.1 -50%						
DeeBERT	+0.1 - 26% -0.0 - 33% -1.8 - 44%	+0.1 -25% +0.2 -28% -1.1 -38%	$\begin{array}{rrr} -0.1 & -25\% \\ -0.5 & -30\% \\ -2.5 & -39\% \end{array}$	-0.6 - 32% -0.4 - 33% -1.1 - 35%	$\begin{array}{r} +0.1 & -32\% \\ -0.0 & -39\% \\ -0.6 & -44\% \end{array}$	-0.0/-0.0 -19% -0.1/-0.3 -23% -3.9/-4.1 -29%						

Impact on BERT-Large and RoBERTa-Large

Layer Exiting Proportion

Conclusion

• DeeBERT accelerates BERT & RoBERTa inference by up to ~40%

• Minimal performance loss

• Comparatively inexpensive additional training