Dynamic Architecture and Knowledge

Myan Sudharsanan

Papers

- Nylund, K., Gururangan, S., & Smith, N. A. (2023, Dec 30). Time is Encoded in the Weights of Finetuned Language Models. Paul G. Allen School of Computer Science & Engineering, University of Washington, Allen Institute for AI. Retrieved from <u>https://arxiv.org/pdf/2312.13401.pdf</u>
- Chen, L., Zaharia, M., & Zou, J. (2023, Oct 31). How Is ChatGPT's Behavior Changing over Time? Stanford University, UC Berkeley. Retrieved from <u>https://arxiv.org/pdf/2307.09009.pdf</u>

Time is Encoded in the Weights of Finetuned Language Models

Temporal Variation

- Fundamental process of changing or updating an LLM over time
- This process includes the modification of:
 - Type of training data
 - Model architecture
 - Parameter tuning
 - Algorithmic Improvements
 - Bias Mitigation and Safety Considerations
 - Interpolation vs. Extrapolation
- First paper focuses on first point, where differences in training and testing data lead to adverse performance effects

Customizing Models for Time Periods

- Involves several factors
 - Obtaining time and topic-relevant training data that can easily be matched with testing data over time periods
 - Evaluation mechanisms updated during those time periods
 - We need adaptation techniques to customize models over time periods
- Such techniques are very difficult to execute cheaply and time-efficiently
 - Multitude of timescales available
 - Data from certain time period may be unavailable

Recent Work

- Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Simon Kornblith, Ali Farhadi, and Ludwig Schmidt. 2022.
 Patching open-vocabulary models by interpolating weights. Advances in Neural Information Processing Systems, 35:29262–29277.
- Neural networks' behavior can be altered by employing closed-form interpolation techniques between parameters of fine-tuned models
- Using this work as inspiration, the authors look to cheaply edit language model behavior through weight-space interpolation

Weight Space Interpolation

- The transitioning of weights through a parameter space
- Time vectors: specify a direction in the weight space that improves performance on text from a given time period
 - Computed by subtracting the pretrained weights from the weights in a given time period
 - To interpolate middle time periods, just take the average of time periods
 - To extrapolate future time periods, combine a task-specific time vector with analogous time vectors derived from finetuned models

Time Vectors

Demonstrating Temporal Misalignment

- Perplexity: How well the model predicts a sample of text
 - WMT News
 - Twitter Interactive Stream Grab
- Rouge-L and Macro-F1: Evaluates quality of text summarization
 - NewsSum
 - PoliAff
- Hyperparameters and Finetuning:
 - Batch size = 2
 - 8 gradient steps
 - Learning rates = 8 X 10^-4, 2 X 10^-4
 - o 8 2080ti, 4 Titan, 8 A40 GPUs in parallel
 - For evaluation, Titan, A40, and A100 GPUs were used

Linear Degradation Trends

2020 -27.5 21.9 2019 -21.0 18.7 18.7 2018 12.2 2017 2016 24.8 14.9 -19.9 -23.8 2015 28.8 -20.5 2020 2015 2016 2017 2018 2019 Eval year

Twitter political affiliation (F1)

Monthly Temporal Degradation

Temporal Adaptation With Time Vectors

- Task vectors: difference of the weights of a pretrained model from the weights of the same model after finetuning on a task
 - Analogous tasks can be improved such as word embeddings
- Time vectors: an extension of task vectors, but on time periods

Time in Weight Space

Correlations

		Pearson r	
T5 size	WMT LM	NewsSum	PoliAff
small	-0.867	0.663	0.654
large	-0.737	0.628	0.672
3b	-0.795	0.626	0.668

Year-to-year Comparison

Interpolation

	Perplexity (\downarrow)	Rouge (\uparrow)	F1 (†)
Method	WMT LM	NewsSum	PoliAff
Start-year finetuned (τ_0)	13.92	38.56	0.6886
End-year finetuned (τ_n)	13.84	35.09	0.6967
$\frac{1}{2}(\tau_0 + \tau_n)$	13.77	38.86	0.7765
Best interpolations	13.75	40.11	0.7941
Eval-year finetuned (τ_i)	13.65	42.36	0.8341

Month-to-month Interpolation

Task Analogies (Extrapolation)

Adverse Effects of Time Soups

	Perplexity (\downarrow)	Rouge (\uparrow)	F1 (†)
Method	WMT LM	NewsSum	PoliAff
Best single-year model	34.45	38.95	0.7101
Uniform time soup	34.70	33.05	0.6078
Greedy time soup	34.45	38.95	0.7202
Training on all years	29.17	40.07	0.7853

Conclusion

- Time vectors allow for accurate interpolation and extrapolation
- Task analogies improve downstream performance
- Time vectors are optimized for single year time periods, monthly time periods, or multiple time periods across multiple models

Related Work

- Zheng, T., Zhang, G., Shen, T., Liu, X., Lin, B. Y., Fu, J., Chen, W., & Yue, X. (2024, February 28). OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement. Multimodal Art Projection Research Community, University of Waterloo, Allen Institute for Artificial Intelligence, HKUST, IN.AI Research. Retrieved from <u>https://arxiv.org/pdf/2402.14658.pdf</u>
- Chen, Y., Marchisio, K., Raileanu, R., Adelani, D. I., Stenetorp, P., Riedel, S., & Artetxe, M. (2024, January 12). Improving Language Plasticity via Pretraining with Active Forgetting. UCL Centre for Artificial Intelligence, Meta AI, Reka AI, Cohere AI. Retrieved from <u>https://arxiv.org/pdf/2307.01163.pdf</u>
- Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. Improving Language Understanding by Generative Pre-Training. OpenAI. Retrieved from <u>https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-uns</u> <u>upervised/language_understanding_paper.pdf</u>

Future Developments

- Stretching task arithmetic and expanding time vectors to multiple year periods within a single model (time soups)
- Evaluate the performance of different time periods using HumanEval benchmark
- Comparison with Pre-trained models/time vectors for Pre-trained models

How Is ChatGPT's Behavior Changing over Time?

Changes from GPT-3.5 to GPT-4

- As we've seen, LLMs can be updated over time
- But is GPT-4 actually "improved" over GPT-3.5?
- How can we evaluate the supposed improvements?

Evaluation Tasks

- Solving math problems
- Answering sensitive/dangerous questions
- Answering opinion surveys
- Answering multi-hop knowledge-intensive questions
- Generating Code
- US Medical License Exams
- Visual Reasoning

Performance Drift and Instruction Following Shift

Math: Prime vs. Composite

Math: Counting Happy Numbers

Answering Sensitive Questions

OpinionQA Survey

Code Generation

LangChain HotpotQA Agent

TIMO	GPT-4		GPT-3.5			
LLM Service	removir	removing non-code texts		removing non-code texts		
Eval Time	No	Yes		No	Yes	
Mar-23	52.0%	52.0%	0.0%	22.0%	46.0%	24.0%
Jun-23	10.0%	70.0%	60.0%	2.0%	48.0%	46.0%

USMLE Medical Exams

Visual Reasoning

Conclusions

- Uniformly improving an LLM's assets is challenging
- Improving some tasks compromises behavior in other tasks
- Not necessarily an improvement from GPT-3.5 to GPT-4

Quality of the Papers

- Second paper purely consists of experimentation results, with conclusions drawn at points
- First paper contains an interesting idea of time vectors, but the lack of elaboration of future works and lack of clarity in testing information are flaws