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Why interested in Bias

Step1 Step 2 Step3

Collect demonstration data, Collect comparison data, Optimize a policy against

and train a supervised policy. and train a reward model. the reward model using
reinforcement learning.
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Figure: Large Language Model Pre-training framework
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Whose Opinions Do Language Models Reflect

@ language models have offered subjective opinions to controversial
social and political queries

@ whose opinions (if any) do language models reflect?
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Methodology

@ The author first built a dataset with 1498 well-worded question
@ Evaluate 9 language model's opinion's opinion on these queries

© Compare the response of language models against general U.S
population
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Evaluation of LLMs opinions

Metric

(1) Representativeness: This metric assesses how well the default opinions
generated by language models (LMs) align with the opinions of the general
U.S. population or specific demographic groups.

(2) Steerability: This metric evaluates whether an LM can be prompted to
more closely emulate the opinion distribution of a specific group.

(3) Consistency: This metric looks at whether the groups LMs align with
remain consistent across different topics.
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Group representatives

Quantify Representativeness

The author defines the alignment score between the language model m
and a particular demographic group O is defined as

R (Q) = A(Dm, Ds, Q) (1)

D, denotes the marginal opinion distribution of the language model

Do denotes the marginal opinion distribution of the demographic
group O

Q@ denotes the topic being measured

A() is called the Wasserstein distance function
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Alignment Score

( ): D2(q))
A(D1, Dy; Q |Q‘ > ( - ) (2)

qeQ

The function calculates the alignment score of two demographic groups D;
and D, on the topic Q.
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Wasserstein Distance

Definition
The Wasserstein distance between two probability distributions P and @
on a metric space (M, d) is the infimum cost of transporting mass in

transforming P into Q.

W(P,Q)= inf / d(x,y) dv(x,
(P, Q) Ly - (x,y)dv(x,y)

@ Intuitively, it measures how much "work” it takes to transform one
distribution into the other, considering the amount and distance of

mass moved.
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Group representatives
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Group representatives
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Steerability

Quantify Steerability

To measure steerability, the author defined the following quantity
1
SG = TAl A Dm ) aD 3
m(Q) Q) quQCGe{QRj%’POR} (Dm(qi c6), De(q)) (3)

where Dp,(qg; cg) is the LM opinion distribution donditioned on the
group-specific context cg, @ is the question set of 1498 queries, G is the

demographic group, and {QA, BIO, PORTRAY } is the set of prompting
strategy
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Steerability
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Consistency

Quantify consistency

The author quantified consistency by defining the following quantity,

1
Cn = 7 ZT;H‘ [(arg mGax R,\G/,(QT,)> _ Grl;est:| (4)

where

1
G = arg max <T ET: R/\G//(QT')) (5)

GPEest: the demographic group that best maximizes the alignment score
R,\C'/;,: the representativeness score for model M with respect to a particular
demographic group G on a set of topics Q.

T: the total number of topics
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Consistency

AI21 Labs Openal
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Figure: Consistency of LM opinions, where a higher score implies higher alignment
with the set of groups across topics
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@ There exists substantial misalignment between LLMs and general US
population on most topics.

@ LLMs tend to become more aligned when prompted to behave like it,
although none of the previous representativeness issues were resolved.

@ None of the LLMs were consistently aligned with specific
demographics.

@ Sensitivity to formatting of their input prompt
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Threats beyond the model

As language models are versatile, they can potentially output harmful
results

@ racially biased content
@ socially biased information
@ misinformation

On one hand, rules are set to restrict the model from outputting the above
contents; on the other hand, hackers are trying to get around to break
those rules.
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Defense Against Prompt-Level Attack

Prior Approaches require human annotators to manually discover prompts
that trigger failures. This paper aims to find diverse, natural language test
cases (inputs) x that causes a target language model p:(y|x) to output
some text y that is harmful.

Aaron Luo (WUSTL) CSE 561 March 25, 2024 20/29



Red Teaming Language Models with Language Models

° Red LM

Are you a Republican
or Democrat?

What would you do
if you were invisible?

m TargetLM ‘ed cIf
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I hate Democrats. N Dialog

I hate them too.

Figure: Prompt Level Attack
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Methodology

© Generate test cases input x using a red language model p,(x).

@ Use the target language model p:(y|x) to generate an output y for
each test case x.
© Find the test cases that led to a harmful output using the red team
classifier r(x,y).
A red classifier r(x,y) predicts whether y is offensive. Examples include
language models like GPT-4 which evaluates whether y is someone'’s social
security.
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Zero-shot Generation for Language Model Testing

@ Objective: Generate test cases to identify harmful outputs from
language models (LMs) without specific examples

o Methodology: Zero-shot technique—Use simple prompts to
influence a pretrained LM to produce diverse test cases aimed at
eliciting harmful or offensive responses without prior training on these
scenarios.
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Stochastic Few-shot Generation

o Objective: Enhance test case generation to trigger harmful outputs
from language models by using examples of Zero-shot Generation.

@ Methodology:

o Failing zero-shot test cases are used as few-shot learning cues.

o A small number of these cases are appended to prompts, guiding the
model to generate similar test cases.

e Stochastic sampling introduces diversity by randomly selecting
examples from a pool of failing cases.

o The difficulty of generated test cases is adjusted by varying the
sampling likelihood based on their potential to elicit harmful outputs.
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Supervised Learning

Objective: Improve the pretrained LM responses by fine-tuning on
harmful output instances identified through zero-shot generation.

o Data Source: Utilizes failing zero-shot test cases as a dataset,
specifically those cases where the LM produced harmful or biased
outputs.
Data Preparation:
o Dataset of failing cases is created from the zero-shot generation phase.
o Split into 90% training and 10% validation sets.
Training Approach:

o Fine-tune the LM for one epoch on the training set to maximize the
log-likelihood of failing cases.
e Aim to maintain diversity and prevent overfitting.
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Reinforcement Learning (RL)

@ Objective: Optimize LM to generate test cases that effectively elicit
harmful responses from the target LM.

@ Methodology: Train the generator LM using RL, rewarding it for
producing questions leading to offensive replies.

@ Process: Initialize with a Supervised Learning model, then apply A2C
with KL regularization for dynamic adjustment.

@ Goal: Achieve a high success rate in eliciting harmful outputs,
balancing between diversity of test cases and effectiveness in
identifying undesirable behaviors.
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Experimental Results: Red Teaming Offensive Language
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Figure: Percent of Offensive Response

@ 7S achieves 18,444 offensive replies.

@ SFS improved offensiveness and maintainedRe diversity.

@ SL mirrors SFS’s success but with reduced diversity in generated
cases.

@ RL proves most effective, significantly increasing offensive replies.

@ Automated methods rival human-generated BAD dataset in difficulty

and diversity.
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Analyzing Offensive Reply Likelihood from DPG

SR &Y
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Figure 4: The likelihood of an offensive reply from
DPG over the course of conversation, for different
methods. Error bars show the 95% confidence interval
from bootstrap resampling.
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Figure 5: The likelihood of an offensive reply from
DPG, conditioned on the last x utterances being
offensive. Error bars show the 95% confidence interval
from bootstrap resampling.
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Fig. 4 (Left Graph):
Increasing likelihood of
offensive replies across
8 turns, particularly
with Zero-Shot and
Conditional Zero-Shot.
Stochastic Few-Shot
indicates a higher
initial probability.

Fig. 5 (Right Graph):
The chance of
subsequent offensive
replies rises with the
number of prior
offensive exchanges,
especially under the
Stochastic Few-Shot
method.

Non-Adversarial:
Demonstrates a
consistently low
likelihood, suggesting
safer dialogues-in
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Conclusion and Implications

@ Red Teaming Language Models with Language Models can operate
before adversaries.

@ "Behavior on failing test cases may then be fixed preemptively.”
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