
LLM Privacy

Review of:
Extracting Training Data from Large Language Models
by Carlini, Tramer, Wallace, Jagielski, Herbert-Voss, Lee, Roberts, Brown, Song, Erlingsson, Oprea, Raffel

Large Language Models Can Be Strong Differentially Private Learners
by Li, Tramèr, Liang, Hashimoto

1

Angelo Benoit

https://arxiv.org/search/cs?searchtype=author&query=Carlini,+N
https://arxiv.org/search/cs?searchtype=author&query=Tramer,+F
https://arxiv.org/search/cs?searchtype=author&query=Wallace,+E
https://arxiv.org/search/cs?searchtype=author&query=Jagielski,+M
https://arxiv.org/search/cs?searchtype=author&query=Herbert-Voss,+A
https://arxiv.org/search/cs?searchtype=author&query=Lee,+K
https://arxiv.org/search/cs?searchtype=author&query=Roberts,+A
https://arxiv.org/search/cs?searchtype=author&query=Brown,+T
https://arxiv.org/search/cs?searchtype=author&query=Song,+D
https://arxiv.org/search/cs?searchtype=author&query=Erlingsson,+U
https://arxiv.org/search/cs?searchtype=author&query=Oprea,+A
https://arxiv.org/search/cs?searchtype=author&query=Raffel,+C


Extracting Training Data from Large 
Language Models
by Carlini, Tramer, Wallace, Jagielski, Herbert-Voss, Lee, Roberts, Brown, Song, Erlingsson, Oprea, Raffel

2

https://arxiv.org/search/cs?searchtype=author&query=Carlini,+N
https://arxiv.org/search/cs?searchtype=author&query=Tramer,+F
https://arxiv.org/search/cs?searchtype=author&query=Wallace,+E
https://arxiv.org/search/cs?searchtype=author&query=Jagielski,+M
https://arxiv.org/search/cs?searchtype=author&query=Herbert-Voss,+A
https://arxiv.org/search/cs?searchtype=author&query=Lee,+K
https://arxiv.org/search/cs?searchtype=author&query=Roberts,+A
https://arxiv.org/search/cs?searchtype=author&query=Brown,+T
https://arxiv.org/search/cs?searchtype=author&query=Song,+D
https://arxiv.org/search/cs?searchtype=author&query=Erlingsson,+U
https://arxiv.org/search/cs?searchtype=author&query=Oprea,+A
https://arxiv.org/search/cs?searchtype=author&query=Raffel,+C


Background

•Data Leakage Concern: The vast amounts of data used by LLMs raise concerns about their 
ability to retain and expose sensitive information, posing a significant privacy risk

•Privacy is Critical: Privacy in LLMs is critical as these models train on GBs of data, especially 
in private models

•Data Extraction Susceptibility: Data extraction attacks can expose inadvertently memorized 
training data inputs, leading to potential privacy breaches
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Challenge and Contribution

•Challenge: Other papers exploring this topic fail to accurately understand the ability of LLM 
memorization

• problematic test design (e.g. using canary tokens)
• misunderstanding of overfitting and generalization

•Contributions: 
1. Demonstrates the feasibility and extent of training data extraction attacks on LLMs 
2. Suggests practical mitigation strategies to minimize privacy risks associated with 
these models
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The Attack Model

•Generate High-Likelihood Samples: Create numerous outputs from the model, focusing on 
highly likely memorized sequences

•Use a Reference Model for Ranking: Employ a secondary model to identify unique 
high-likelihood samples as potentially memorized data

•GOAL: Extract Verbatim Text Sequences: Aim to pull exact sequences from the training 
data, particularly sensitive information

•Only requires the ability to query the model, without access to its internals
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Text Generation

•Autoregressive Generation: Utilizes autoregressive text generation for creating sequential 
text predictions, mimicking training data patterns

•Top-k Sampling: For each new token, the model considers only the top k most probable next 
tokens and samples from this subset according to their probabilities to introduce diversity

•Baseline: Extract exactly 256 tokens for each trial using the top-k strategy with k = 40
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Text Generation - Improved methods

•Decaying Temperature: 
• Make model produce more varied output at beginning to diversify example output
• Reduce temperature to make model more confident as tokens are generated

•Internet Text:
• Sample 5-10 prefix tokens from web scrapes and then continue with baseline top-k
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Identifying Memorized Content (Membership Inference)

•Likelihood Comparison: Use the likelihood of each sample being a genuine output
• sample perplexity

•Reference Model Ranking: Samples that are highly likely according to the original model but 
not as likely according to the reference model are flagged as potentially memorized

•Sample Selection: The generated samples are selected based on likelihood and the 
reference model ranking 
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Reference Models

•Second Neural LM:
• Using a smaller model (GPT small and GPT medium)

•Zlib compression:
• compare GPT-2 perplexity to zlib entropy
• high entropy implies more diverse words and phrases (more likely memorized)
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Reference Models

•Lowercase Text:
• perplexities can vary if memorized content is case specific

•Perplexity on Sliding Window:
• find minimum perplexity in window of 50 tokens
• identify memorized examples surrounded by non-memorized text
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Experiment Results

•High Candidate Sample Memorization Rate: 604 of the 1800 generated samples 
memorized
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Memorization Results

Results for each of 3 generation methods

13



Memorization Results

Results for each of 6 inference comparison metrics
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Observations

•Most Effective Attack: Utilizing internet prompts for the prefix and zlib compression as a 
reference metric yielded 67% TPR for candidate samples memorized

• Average is 33.5% TPR over all methods

•Memorization is not Overfitting: Unlike other models, LMs do not experience overfitting but 
can still recall specific examples

■ validation and train loss are comparable on average, ~10% difference
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Observations

•Memorization is Context Dependent: The LM prompt and its wording greatly impacts the 
generality of the output

• EX. GPT-2 will complete the prompt “3.14159” with the first 25 digits of π. By providing 
the more descriptive prompt “pi is 3.14159”, GPT-2 gives the first 799 digits of π. 
Further providing the context “e begins 2.7182818, pi begins 3.14159”, GPT-2 
completes the first 824 digits of π.
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Observations

•Large Model Susceptibility: Larger models subject to greater memorization
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Future Research

•Refine Attack Models: Create and improve sophisticated attack models to uncover privacy 
vulnerabilities with higher accuracy

•Improved Memorization Metrics: Establish quantifiable metrics for evaluating memorization 
risks

• Design tools for automatically auditing models for privacy risks

•Fine-Tuning Impact on Memorization: Examine how fine-tuning affects memorization 
differently

•Efficient Data Deduplication: Develop advanced deduplication strategies to minimize 
memorization while preserving data diversity
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Mitigation Strategies

•Audit Models for Memorization: Develop and refine methods for auditing LLMs for 
memorization, offering a systematic approach to identify and mitigate privacy risks

•Curate and Sanitize Training Data: Carefully curate and sanitize training data to remove or 
anonymize sensitive content

• data deduplication and source selection minimize the risk of sensitive information 
memorization

•Limit Memorization in Downstream Applications: Filter sensitive content to prevent leakage 
in applied settings

•Implement Differential Privacy: Use differential privacy to offer strong privacy guarantees by 
adding noise during training

■ MORE ON THIS NEXT…
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Large Language Models Can Be 
Strong Differentially Private Learners
by Li, Tramèr, Liang, Hashimoto
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Differential Privacy

Explanation - The probability of any subset of outputs Y occurring from the input dataset X is not substantially 
higher than the probability of the same outputs occurring from an adjacent dataset X', up to an exponential 
factor of ε and a small probability δ

•DP Goal: The presence of a certain single sample in the dataset does not affect the 
probability distribution of the output

•Mathematical Guarantees: mathematical evaluation of privacy loss subject to leakage 
params ε, δ
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DP-SGD

•Compute Gradients: Separate for each data point in batch

•Clip Gradient: limit the gradient such that no data point has significant influence on update

•Noise Injection: Random noise added to the gradient according to ε and δ

Then, Update Params
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DP-ADAM (Adaptive Moment Estimation) - Augmented SGD

•Adaptive Learning Rate: Each parameter has its own learning rate based on gradient moving 
average

• Better Noise Handling

• Good for Sparse Gradients



Background

•DP Performance Challenges in NLP: Differential privacy learning has faced limitations in 
deep learning for text models as DP-Stochastic Gradient Descent (DP-SGD) can significantly 
reduce performance and is computationally demanding

•Impact of DP-SGD: The performance degradation associated with DP-SGD is due to the 
noise added to gradients for privacy

• This scales with the number of model parameters, hindering large models
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Contributions

•Performance with Privacy: Fine-tuning pretrained LMs with DP-SGD or DP-Adam with 
optimized hyperparameters and task objectives achieves strong performance

•Ghost Clipping Technique: Introduces a memory-saving technique for DP-SGD which 
enables efficient fine-tuning of large transformer models under DP

•Practical Framework for Private NLP Models: Establishes framework for building private 
models that do not compromise significantly on performance, leveraging state-of-the-art 
pretrained models with empirically strong results
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Contributions
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DP Model Framework

•Pretrained Models: The approach utilizes large, publicly available pretrained models like 
GPT-2 and BERT, recognizing their potential to achieve high performance under differential 
privacy constraints

•DP-SGD and DP-Adam Optimization: Adopts differential privacy versions of popular 
optimization algorithms, DP-SGD and DP-Adam, for the fine-tuning phase

• incorporate privacy-preserving mechanisms by clipping gradients and adding noise

•Fine-Tuning with Privacy Constraints: Fine-tuning is carefully managed by adjusting 
hyperparameters and training objectives to align with DP requirements

• Identifies and utilizes non-standard hyperparameters and fine-tuning objectives that 
are particularly suited to DP optimization
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Ghost Clipping - a Trick for Memory Saving

•The Method: Ghost clipping significantly reduces the memory overhead associated with 
differential privacy by calculating the squared norm of the per-example gradient tensor 
without actually computing the tensor itself

• Only necessitates one extra backward pass per processed batch for the purpose of 
gradient clipping

•Complexity Reduction: The computational complexity of ghost clipping is notably lower than 
traditional methods - O(Bpd) to O(BT²), where B is batch size, d is the input feature 
dimensionality, p is the output feature dimensionality, and T represents the sequence length
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Ghost Clipping - a Trick for Memory Saving
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Hyperparameter Tuning for DP

•Non-standard Hyperparameters: Traditional heuristics for chosen parameters perform poorly 
on DP models

• High batch size, high learning rate performs best on DP

•Clipping Norm: Affects the scale of the injected noise
• Smaller clipping norm ensures most gradients are clipped - gives best performance

•Improving Task Alignment: Fitting a classifier to a pretrained LM yields worse performance
• Alter the classification task to be text infill with a classification term
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Hyperparameter Tuning for DP
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Low Dimensional Updates Do NOT Improve Performance

•Full fine-tuning with DP-Adam: Achieves similar performance to non-private models

• Fewer parameter optimization fails to maintain performance
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Large Models are Better

32



Limitations and Future Research

•Public Pretraining Concerns: The research utilizes popular public models like GPT-2 and 
BERT for pretraining, which may inherit privacy issues from their original datasets

• What is the foundational privacy of these pretrained models?

•Hyperparameter Tuning Scope: weight decay, learning rate schedule, clipping norm 
schedule, and batch size schedule hyperparameters went unexplored

• Further research into hyperparameter optimization for DP

•Dimensionality and Scaling Laws: The research does not thorough examine the scaling laws 
for private learning - How the dimensionality of models affects private deep learning

• Exploration of the scaling laws could produce more efficient privacy models
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Q&A
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Thanks!
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