Sihao Lin

WEAK-TO-STRONG GENERALIZATION: ELICITING
STRONG CAPABILITIES WITH WEAK SUPERVISION

By Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao,
Leopold Aschenbrenner, Yining Chen, Adrien Ecoffet, Manas Joglekar,Jan Leike, llya Sutskever, Jeff Wu

Background

Limitation of human evaluators:

superhuman models will be capable of complex and creative behaviors that humans cannot fully
understand.

Problem:

how can weak supervisors control models much smarter than them?

Traditional ML Superalignment Our Analogy

Human level

Supervisor Student Supervisor Student Supervisor Student

Methodology

replace the weak human supervisor with a weak model supervisor

1. Create the weak supervisor.
create weak supervisors by finetuning small pretrained models on ground truth labels and generate weak labels by taking

the weak model’s predictions on a held-out set of examples

2. Train a strong student model with weak supervision.
finetune a strong model with the generated weak labels.

3. Train a strong model with ground truth labels as a ceiling.
finetune a strong model with ground truth labels.

weak-to-strong — weak —
define the performance gap recovered (PGR) to measure the PGR ctrone coilline — wenk -
. U))) Awle
fraction of the performance gap
T, D —— -
] | | Il
weak weak-to-strong strong ceiling

performance performance performance

Result for naive finetuning on weak labels

Task : Popular natural language processing benchmarks, Chess puzzles, ChatGPT reward modeling.

Model : study pretrained language models from the GPT-4 family

strong ceiling performance ___ weak-to-strong performance _
(9-t. supervision) (weak supervision)
a) 100 p) 100 c :
@100 Tdsks ®) Chess Puzzles ©) 721ChaePT
Reward Modeling
90- 80" 70 |
2 g £ ea) —1
> 80_ > > >
o S S (oo
S = S 66
[3} o [3} S|
8 704 8 40 b [| =
% 7 % 64,
e e & |10 01 2
60 20 —o—o———s 62, -3
Pl o
o oo m 4 oc
50 — — - ~r - r r vy 0 vy bt BIA AL 3 vy vy TV vy 60 ooy oy oy or r gg
10% 10 104 10?2 1 10¢ 10°® 10* 107 1 108 106 104 102 1 3 2
C) e) 100) 100 0.2
,\;\1 00 NLP Tasks (= Chess Puzzles < c:hatGI;T L Qo
< < < Reward Modelin =t
5 801 | - - = 80 5 80 9 =3
e A o e o 2
(]] | (] 1| (] 4 107 —
3 60 ya— 3 60 3 60 ®
o L ® o o
2 o -
= 401 ~ o ~ o 40 o 40
© © ©
o HW (o)) o P
3 20 g 20 g 20 . 4 - 5
© © @ =]
£ 05 £ o E 0
S S 8 e
S .20 % 204 g 20
10¢ 104 102 1 10¢ 104+ 102 1 10¢ 10+ 102 1
strong student compute strong student compute strong student compute

(fraction of GPT4) (fraction of GPT4) (fraction of GPT4)

Observation for naive finetuning on weak labels

Advantage:

e strong models trained with weak supervision can often generalize to a substantially higher performance than the
weak model itself.

Limitation:
* weak-to-strong generalization is poor by default in the ChatGPT reward model setting. We are usually only able to

recover roughly 10% of the performance gap between the weak supervisor and the strong student. Even for
relatively small gaps in compute between the weak and strong models, PGR almost never exceeds 20%

Improving weak-to-strong generalization

Bootstrapping with intermediate model sizes:

Instead of directly aligning very superhuman models, we could first align an only slightly superhuman model, use that to
align an even smarter model

use the weak labels from M1 to finetune M2, use M2 to generate new weak

My — My — ... — M,, labels that we can use to finetune the next model in the sequence, M3, and so
on
weak-to-strong performance with bootstrapping —a
@ 100 = (b)1
chess bootstrapping ©
— 801
804 kS 0.1 2
—~~ (&)
g g 601 =8
3 60- o 23
© a 40 o0
o | @ S Q
9 (o)) o
@ 40/ 8 204 o3
& 3 E
. E of &2
20 ./.._-——' -------------------- NS ®
10 L
0 S— — r— —l i - T

10°® 105 104 1 02 10° 10° 10* 10° 102 10" 1
strong student compute strong student compute
(fraction of GPT4) (fraction of GPT4)

- A

Improving weak-to-strong generalization

Use auxiliary confidence loss :

instead of directly aligning very superhuman models, we could first align an only slightly superhuman model, use that to

align an even smarter model.)
fi(z) = I[f(z) > t] € {0,1}

A

Leont(f) = (1 — @) - CE(f(2), fu(2)) + a - CE(f(), fi(x)) Parameter setting: set «,, =0.75 for largest model
set «=0.5 for otherwise
linearly warm up in first 20% of training

@) weak-to-strong performance with aux. loss —a eposide
2100 : = (b) 100
NLP with auxiliary loss =
< 80-

90- k5 0.1 2
< 2 60- —
= 3 S o
O 801 o 90%
8 = 40 5
= S g =<

w
& 701 Q 204 =5
7 = oo
o) © — (@)
= g 0f »3
60 = g
= 7 =
Q -20- 107 @
713 AP [NPRRI WS — T T
108 10 10+ 10= 1 10 10 102 1
strong student compute strong student compute

(fraction of GPT4) (fraction of GPT4)

Understanding weak-to-strong generalization

Understanding imitation:
the strong model could simply learn to imitate the weak supervisor, including its errors

* Overfit to weak supervision: the strong model might overfit to the weak supervisor labels and its errors, degrading ground
truth test accuracy over training even without classic overfitting to any specific training examples

weak-to-strong

(@) (b) performance early Stop —a ©)
72 30

ChatGPT e
Reward Modelis &
65- -~ 70 ! , 01 = -
3 8 ¢
= 1080 = 2

& 641 ~3 & 68 3¢ 8204
cw =0 T
g 35 566 S8 =
S 631 <® >3 o> 3

Q o= Q -0

8 S5 ® 64 Qo @

% 62- 28 5 3§ g
g 621 153 & 22 E
8 % 1077 2
614 o a

: ‘ ‘ |) el e ———— 0.

0.2 0.4 0.6 0.8 102 10 104 107 1 b, &
progress (fraction of epoch) D @o@&
D
%%
%,

Understanding weak-to-strong generalization

Saliency in the strong model representation:
strong pretrained models should already have good representations of the alignment-relevant tasks we care about.

* Eliciting strong model knowledge with prompting:
In particular, it is possible that strong pretrained models can solve many relevant tasks zero-shot with a simple prompt.

fewshot
zeroshot ..« few(itlost)g.t. - finetune g.t. — weak labels - % finetune ---- aux. loss —a
(@) (b) (n=5) ()
100 100 1 100
0.1 =
s 901 2 90 X = 901 2 ;
€ g o A 3o
oy g g ‘ =
3 801 2 80 ‘ X & 801 =8
= = o3 P 3 32
v . oOw
b b N A.* o" e 4 3 -0
S 704 & 70 JoA T & 70 =
g ? g ":;K.: K4 x..--‘ g zg
‘. 5 |4 :.' :' -t =5
601 e Y, ~ 60T ,X'L'f 601 r 107 3
-"' Pl x. ‘Pl';:’ ‘:ﬂ,,..al' e s o
504 x olf o _ | 50— ' 50
10 10* 10° 102 0.1 1 105 10¢ 10°® 107 01 1 105 104 10° 10% 0.1 1
strong student compute strong student compute strong student compute
(fraction of GPT4) (fraction of GPT4) (fraction of GPT4)

Figure 9: Few-shot prompting becomes competitive with finetuning for large models; weak-to-
strong learning is qualitatively similar in the prompting setting.

Challenges and future work

Challenges:

Imitation saliency: superhuman models may easily imitate weak errors.

Pretraining leakage: superhuman knowledge may be latent, not observable.

Future work:

ANALOGOUS SETUPS

it is important that we have metrics which provide strong signal about whether we are making real progress
toward the problem we ultimately care about.

SCALABLE METHODS

future work should identify additional unsupervised properties that can be used to specify the desired
generalization

SCIENTIFIC UNDERSTANDING:

need a thorough understanding of precisely when and why our methods work.

Background

Challenges:

» State space models (SSMs) have demonstrated state-of-the-art sequence modeling performance in
some modalities(time series analysis, audio generation), but underperform attention in language
modeling.

* specialized hardware support for attention, ranging from tensor cores to transformer chips but not
state space models.

Contribution:
propose H3 (Hungry Hungry Hippo), a new SSM-based layer designed to solve these language modeling tasks.

Scaling SSMs to improve the efficiency of SSMs on modern hardware, to reduce the hardware barrier between
attention and SSMs.

Background

State Space Models:
discrete-time state-space representation

€Ir; = A.T.Ij_l - B'u,.,:
y; = Cz; + Du;.

A state-space model (SSM) uses these representations as a layer in a deep learning pipeline
SSMs as Convolution:

given the entire sequence of the input ul,...,uN, the output sequence y1,...,yN can also be written as the
convolution of the input with the filter

f = [CB,CAB,CA’B,...,CAV"'B].

y; = CA'Bxy + (f * u); + Du;, —) Y = SSNI(U)

Background

Linear Attention:
General form of attention:

5 g O=W'x . Query(to match others))
" > j=1 Sim(Q;, K;)V il K =Wy Key (to be matched) Scaled Dot-Product Attention
2 =1 Sim(Q;, Kj) V=W"'x Value(information to be extracted) g
Consider as an weighted average of value MatMul
f A
Softmax Attention: z": et/ ki, SoftMax
Sim(q’ k) — equ) Attention(Q, K,V); = F;—)
> etk Mask (opt.)
J=1 +
Scale
Linear Attention: +
- . MatMul
H(Qi) 2%y d(K;)V
Sim(q, k) = ¢(q)To(k) "= O; = S 1 !

(Qi)T 224, ¢(Kj) Q K V

Motivation

Synthetic Language Modeling Tasks: demonstrate the gap between SSM layer and attention layer

The Induction Head task tests how well a model can recall content after a special token

Associative Recall task tests how well a model can recall content after a special token key value pairs

Table 1: Synthetic language modeling tasks.

Task Input Output | Sequence Length | Vocab Size
Induction Head gabedel Fghsco Tyt | T 30 20
Associative Recall | a 2¢c 4 b 3d1a 2 20 10

Table 2: Evaluation of 2-layer models on synthetic language tasks.
Task Random | S4D Gated State Spaces H3 Attention

Induction Head 5.0 35.6 6.8 100.0 100.0
Associative Recall 25.0 86.0 78.0 99.8 100.0

H3 layer

H3 uses SSMs with shift and diagonal matrices, along with multiplicative operations against
projections of the input to capture the missing capabilities identified by the synthetics.
AN T i) 'T
SSMinitt: use shift matrix as A in SSM, to create a “memory” 0, = "5(;9(8 ')sz:Q} ¢(§;{)?
of the previous states ’ g=1 7R

mapping [a, b, c| — [0,a,b]

0 0
A=|1 0
0 1

S O O

] r; = Az;_1 + Bu;
y; = Cx; + Du,;.

SSMaiag : use diagonal matrix as A in SSM, to remember
state over the entire sequence

Y Yu
4(1?
Q ® SSI\"Idiag(SSI\"‘IShift (K) ®© V)~ Diag Diag
SSM _
fI?Z
Shift :
Shift
ssM | i
| I(x=a) 3
Q K vV !] ‘
| |
B gl
X Store key Store val Recall val

H3 Layer H3 for Associative Recall

H3 layer

Algorithm 1 H3 Layer

Require: Input sequence u € RV*4 from the previous layer, weight matrices Wo, Wi, Wy, W € R¥X? 5 shift
q P q P yer, g Q> ;

SSM SSMhise, a diagonal SSM SSMiae, head dimension dj,.

. Compute Q = uWq,K = uWg,V = uWy € RVX4,

Pass K through the shift SSM: K = SSMgpis: (K) € RVXS
Split Q, K,V into H “heads” (Q(h’), K(h), V® forh=1,..., H), each a sequence of N vectors of size dn, = d/H.
for 1 <h< H do
Take the batched outer product K(h)(V(h))T e RV*4r*dn (batched in the N-dimension) and pass it through a
diagonal SSM: KV = SSM ;e (K™ (V™) T) € RN Xdnxdn

Batch-multiply by Q: O™ = [Qgh)Kvgh), ity QE\';)KVE?)] € RV*4r (batched in the N-dimension).
end for
Concatenate the output O of each head, and multiply by the output projection matrix Wo € R4*4,

H3 layer

Efficiency:

Time complexity O(d*N +dN log N) O(N*d)
Space complexity O(dN) O(N?)

Expressivity:

H3 H3 Hybrid (2 Attn) S4D GSS GSS Hybrid (2 Attn)

Transformer

21.0 19.6 249 24.0 19.8

20.6

Perplexity of SSM variants compared to Transformers on OpenWebText

hybrid model simply retains two self-attention layers: one in the second
layer, and one in the middle (layer 2 + N/2 for an N-layer model, N even)

FlashConv : Efficiently training SSMs

For short sequences(<8K): by using kernel fusion, we can fuse the entire FFTConv into a single
kernel and compute it in SRAM

Fused Block FFTConv:

Kernel fusion : Kernel fusion addresses |0 bottlenecks due to reading and writing of intermediate results

Block FFT : the FFT-based convolution to utilize specialized matrix multiplication units.

Out — o3
i

Fused SSM
Block State

FFTConv

| |

]
8K Chunk

FlashConv : Efficiently training SSMs

For long sequences(>8K): the computation no longer fits in GPU SRAM

State passing Algorithm:

Algorithm 2 State Passing Algorithm

Require: Input u € RY, SSM parameterized by matrices A € R™*™, B € R™*! C € RY*™, D € R'*!, chunk size
N’ where N is a multiple of N’.
w Procampite AN € R ™M= 1A "By Bl ER™ . Mag= € CA o, EAY) RN
2. Split the inputs uy.x into C = N/N’ chunks ug forie=1 cu:y .
3. Let the initial state be :1:5\,2 =0eR™.

2. for1<c¢<Cdo
s Compute y'*) = Mmya:(c Y4+ BLOCKFFTCONV(f, uj) +Du(® ¢ RV,

¢: Update state: a:N, = ANz (C D4 My,ul©. Out _ oo _

7. end for

s: Return y = [y(M) ... 4. i .
TR

)
:N'/

Fused SSM Fused SSM
Block State Block State
FFTConv FFTConv

)
8K Chunk

H3 Evaluation

Compare with language model:

Table 6: 3-shot acc. on SuperGLUE with logit scoring. Best results in bold, second best underline.

Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA | Average
OPT-125M 36.5 50.2 47.3 44.6 57.9 14.9 11.9 60.0 47.9
GPT-Neo-125M 385 50.0 53.1 17.9 56.3 39.6 62.1 60.0 47.2
Hybrid H3-125M 43.3 49.1 58.1 51.8 48.9 55.0 56.1 67.0 53.7
GPT-2 medium (355M) | 36.5 50.5 48.0 8.0 135 53.3 58.8 65.0 15.6
OPT-350M 37.5 50.0 45.8 44.6 49.8 51.4 61.7 60.0 50.1
Hybrid H3-355M 42.3 475 50.5 28.6 59.7 62.3 60.5 69.0 52.6
OPT-1.3B 44.2 51.1 534 16.1 59.9 62.1 38.3 70.0 194
GPT-Neo-1.3B 35.6 50.6 47.3 32.1 59.9 55.7 61.2 67.0 51.2
Hybrid H3-1.3B 36.5 49.2 55.2 23.2 59.3 67.6 56.9 76.0 53.0
OPT-2.7B 14.2 50.5 53.4 17.9 50.2 66.0 62.0 71.0 53.0
GPT-Neo-2.7B 49.0 51.9 51.6 214 57.0 60.0 56.0 68.0 51.9
Hybrid H3-2.7B 36.5 45.6 47.3 46.4 59.4 71.1 60.6 77.0 55.5

Language Modeling Inference

Table 7: Inference throughput on A100 80GB, 1.3B models. Batch size 64, prompt length 512, 1024, or 1536, and
generating 128 tokens per sequence in the batch (i.e., 64 x 128 tokens in a batch). Hybrid H3 is up to 2.4x faster
than a Transformer of similar size in inference. The difference is larger for longer sequences.

Tokens/s Prompt length 512 | Prompt length 1024 | Prompt length 1536
Transformer-1.3B 1340 770 520
Hybrid H3-1.3B 1980 1580 1240

FlashConv Evaluation

Benchmarking FlashConv Inset (256-4K)
35x _ 2
v
30 = l g3
£ w
@ 20 £
§ P
= 10- ; ,
1K 2K 4K
! Sequence Length
1K 4K 16K
Sequence Length
m— FlashAttention . CUFFT Conv Fused Block FFT Conv

s FlashConv Fused Conv
Figure 2: We compare the speed of different algorithms to perform FFT-based convolution, along with FlashAtten-
tion [15] (the fastest attention implementation we know of). We use batch size 8, hidden dimension 1024, and varying
sequence length from 256 to 32k, and measure on an A100-SMX4-40GB GPU. We see that kernel fusion gives up to
3.4x speedup over naive FFTConv for short sequences (up to 512), block FFT gives up to 2x speedup for medium
length sequences (1k - 8k), and state-passing allows 2.3x faster FFTConv for long sequences (16k and above).

Table 8: Speedup on the LRA benchmark.

Models Speedup
Transformer 1x
FlashAttention [15] 2.4x
Block-sparse FlashAttention [15] 2.8%
S4 [28] 2.9%
S4 with FLASHCONV 5.8x

Summary

Goal:
understand and narrow the gap between attention and SSMs in language modeling in terms of modeling capabilities

and hardware efficiency

Conclusion:
Use synthetic language tasks to evaluate the performance of model

propose H3 (Hungry Hungry Hippo), a new SSM-based layer designed to solve these language modeling tasks.

Scaling SSMs to improve the efficiency of SSMs on modern hardware, to reduce the hardware barrier between
attention and SSMs.

Future work
combining the complementary strengths of SSMs and attention in the future

References:

[1]Burns, C., Izmailov, P., Kirchner, J. H., Baker, B., Gao, L., Aschenbrenner, L., Chen, Y., Ecoffet, A.,
Joglekar, M., Leike, J., Sutskever, I., & Wu, J. (2023). Weak-to-Strong Generalization: Eliciting Strong
Capabilities With Weak Supervision. ArXiv. /abs/2312.09390

[2]Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A., & Ré, C. (2022). Hungry Hungry Hippos:
Towards Language Modeling with State Space Models. ArXiv. /abs/2212.14052

TR

VR
i i

il

5

A T
0

? uimnlmn‘:p Al - ”
l ‘ .w“““‘:‘{‘({.rn;‘ \I‘\‘,\,":l‘"“ ”‘_
. |

N

