

JAMES MCKELVEY School of Engineering

CSE 561A: Large Language Models

Spring 2024

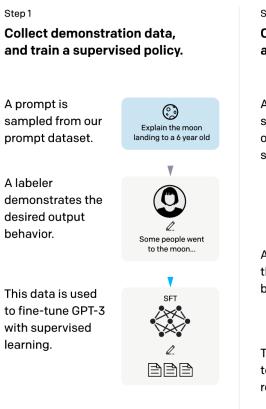
Lecture 3: Instruction Tuning Jiaxin Huang

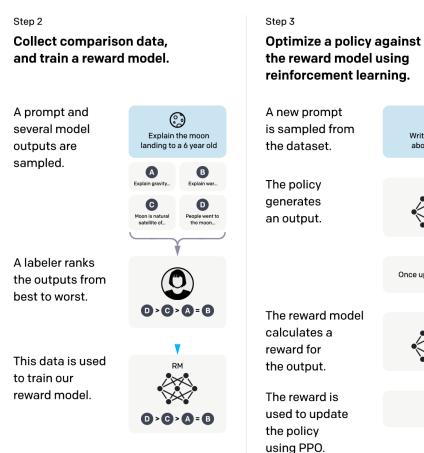
Course Announcements

- The sign-up sheet is out: <u>https://docs.google.com/spreadsheets/d/1xSCaIOjiri17V7IjP2di-kFwbOgInPb_azBfZKeTgmc/edit</u>
- The first student presentation lecture is on next Thursday (Feb.1st)
- Presenters (on Feb.1st) please send your slides to me (cc the TAs) before Monday 12:00PM (Jan. 29th)

Large Language Model Pre-training Framework

- ChatGPT training procedure
 - Self-supervised pre-training
 - Supervised training on pairs of human-written data (Step 1)
 - Model generate multiple outputs for a prompt, train a reward model on humanlabeled ranking list (Step 2)
 - Optimize the language model with the trained reward model (Step 3)





-74

Write a story

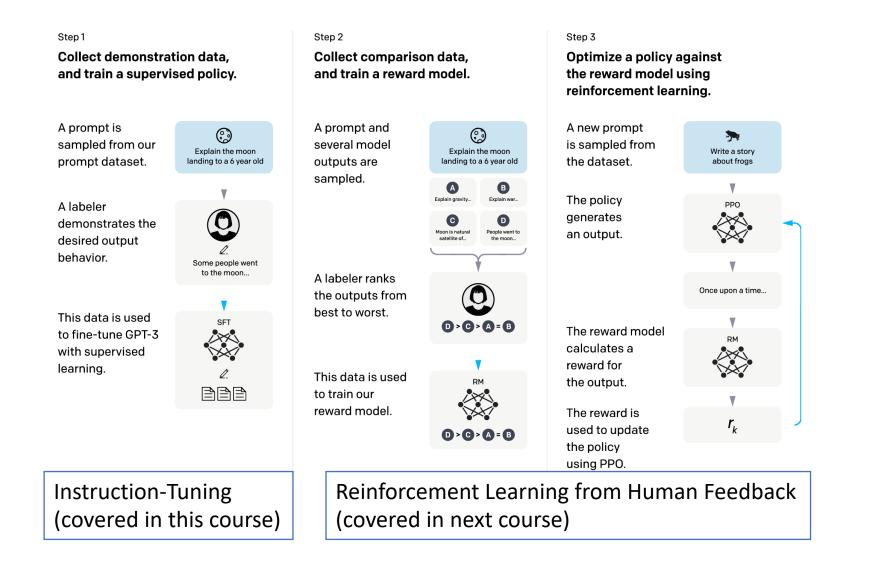
about frogs

Once upon a time.

 r_k

Training language models to follow instructions with human feedback. Ouyang et al. 2022.

Large Language Model Pre-training Framework



Training language models to follow instructions with human feedback. Ouyang et al. 2022.

LLaMA: Open and Efficient Foundation Language Models

- ChatGPT (175B): closed-source/proprietary models where we don't know about their pre-training corpus, and don't have access to their pre-trained weights, and can only do inference or training through APIs
- LLaMA (7B/13B/33B/65B): **open-source models** where the pretrained corpus is transparent and we have full access to their pretrained weights
 - Pre-trained Corpus: English CommonCrawl, C4, Github, Wikipedia, Gutenberg and Books3, ArXiv, Stack Exchange.
 - Smaller models allow researchers with limited computing resources to understand how and why these language models work

Content

Instruction Tuning Overview

- Instruction Tuning on Public NLP Datasets
- Instruction Tuning on Crowdsourced Datasets
- Instruction Tuning on LM-Generated Datasets
- Instruction Tuning on Mixture of Datasets

Language Models and User intents

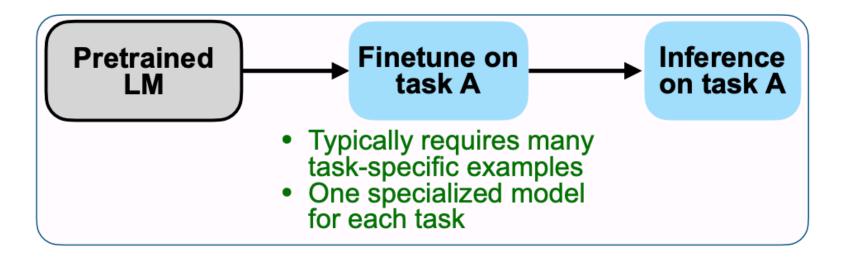
 Language models pre-trained on large corpus not necessarily aligned with user intents

🔸 Inference API 🛈	🔸 Inference API 🕕					
문 Text2Text Generation	문 Text2Text Generation	Examples 🗸				
Who is Donald Trump?	Who is Donald Trump?					
		li li				
Compute %+Enter 0.7	Compute #+Enter	0.2				
Computation time on cpu: 0.578 s	Computation time on cpu: 0.159 s					
's President? Who is Hillary Clinton? Who is Donald Trump?? Who is	president of united states					

Inference with T5 model and instruction-tuned T5 model

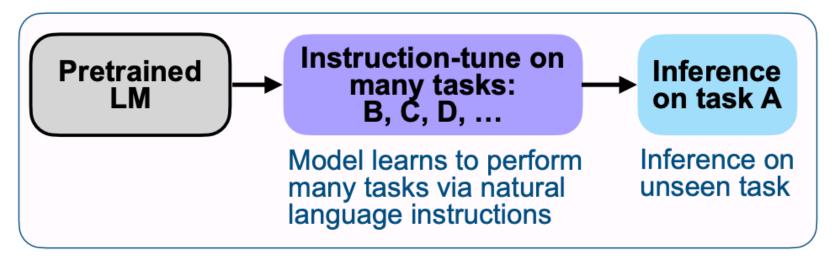
Recall Finetuning

- The pre-training stage let language models learn generic representation and knowledge from the corpus, but they are not specifically fine-tuned on any form of user tasks.
- To adapt language models to a specific downstream task, we could use task-specific datasets for fine-tuning

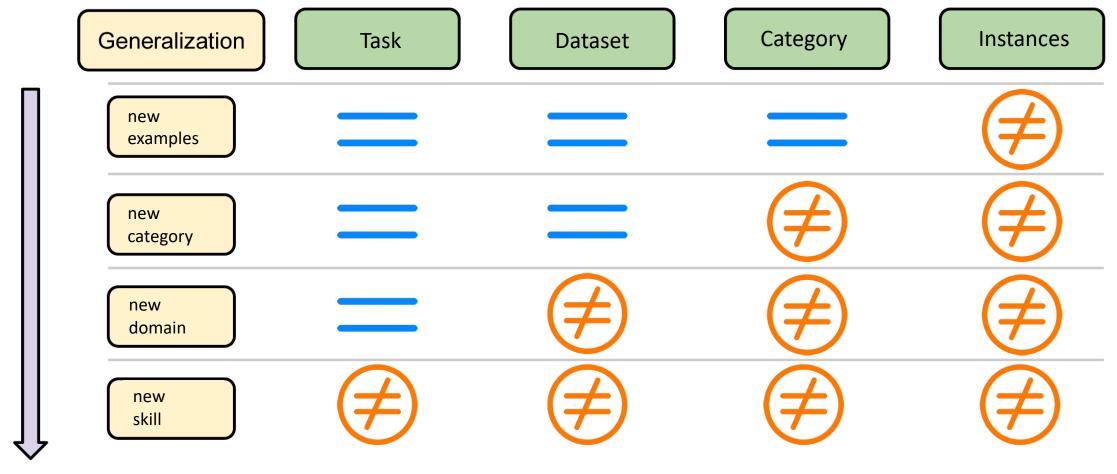


Instruction Tuning

- Fine-tuning on many tasks! Teach language models to follow different natural language instructions, so that it could perform better on downstream tasks and generalize to unseen tasks!
- Fine-tuning -> Instruction Pre-training



Increasing Generalization



Increasing generalization

Content

- Instruction Tuning Overview
- Instruction Tuning on Public NLP Datasets
- Instruction Tuning on Crowdsourced Datasets
- Instruction Tuning on LM-Generated Datasets
- Instruction Tuning on Mixture of Datasets

Multitask Prompted Training Enables Zero-Shot Task Generalization (Sanh et. al, 2021)

The picture appeared on the wall of a Poundland store on Whymark Avenue [...] How would you rephrase that in a few words?

Sentiment Analysis

Review: We came here on a Saturday night and luckily it wasn't as packed as I thought it would be [...] On a scale of 1 to 5, I would give this a

Question Answering

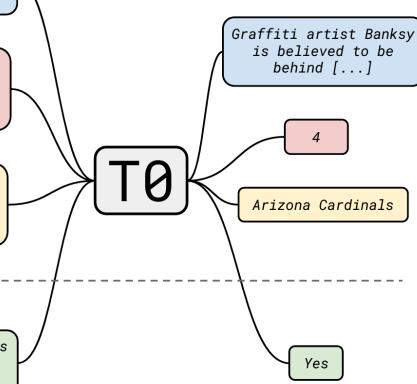
I know that the answer to "What team did the Panthers defeat?" is in "The Panthers finished the regular season [...]". Can you tell me what it is?

Multi-task training

Zero-shot generalization

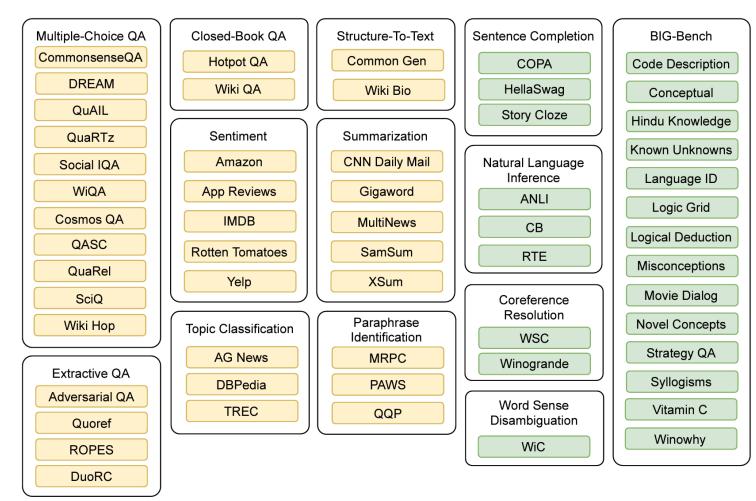
Natural Language Inference

Suppose "The banker contacted the professors and the athlete". Can we infer that "The banker contacted the professors"?



TO Training Datasets

• Collecting from multiple public NLP datasets

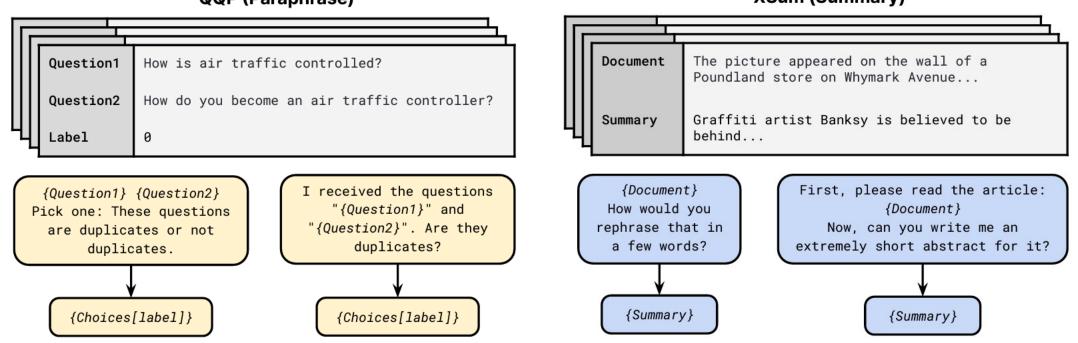


Training Mixtures and Held-Out Sets

- Training mixtures:
 - QA (Question Answering tasks), structure-to-text, summarization
 - Sentiment analysis, topic classification, paraphrase identification
- Held-out test set:
 - Sentence completion, BIG-Bench
 - Natural language inference, coreference resolution, word sense disambiguation

Task Adaptation with Prompt Templates

- Instead of directly using pairs of input and output, add specific instructions to explain each task (different templates per task)
- the outputs are tokens instead of class labels



QQP (Paraphrase)

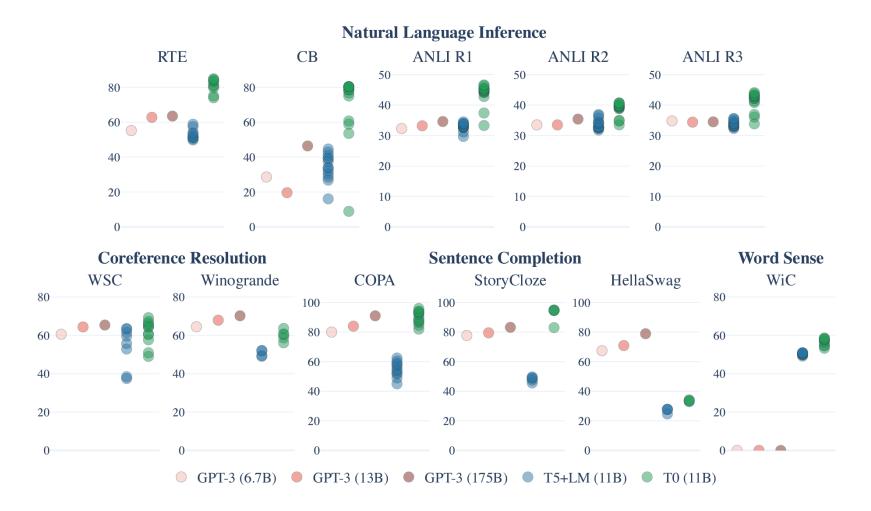
XSum (Summary)

Experiments

- The proposed model is called TO, trained on T5-LM (11B model) with multitask mixture of training sets
- Baselines

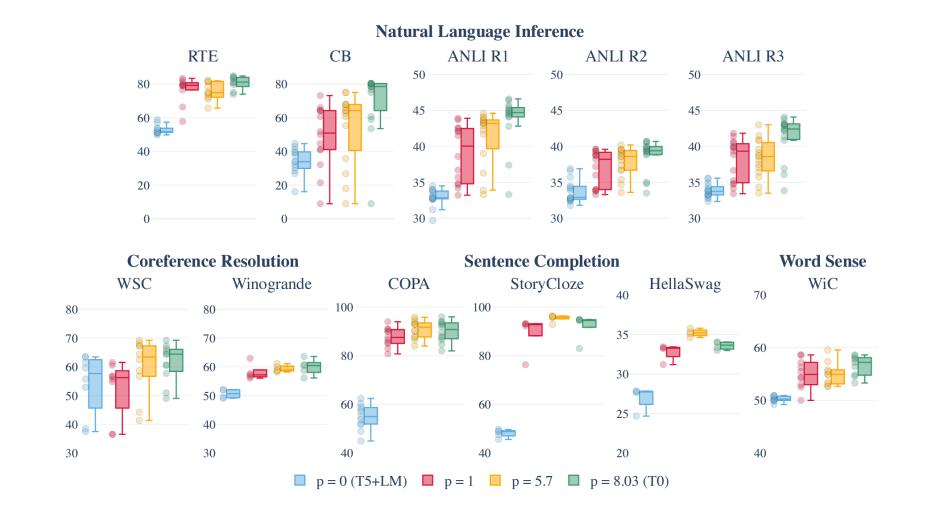
● GPT-3 (6.7B) ● GPT-3 (13B) ● GPT-3 (175B) ● T5+LM (11B)

Performance on Held-Out Tasks

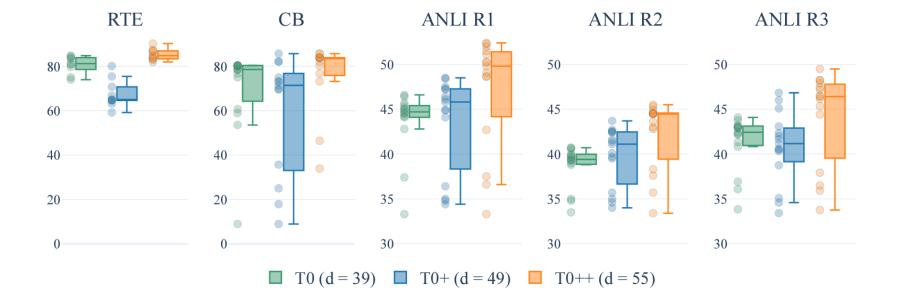


• For T5 and T0 models, each dot represents one evaluation prompt.

Effects of Prompt Numbers



Effects of More Training Datasets



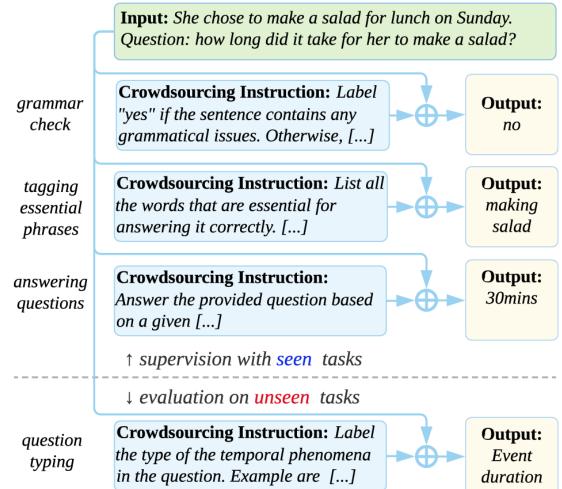
 Adding more datasets consistently leads to higher median performance

Content

- Instruction Tuning Overview
- Instruction Tuning on Public NLP Datasets
- Instruction Tuning on Crowdsourced Datasets
- Instruction Tuning on LM-Generated Datasets
- Instruction Tuning on Mixture of Datasets

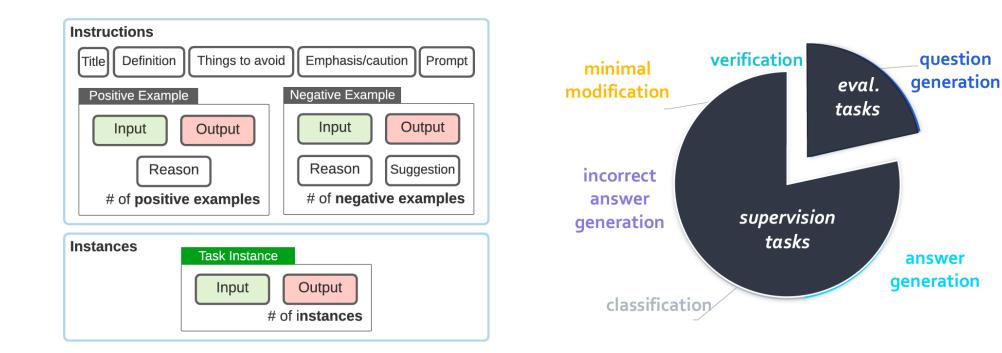
Cross-Task Generalization via Natural Language Crowdsourcing Instructions (Mishra et. al, 2021)

- Contribution:
- A crowdsourced dataset: Natural Instructions
 - 61 distinct tasks
 - 193k instances (input -> output)
- A more complete instruction and que schema



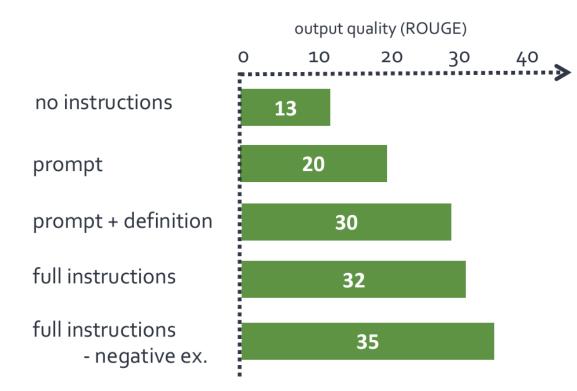
Crowdsourced Dataset

- 1. Randomly split the tasks (12 evaluation tasks, 49 supervision tasks)
- 2. Leave-one-category-out



Experiments: Generalization to Unseen Tasks

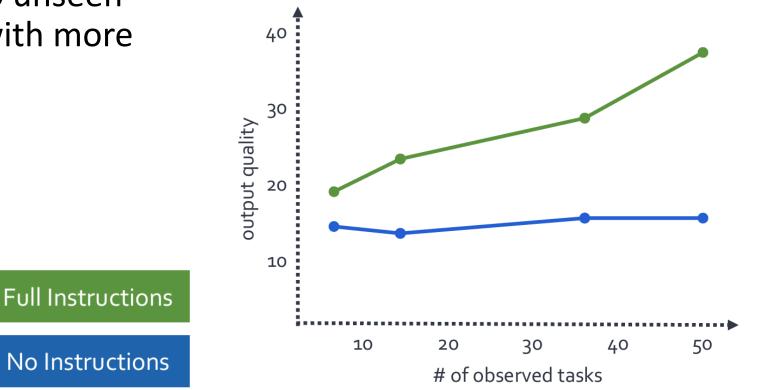
• Model: BART (140M params., instruction-tuned)



• All instruction elements (except negative examples) help improve model performance on unseen tasks.

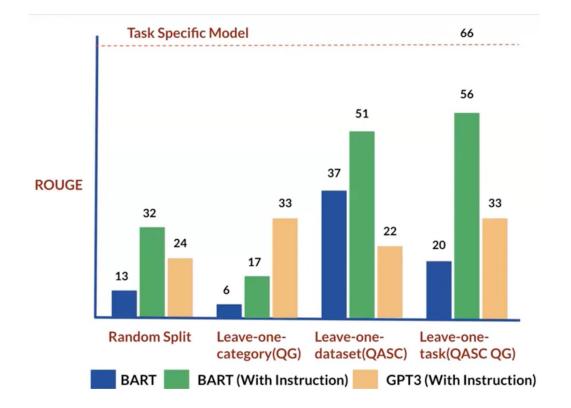
Experiments: Number of Training Tasks

 Generalization to unseen tasks improves with more observed tasks



Experiments: Comparison with Larger Model

- Model: BART (140M params., instruction-tuned)
- Baseline: GPT3 (175B params., not instruction-tuned)



- Instructions consistently improve model performance on unseen tasks.
- When both having access to instructions on the held-out set, BART (instruction-tuned) can often outperform GPT3 (not instruction-tuned)

Content

- Instruction Tuning Overview
- Instruction Tuning on Public NLP Datasets
- Instruction Tuning on Crowdsourced Datasets
- Instruction Tuning on LM-Generated Datasets
- Instruction Tuning on Mixture of Datasets

Self-Instruct: Aligning Language Models with Self-Generated Instructions (Wang et. al, 2022)

- Human-written instruction data can be very expensive!
- Can we reduce the human annotations?
- Idea: bootstrap from off-the-shelf LMs

Self-Instruct: Aligning Language Models with Self-Generated Instructions (Wang et. al, 2022)

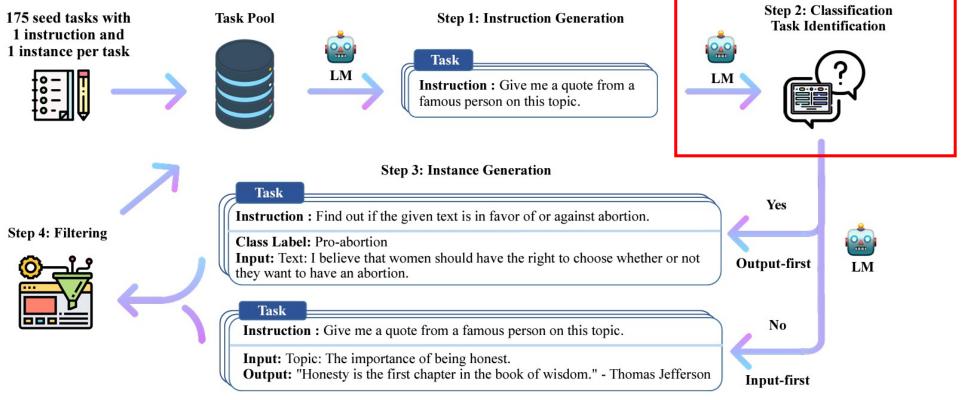
- Human written seed tasks to bootstrap off-the-shelf language models (GPT-3)
 - I am planning a 7-day trip to Seattle. Can you make a detailed plan for me?
 - Is there anything I can eat for breakfast that doesn't include eggs, yet includes protein and has roughly 700-1000 calories?
 - Given a set of numbers find all possible subsets that sum to a given number.
 - Give me a phrase that I can use to express I am very happy.

Pre-trained, but **not aligned yet**

- Create a list of 10 African countries and their capital city?
- Looking for a job, but it's difficult for me to find one. Can you help me?
- Write a Python program that tells if a given string contains anagrams.

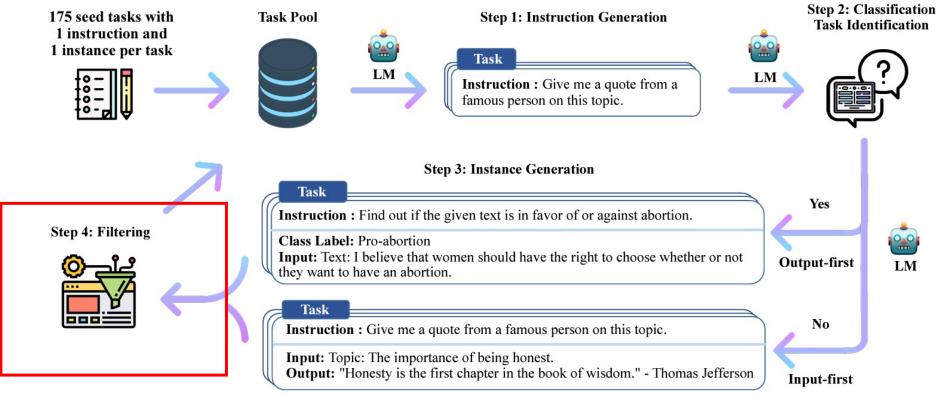
Self-Instruct Framework

- Classify whether the generated instruction is a classification task
- Output-first: avoid bias towards one class label



Self-Instruct Framework

- Filter out instructions similar with existing ones
- Add newly generated tasks into the task pool for next iteration



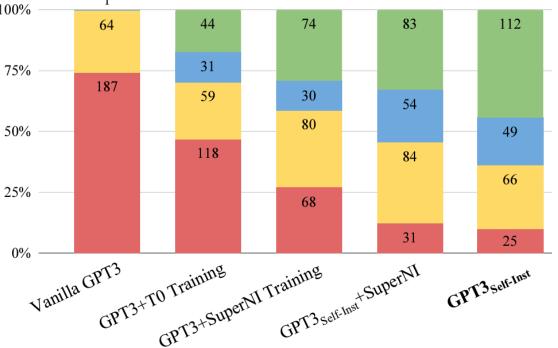
Experiment Results

- Use a GPT-3 ("davinci") model to generate new instruction tasks, and fine-tune the GPT-3 model itself
- 175 seed tasks -> 52K instructions and 82K instances

statistic	
# of instructions	52,445
- # of classification instructions	11,584
- # of non-classification instructions	40,861
# of instances	82,439
- # of instances with empty input	35,878
ave. instruction length (in words)	15.9
ave. non-empty input length (in words)	12.7
ave. output length (in words)	18.9

Evaluation on User-Oriented Instructions

A: correct and satisfying response
 B: acceptable response with minor imperfections
 C: responds to the instruction but has significant errors
 D: irrelevant or invalid response



 Self-training the model by bootstrapping instruction tasks from limited human-written seed tasks can improve model alignment

Content

- Instruction Tuning Overview
- Instruction Tuning on Public NLP Datasets
- Instruction Tuning on Crowdsourced Datasets
- Instruction Tuning on LM-Generated Datasets
- Instruction Tuning on Mixture of Datasets

LIMA: Less Is More for Alignment (Zhou et. al, 2023)

- Can we use a small number of data to generalize to new tasks?
- Hypothesis: A model's knowledge and capabilities are learn almost entirely during pre-training, while alignment teaches it the right format to be used when interacting with users

LIMA: Less Is More for Alignment (Zhou et. al, 2023)

- 1000 training examples: no more distillation data and with minor human annotations (200)
 - 750 top questions selected from community forums
 - manually write 250 examples of prompts and responses to emphasize the response style of an AI assistant
 - Finally train a 65B LLaMa model on 1000 demonstrations.

Source	#Examples	Avg Input Len.	Avg Output Len.
Training			
Stack Exchange (STEM)	200	117	523
Stack Exchange (Other)	200	119	530
wikiHow	200	12	1,811
Pushshift r/WritingPrompts	150	34	274
Natural Instructions	50	236	92
Paper Authors (Group A)	200	40	334
Dev			
Paper Authors (Group A)	50	36	N/A
Test			
Pushshift r/AskReddit	70	30	N/A
Paper Authors (Group B)	230	31	N/A

LIMA: Less Is More for Alignment

- Quality and diversity are the keys
- Quality Control:
 - Public data: select data with higher user ratings
 - In-house authored data: uniform tone and format
- Diversity Control:
 - Public data: Stratified sampling to increase domain diversity
 - In-house authored data: Increase task/scenario

Comparing LIMA with other LLMs

Ask human crowd workers and GPT-4 which model response is better

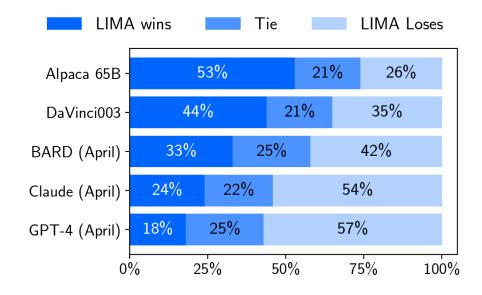


Figure 1: Human preference evaluation, comparing LIMA to 5 different baselines across 300 test prompts.

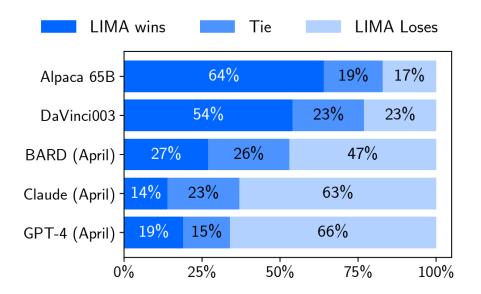


Figure 2: Preference evaluation using GPT-4 as the annotator, given the same instructions provided to humans.

Quality vs. Quantity vs. Diversity

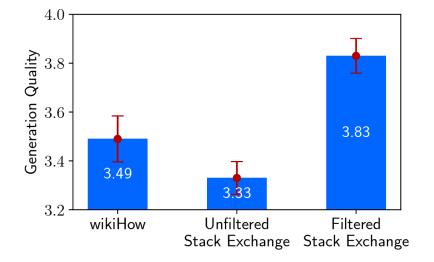
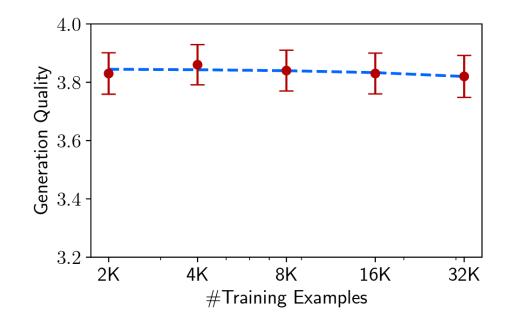


Figure 5: Performance of 7B models trained with 2,000 examples from different sources. Filtered Stack Exchange contains diverse prompts and high quality responses; Unfiltered Stack Exchange is diverse, but does not have any quality filters; wikiHow has high quality responses, but all of its prompts are "how to" questions. Scaling up training data does not necessarily improve the model response quality



Quality of Long-Form Highly Structured Response

- LIMA w. or w/o 6 format constraint exmaples
 - generating a product page with *highlights, about the product* and *how to use*
 - paper reviews with *summary, strengths, weakness* and *potentials*

LIMA w/o 6 Format Constraint Examples (994 Examples)	LIMA (1,000 Examples)						
[Marketing Plan (Out of Distribution)] I want to start a local coffee shop. Create a marketing plan with the following elements: Marketing Goals and Objectives, Define Target Audience, Research Marketing Tactics, Plan Marketing Tactics and Develop Your Timeline and Budget.							
Coffee Shop Marketing Plan	Here's a marketing plan for your local coffee shop. Marketing Goals and Objectives						
Executive Summary	• Increase awareness of our brand among consumers []						
The following marketing plan for Java Jolt Coffee Bar outlines an aggressive approach to establishing a thriving coffee shop business	• Drive foot traffic [] during slow business hours []						
in downtown Pittsburgh. Java Jolt will capitalize on the popularity of specialty coffees and the growing demand for WiFi hot spots by	• Build relationships with influencers in our community who []						
offering a comfortable environment where customers can enjoy pre-	Define Target Audience						
mium coffee drinks while taking advantage of free Internet access.	Our target audiences include:						
Market research indicates that there is a significant opportunity for a new coffee bar located in the heart of the downtown business district.	• Residents of the neighborhood surrounding our coffee shop						

- Office workers near our coffee shop
- Students at nearby schools

We will focus our marketing efforts on these audiences because they are most likely to become regular customers at our [...] **Research Marketing Tactics** Here are some marketing tactics that we could use to reach to reach

This marketing plan includes the following elements:

additional revenue stream for the coffee bar.

Market trends suggest that consumers are willing to pay a higher

price for quality specialty coffees served in a welcoming atmosphere.

Additionally, many office workers and students living in the area do not have easy access to high-speed Internet service, presenting an

The are some marketing tacties that we v

Tulu: How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources (Wang et. al, 2023)

- A comprehensive study on different instruction-tuning datasets
- Two mixtures of datasets
 - Human data mixture
 - Human + GPT data mixture

Comparison of Using Different Instruction Tuning Datasets

- There is not a single best instruction tuning dataset across all tasks
- Combining datasets results in the best overall performance

	MMLU (factuality)	GSM (reasoning)	BBH (reasoning)	TydiQA (multilinguality)	Codex-Eval (coding)	AlpacaEval (open-ended)	Average
	EM (0-shot)	EM (8-shot, CoT)	EM (3-shot, CoT)	F1 (1-shot, GP)	P@10 (0-shot)	Win % vs Davinci-003	
Vanilla LLaMa 13B	42.3	14.5	39.3	43.2	28.6	-	-
+SuperNI	49.7	4.0	4.5	50.2	12.9	4.2	20.9
+CoT	44.2	40.0	41.9	47.8	23.7	6.0	33.9
+Flan V2	50.6	20.0	40.8	47.2	16.8	3.2	29.8
+Dolly	45.6	18.0	28.4	46.5	31.0	13.7	30.5
+Open Assistant 1	43.3	15.0	39.6	33.4	31.9	58.1	36.9
+Self-instruct	30.4	11.0	30.7	41.3	12.5	5.0	21.8
+Unnatural Instructions	46.4	8.0	33.7	40.9	23.9	8.4	26.9
+Alpaca	45.0	9.5	36.6	31.1	29.9	21.9	29.0
+Code-Alpaca	42.5	13.5	35.6	38.9	34.2	15.8	30.1
+GPT4-Alpaca	46.9	16.5	38.8	23.5	36.6	63.1	37.6
+Baize	43.7	10.0	38.7	33.6	28.7	21.9	29.4
+ShareGPT	49.3	27.0	40.4	30.5	34.1	70.5	42.0
+Human data mix.	50.2	38.5	39.6	47.0	25.0	35.0	39.2
+Human+GPT data mix.	49.3	40.5	43.3	45.6	35.9	56.5	45.2

Different Base Models

- Base model quality is extremely important for downstream performance
- LLaMA is pre-trained on more tokens than other models

	MMLU (factuality)		TydiQA (multilinguality)	Codex-Eval (coding)	AlpacaEval (open-ended)	Average	
	EM (0-shot)	EM (8-shot, CoT)	EM (3-shot, CoT)	F1 (1-shot, GP)	P@10 (0-shot)	Win % vs Davinci-003	
Pythia 6.9B	34.8	16.0	29.2	32.8	20.9	23.5	26.2
OPT 6.7B	32.6	13.5	27.9	24.1	8.9	25.9	22.2
LLAMA 7B	44.8	25.0	38.5	43.5	29.1	48.6	38.3
LLAMA-27B	49.2	37.0	44.2	52.8	33.9	57.3	45.7

Different Model Sizes

- Smaller models benefit more from instruction-tuning
- Instruction-tuning does not help to enhance strong capabilities already exist in the original model

	MMLU (factuality)	GSM (reasoning)	BBH (reasoning)	TydiQA (multilinguality)	Codex-Eval (coding)	AlpacaEval (open-ended)	Average		
	EM (0-shot)	EM (8-shot, CoT)	EM (3-shot, CoT)	F1 (1-shot, GP)	P@10 (0-shot)	Win % vs Davinci-003			
	$ earrow models $ models trained on our final Human+GPT data mixture \downarrow								
TÜLU Ҟ 7B	44.8 (+13.3)	25.0 (+15.0)	38.5 (+5.5)	43.5 (+5.1)	29.1 (+8.6)	48.6	38.3		
Tülu Ҟ 13B	49.3 (+7.0)	40.5 (+26.0)	43.3 (+4.0)	45.6 (+2.4)	35.9 (+7.3)	56.5	45.2		
Tülu Ҟ 30B	57.7 (+3.1)	53.0 (+17.0)	51.9 (+2.4)	51.9 (-3.4)	48.0 (+5.2)	62.3	54.1		
TÜLU Ҟ 65B	59.2 (+0.5)	59.0 (+9.0)	54.4 (-3.7)	56.6 (-0.2)	49.4 (+2.5)	61.8	56.7		
$ earrow models $ models trained on our final Human+GPT data mixture using LLAMA-2 \downarrow									
TÜLU-1.1 Ҟ 7B	49.2 (+7.4)	37.0 (+25.0)	44.2 (+4.9)	52.8 (+1.6)	33.9 (+7.1)	57.3	45.7		
TÜLU-1.1 Ҟ 13B	52.3 (+0.3)	53.0 (+28.0)	50.6 (+1.7)	58.8 (+2.3)	38.9 (+7.4)	64.0	52.9		

Next Course: Reinforcement Learning from Human Feedback

