
CSE 561A: Large Language
Models

Spring 2024

Lecture 5: Parameter-Efficient Fine-Tuning
Jiaxin Huang

Course Announcements

• Next lecture will be student-presentation lecture
• Presentation Duration: 30-35 min
• Preview question form for the first student presentation will be sent

out today (required to submit 3 times during the semester)
• The second student presentation lecture is on next Tuesday (Feb.6th)
• Presenters (on Feb.6th) please send your slides to me (cc the TAs)

before Friday 12:00PM (Feb.2nd)

Background: Vanilla Fine-tuning
• Attach a task-specific layer to the last layer

of the pre-trained transformer output
• Update the weights of all the parameters by

backpropagating gradients on a downstream
task

Background: Prompting

• Prompting a language model with a natural description of the task,
and possibly several few-shot examples. No gradient updates.

Vanilla Fine-Tuning vs. Prompting

• Vanilla fine-tuning
• Pros: Can utilize more training data
• Pros: Lead to stronger performance with more training data
• Cons: Computationally expensive to train the complete network
• Cons: Need to store a full set of model weights per task

• Prompting
• Pros: Training-data efficient
• Pros: Computational efficient
• Cons: Performance depends on prompts and examples
• Cons: Finding a good prompt could be challenging

Parameter-Efficient Fine-Tuning

• Rather than fine-tuning the parameters in the entire model, only fine-
tune a small set of weights.
• Addition: add a small external network for each task

• Prompt-based Methods
• Adapter-based Methods

• Reparameterization: reparametrize the model parameter to be more efficient
for training
• LoRA

Content

• Prompt-based Methods
• Prompt Tuning
• Prefix Tuning

• Adapter-based Methods
• Adapters

• Reparameterization-based Methods
• LoRA

• Summary and Comparison of the Methods

Prompt Engineering

• Paraphrasing the task instruction
• Adding detailed examples
• For each new task, search over the

possible sequence space to find
the prompt with the best output
performance. -> computationally
expensive!
• Can we use a set of parameters to

replace these prompts and train
them with labeled sets?

Pre-trained Language Model

Prompt-Tuning
• Prepend a sequence of tokens as tunable embeddings to the input

data (as soft prompts)
• freeze the whole Transformer model during training, and only tune

the prepended soft prompts
• Only a small set of parameters need to be stored for each task

The Power of Scale for Parameter-Efficient
Prompt Tuning (Lester et. al, 2021)
• Prompt-tuning becomes more effective when the pre-trained

model becomes larger
• Larger models perform well even with a small number of prompt

tokens

The Power of Scale for Parameter-Efficient
Prompt Tuning (Lester et. al, 2021)

• Initializing prompt tokens with real tokens in vocabulary is helpful

Prefix-Tuning: Optimizing Continuous Prompts
for Generation (Li et. al, 2021)
• Similar with prompt-tuning,

except that the soft prompt
tokens are prepended to each
layer in the Transformer
instead of just the input layer.

Experiments on Text Generation

• Prefix-tuning works better than fine-tuning under low-data settings.

Prefix Length

• Performance increases as the prefix length increases up to athreshold
(200 for summarization and 10 for table-to-text) and then a slight
performance drop occurs.

Prefix Initialization

• Random initialization leads to low
performance with high variance.
• Initializing the prefix with real

words significantly improves
generation, as shown in Figure5.
• Initializing with task relevant

words such as “summarization”
and “table-to-text” obtains
slightly better performance than
task irrelevant words such as
“elephant” and “divide”.

Issues with Prompt/Prefix-Tuning

• Optimal prefix length may be different for tasks
• The prefix occupies the length of your input context to the

Transformer

Content

• Addition-based Methods
• Prompt Tuning
• Prefix Tuning

• Adapter-based Methods
• Adapters

• Reparameterization-based Methods
• LoRA

• Summary and Comparison of the Methods

What are Adapters?

• Vanilla fine-tuning can be seen as adding an extra layer to the top of a
Transformer
• Adapter modules perform more general architectural modifications:

injecting new layers/modules into the original network.
• During training, the original network weights are untouched, only the

adapter weights are updated.

Parameter-Efficient Transfer Learning for NLP
(Houlsby et. al, 2019)
• Adding adapter layers to each

transformer layer: after the
self-attention layer and the
feed-forward layer
• Adapter modules have two

main features
• a small number of parameters
• a near-identity initialization

• Only adapter layers and the
final classification layer is
updated during training

Comparison with Fine-Tuning

• Adapter-based tuning achieves a similar performance to full fine-
tuning with several orders of magnitude fewer trained parameters.

Pros and Cons of Adapter-based Methods

• Pros:
• Empirically very effective in multi-task settings
• Computationally efficient compared to full fine-tuning

• Cons:
• Adding in new layers makes the model slower during inference time
• Make the model size larger

Content

• Addition-based Methods
• Prompt Tuning
• Prefix Tuning

• Specification-based Methods
• Adapters

• Reparameterization-based Methods
• LoRA

• Summary and Comparison of the Methods

Intrinsic Dimension

• An objective function’s intrinsic dimension measures the minimum
number of parameters needed to reach a satisfactory solution to the
objective.
• Alternatively, the intrinsic dimension represents the lowest

dimensional subspace in which one can optimize the original
objective function to within a certain level of approximation error.

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. Aghajanyan et. al, 2020.

Intrinsic Dimension

• Let 𝜃! be the parameters of a model
• Instead of optimizing 𝜃!, the subspace method optimizes 𝜃" in a

lower dimensional space

• P is often a linear projection:

• Fine-tuning tasks have a low intrinsic dimension: the number of
parameters to be modified are several orders of magnitude less than
the the full parameterization of the pre-trained model.

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. Aghajanyan et. al, 2020.

LoRA: Low-Rank Adaptation of Large
Language Models (Hu et. al, 2021)
• A neural network contains many dense layers which perform matrix

multiplication.
• Inspired by the low intrinsic dimension assumption, hypothesize that the

update weights can also have a low intrinsic rank
• Pre-trained matrix to be update:

• Updated matrix

LoRA: Low-Rank Adaptation of Large
Language Models (Hu et. al, 2021)
• Reparametrize the updated weight with low-rank decomposition

• where A and B are low rank matrices

• For the hidden state of an input ,
• The updated hidden state is now

Applying LoRA to Transformers

• In principle, LoRA can be applied to any weight matrices in deep
learning
• In this study, they focus on applying LoRA to attention matrices in

Transformers
• r ranges from 2 to 64
• For GPT3-175B
• VRAM: 1.2TB -> 350GB
• Checkpoint storage: 350GB -> 35MB (10000x smaller)

Comparison with Other Fine-Tuning Methods

• LoRA outperforms several baselines with comparable or fewer
trainable parameters.

Which Matrices Should We Apply LoRA to?

• Putting all the parameters in or results in significantly
lower performance, while adapting both and yields a good
result.

Optimal Rank for LoRA

• r = 4 and r = 8 already give a good result, and increasing r does not
cover more meaningful subspaces

Content

• Addition-based Methods
• Prompt Tuning
• Prefix Tuning

• Specification-based Methods
• Adapters

• Reparameterization-based Methods
• LoRA

• Summary and Comparison of the Methods

Summary of Parameter-Efficient Fine-Tuning

• Vanilla Fine-Tuning

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Summary of Parameter-Efficient Fine-Tuning

• Prompt-Tuning

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Summary of Parameter-Efficient Fine-Tuning

• Prefix-Tuning

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Summary of Parameter-Efficient Fine-Tuning

• LoRA

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Summary of Parameter-Efficient Fine-Tuning

• Adapters

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Performance Comparison on Various NLP Tasks
• If you have enough data and computing resources:
• Overall performance (on T5-base): Full fine-tuning > LoRA > Adapters

> Prefix Tuning > Prompt Tuning

Delta Tuning: A
Comprehensive Study
of Parameter Efficient
Methods for Pre-
trained Language
Models (Ding et. al,
2023)

Discussion Question

• Suppose you have two tasks, and you want to use multi-task prompt
tuning to train a soft prompt for each of them.
• (a) Prepend task 1(or 2) prompt when training on task 1(or 2) data
• (b) Prepend task 1 and task 2 prompt together when training on all task

data
• Which one works better? (Hint: different conditions lead to different

answers)

