T
x5

Washington
University in St.Louis

JAMES MCKELVEY
SCHOOL OF ENGINEERING

CSE 561A: Large Language
Models

Spring 2024

Lecture 5: Parameter-Efficient Fine-Tuning

Jiaxin Huang

Course Announcements

* Next lecture will be student-presentation lecture
* Presentation Duration: 30-35 min

* Preview question form for the first student presentation will be sent
out today (required to submit 3 times during the semester)

* The second student presentation lecture is on next Tuesday (Feb.6t")

* Presenters (on Feb.6'™) please send your slides to me (cc the TAs)
before Friday 12:00PM (Feb.2"9)

Background: Vanilla Fine-tuning

 Attach a task-specific layer to the last layer
of the pre-trained transformer output

) Labeled training set
e Update the weights of all the parameters by | -
backpropagating gradients on a downstream
tas k Pretrained
E;izsl 5 B-PER 0 transformer
— s < S Update
O BEEB (¢][= l all layers
BERT BERT
EEl EelE) @ |[R]e]s] - (& /
Ko el Ny o —— One or more g
[wa](] - [=])[en][] [] ([CLS]] Tok1 || Tok2 Tok N

I fully connected layers

Sentence 1 Sentence 2 Single Sentence

(a) Sentence Pair Classification Tasks: (d) Single Sentence Tagging Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, CoNLL-2003 NER
RTE, SWAG

Background: Prompting

* Prompting a language model with a natural description of the task,
and possibly several few-shot examples. No gradient updates.

Translate English to French: task description
cheese => prompt
Translate English to French: task description
sea otter => loutre de mer examples

peppermint => menthe poivrée
plush girafe => girafe peluche

cheese => prompt

Vanilla Fine-Tuning vs. Prompting

* Vanilla fine-tuning
* Pros: Can utilize more training data
* Pros: Lead to stronger performance with more training data
e Cons: Computationally expensive to train the complete network
* Cons: Need to store a full set of model weights per task

* Prompting
* Pros: Training-data efficient
* Pros: Computational efficient
e Cons: Performance depends on prompts and examples
* Cons: Finding a good prompt could be challenging

Parameter-Efficient Fine-Tuning

e Rather than fine-tuning the parameters in the entire model, only fine-
tune a small set of weights.

e Addition: add a small external network for each task
* Prompt-based Methods
* Adapter-based Methods
* Reparameterization: reparametrize the model parameter to be more efficient
for training
 LoRA

Content

* Prompt-based Methods
* Prompt Tuning
* Prefix Tuning

* Adapter-based Methods
* Adapters

* Reparameterization-based Methods
* LoRA

 Summary and Comparison of the Methods

Prompt Engineering

* Paraphrasing the task instruction
* Adding detailed examples

* For each new task, search over the
possible sequence space to find
the prompt with the best output
performance. -> computationally
expensive!

e Can we use a set of parameters to
replace these prompts and train
them with labeled sets?

Pre-trained Language Model

Translate

cheese =>

Translate

sea otter

cheese =>

Translate

sea otter

|

English to French: task description
prompt
English to French: task description
=> loutre de mer example
prompt
English to French: task description
=> loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese =>

prompt

Prompt-Tuning
* Prepend a sequence of tokens as tunable embeddings to the input

data (as soft prompts)

* freeze the whole Transformer model during training, and only tune
the prepended soft prompts

* Only a small set of parameters need to be stored for each task

Model Tuning Prompt Tuning Prompt Design
(a.k.a. “Fine-Tuning”) (Ours) (e.g. GPT-3)
| Pre-trained Model | Pre-trained Model | Pre-trained Model |
Tunable & # Frozen = # Frozen #*

L ool [T[] lfeelee] [[[[[]]

v J — — I“‘—-\',-—"’ N Y J

Input Text Tunable Soft Input Text Engineered Input Text
Prompt Prompt

The Power of Scale for Parameter-Efficient
Prompt Tuning (Lester et. al, 2021)

* Prompt-tuning becomes more effective when the pre-trained
model becomes larger

* Larger models perform well even with a small number of prompt
tokens

—=®- Model Tuning —=H~- Prompt Design 100
Model Tuning (Multi-task) —x— Prompt Tuning -a- 1
100 =5
90 20 x
—x— 100 <
90 * o -~ 150 m
o 80 X
5 w S
2 80
) = 70
L / / (!2
-} Q
5 " s : -
o x
a +
/ /
60] 50 gt
/ 10 10 10
50 Model Parameters
10° 1010 101!

Model Parameters (a) Prompt length

The Power of Scale for Parameter-Efficient
Prompt Tuning (Lester et. al, 2021)

* Initializing prompt tokens with real tokens in vocabulary is helpful

SuperGLUE Score

Model Parameters

(b) Prompt initialization

e Similar with prompt-tuning,
except that the soft prompt
tokens are prepended to each
layer in the Transformer
instead of just the input layer.

Prefix-Tuning: Optimizing Continuous Prompts
for Generation (Li et. al, 2021)

Fine-tuning

Transformer (Translation)
F EH B B = == = = ==

Transformer (Summarization)
= [1 [1 [1 [1 Il =N =

Transformer (Table-to-text)

NNl

name Starbucks type coffee shop [SEP] Starbucks serves coffee

(-rrl:,:'ggit)i(on) Input (table-to-text) Output (table-to-text)
- - -
Prefix Prefix-tuning

(Summarization)

Prefix

(Table-to-text) Transformer (Pretrained)

NIRRT

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Experiments on Text Generation

* Prefix-tuning works better than fine-tuning under low-data settings.

Source

name : The Eagle | type : coffee shop | food : Chinese | price : cheap | customer
rating : average | area : riverside | family friendly : no | near : Burger King

Prefix (50)
Prefix (100)

Prefix (200)

Prefix (500)

The Eagle is a cheap Chinese coffee shop located near Burger King.

The Eagle is a cheap coffee shop located in the riverside near Burger King. It
has average customer ratings.

The Eagle is a cheap Chinese coffee shop located in the riverside area near
Burger King. It has average customer ratings.

The Eagle is a coffee shop that serves Chinese food. It is located in the riverside
area near Burger King. It has an average customer rating and is not family
friendly.

FT (50)
FT (100)

FT (200)

FT (500)

The Eagle coffee shop is located in the riverside area near Burger King.

The Eagle is a cheap coffee shop near Burger King in the riverside area. It has
a low customer rating and is not family friendly.

The Eagle is a cheap Chinese coffee shop with a low customer rating. It is
located near Burger King in the riverside area.

The Eagle is a cheap Chinese coffee shop with average customer ratings. It is
located in the riverside area near Burger King.

rouge-1

-

method
—— FT

—e— PT

/ method
—— FT

100 200 300 400 500

training_data_size

" 4

—e— PT

BLEU

method

—— FT

PT

—

y—

100 200 300 400 500

training_data_size

ROUGE

/ method

100 200 300 400 500

training_data_size

—

—— FT

—e— PT

100 200 300 400 500

training_data_size

Prefix Length

20.5 s 35 s 0.480
»

S 20.01 ¥ _35_0: -0.475
0 2 2
3 195 -34.53 -0.470F
& «— ROUGE-2 &

19.0 +— ROUGE-L [34.0 [0.465

18.5 335

0.460
0 100 200 300 0 10 20 30 40
Prefix Length (XSUM) Prefix Length (DART)

* Performance increases as the prefix length increases up to athreshold
(200 for summarization and 10 for table-to-text) and then a slight
performance drop occurs.

Prefix Initialization

 Random initialization leads to low
performance with high variance.

* Initializing the prefix with real
words significantly improves
generation, as shown in Figure5.

* Initializing with task relevant
words such as “summarization”
and “table-to-text” obtains
slightly better performance than
task irrelevant words such as
“elephant” and “divide”.

SEELLNTRY

0.50

BLEU
—
—

0.45
¢

1€ erliand ik (10€ eef
At e a0 peattT g ke
\ " ‘a

Figure 5: Initializing the prefix with activations of real
words significantly outperforms random initialization,
in low-data settings.

Issues with Prompt/Prefix-Tuning

* Optimal prefix length may be different for tasks

* The prefix occupies the length of your input context to the
Transformer

Content

 Addition-based Methods

* Prompt Tuning
* Prefix Tuning

* Adapter-based Methods
* Adapters

* Reparameterization-based Methods
* LoRA

 Summary and Comparison of the Methods

What are Adapters?

* Vanilla fine-tuning can be seen as adding an extra layer to the top of a
Transformer

* Adapter modules perform more general architectural modifications:
injecting new layers/modules into the original network.

* During training, the original network weights are untouched, only the
adapter weights are updated.

Parameter-Efficient Transfer Learning for NLP
(Houlsby et. al, 2019)

* Adding adapter layers to each PO S . [R .
transformer layer: after the [Laeem] e k

self-attention layer and the L 1 Q00000
feed-forward layer i i [Fecdonans
E [2x Felead-(fa(:nNard] i | | UP-D:OJeCt J
* Adapter modules have two ; y A
main features o [(wertom] |
* a small number of parameters (+) | i O.O
* a near-identity initialization . [Feer] [eSS J
* Only adapter layers and the (Ml:ttiéi?;ied) OO o"o 007 |
final classification layer is N ,/ RN S—— -

updated during training

Comparison with Fine-Tuning

* Adapter-based tuning achieves a similar performance to full fine-
tuning with several orders of magnitude fewer trained parameters.

GLUE (BERTLARGE) Additional Tasks (BERTB ASE)
5 3
0+ . - 2
. M S .
> S
= = 14
8 77 S
g g 0 ___/\ ./'m
5 10 >
© s 1
3 -15 3 5
O O
< <
-20 e—e Adapters - —34|" Adapters
=—a Fine-tune top layers =—=a Fine-tune top layers
_25 LERLELELILE) | v LA LI | v LB ELELILE) | ' UL L L L LA _4 ' ' LA LI | T ' LENLEELEL LI | ' ' LENELENL LI |
10° 10° 10’ 108 10° 10° 10° 10’ 108

Num trainable parameters / task Num trainable parameters / task

Pros and Cons of Adapter-based Methods

* Pros:
* Empirically very effective in multi-task settings
* Computationally efficient compared to full fine-tuning

* Cons:
* Adding in new layers makes the model slower during inference time
* Make the model size larger

Content

 Addition-based Methods

* Prompt Tuning
* Prefix Tuning

 Specification-based Methods
* Adapters

* Reparameterization-based Methods
* LoRA

 Summary and Comparison of the Methods

Intrinsic Dimension

* An objective function’s intrinsic dimension measures the minimum
number of parameters needed to reach a satisfactory solution to the

objective.

 Alternatively, the intrinsic dimension represents the lowest
dimensional subspace in which one can optimize the original
objective function to within a certain level of approximation error.

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. Aghajanyan et. al, 2020.

Intrinsic Dimension

* Let B be the parameters of a model

e Instead of optimizing 87, the subspace method optimizes 8¢ in a
lower dimensional space

6P =oP + P(p%) P :R? — RP
* P is often a linear projection:
P =05 +0°M
* Fine-tuning tasks have a low intrinsic dimension: the number of

parameters to be modified are several orders of magnitude less than
the the full parameterization of the pre-trained model.

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. Aghajanyan et. al, 2020.

L 0RA: Low-Rank Adaptation of Large
language Models (Hu et. al, 2021)

* A neural network contains many dense layers which perform matrix
multiplication.

* Inspired by the low intrinsic dimension assumption, hypothesize that the
update weights can also have a low intrinsic rank

hl I

* Pre-trained matrix to be update: ZERE
WO c Rka Pretrained

Weights

* Updated matrix
Wo + AW

L 0RA: Low-Rank Adaptation of Large
language Models (Hu et. al, 2021)

* Reparametrize the updated weight with low-rank decomposition

Wo+ AW = W, + BA

e where A and B are low rank matrices

A€ R™*k B ¢ Raxr

* For the hidden state h of aninput & , h = Wyx | diaud
Weights

* The updated hidden state is now

h=Wor+ AWx = Woxr + BAx

Applying LoRA to Transformers

* In principle, LoRA can be applied to any weight matrices in deep
learning

* In this study, they focus on applying LoRA to attention matrices in
Transformers

* r ranges from 2 to 64

* For GPT3-175B

 VRAM: 1.2TB -> 350GB

e Checkpoint storage: 350GB -> 35MB (10000x smaller)

Comparison with Other Fine-Tuning Methods

Trainable | WikiSQL MNLI-m SAMSum
Model&Method Parameters | Acc. (%) Acc. (%) R1/R2/RL
GPT-3 (FT) 175,255.8M 73.8 89.5 52.0/28.0/44.5
GPT-3 (BitFit) 14.2M 71.3 91.0 51.3/27.4/43.5
GPT-3 (PreEmbed) 3.2M 63.1 88.6 48.3/24.2/40.5
GPT-3 (PreLayer) 20.2M 70.1 89.5 50.8/27.3/43.5
GPT-3 (AdapterH) 7.1M 71.9 89.8 53.0/28.9/44 .8
GPT-3 (AdapterH) 40.1M 73.2 91.5 53.2/29.0/45.1
GPT-3 (LoRA) 4. TM 73.4 91.7 53.8/29.8/45.9
GPT-3 (LoRA) 37.TM 74.0 91.6 53.4/29.2/45.1

* LoRA outperforms several baselines with comparable or fewer
trainable parameters.

Which Matrices Should We Apply LoRA to?

of Trainable Parameters = 18M

Weight Type
Rank r

Wq Wk Wv Wo an Wk an Wv an Wka an Wo

WikiSQL (£0.5%)
MultiNLI (40.1%)

§ 8 8 8 4 4 2
704 700 73.0 732 714 73.7 73.7
91.0 90.8 91.0 913 91.3 91.3 91.7

* Putting all the parameters in AW, or AW} results in significantly
lower performance, while adapting both W, and W, yields a good

result.

Optimal Rank for LoRA

* r=4 and r = 8 already give a good result, and increasing r does not
cover more meaningful subspaces

Weight Type r=1 r=2 r=4 r=8 r=64
. W, 688 696 705 704 700
WikiSQL(=0.5%) W, W, 734 733 737 7138 7135
W We, Wo, W, | 741 737 740 740 739
W, 90.7 909 911 907 907
MultiNLI (£0.1%) W, W, 013 914 913 916 914
Wy WeWo, W, | 912 917 917 915 914

Content

 Addition-based Methods

* Prompt Tuning
* Prefix Tuning

 Specification-based Methods
* Adapters

* Reparameterization-based Methods
* LoRA

 Summary and Comparison of the Methods

Summary of Parameter-Efficient Fine-Tuning

* Vanilla Fine-Tuning

h’

[CLS]

=

S Classifier
- & & & & Head
& = = = =

S — g —_ — % —_ — %, 2 —

S -9 . . =

= = 2 = =8

g R Cf% ——— —_— & — — & oo E —

a =

) % 9 5 &

s — *g R ——— —_— ‘é ——— —_— be E ——

i} o |

g - i (S Z

= s

(4]

«

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Summary of Parameter-Efficient Fine-Tuning

* Prompt-Tuning

.
- — — —
Prefix Embedding
- . — — 5 - —
—_— I o
.- - —: i —
= =- = ‘
— |[BOS] . 73 : :
'8 —_— o —> — 8 —_— — & e e —>
-
2] 5. = = -
e @ & & &
"g = _— & S —_— e R — _ e e e
;—.: 0% [() Z
® —_— - — —_— S _— —_—
&
g
—_— —— e —— —_ —_—

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Summary of Parameter-Efficient Fine-Tuning

* Prefix-Tuning
[BOS] H H H

-
s,
17,]
2 — —_— —_— —_— N §_>
7 = =
: 5 5 2 £
-
S — T — — 4 — — @4 4 —
& & =) S
bt o] =1 =}
< = = = 2
g—»g—» — 8 — — & e 5 —
-
® = £ - e
8 C , 5 , L3 s —
5 [| g g g

L }
(=) [y () Z
5
< @ — — _— — —_ —

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Summary of Parameter-Efficient Fine-Tuning

* LoRA Q‘B

Feed-Forward -

SRS N
[Nonlinearity } \

¢ } A layers

Feed-Forward
Up-Project

T
|

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Summary of Parameter-Efficient Fine-Tuning

A W=h+Ah
4 3 h 3
: Adapter +)——
° Ad 3 pte rs Layer Norm : L
1 {—:—Sklp
o ' Ah[’ ' Connection
> Adapter E Feed-Forward E
& i Up-Project :
2 Feed-Forward E :
@ A '
& I ' Nonlinearity
= Layer Norm : |
g
2
8
[+
a

Adapter : Feed-Forward
: Down-Project

‘ Multi-Headed | !
]]
Attention ' h [l . _Hidden
T : i Representation

[g g g g

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/

Performance Comparison on Various NLP Tasks

* If you have enough data and computing resources:

* Overall performance (on T5-base): Full fine-tuning > LoRA > Adapters
> Prefix Tuning > Prompt Tuning

0.99 acronym |dent|;<;at|on 0.97 ag_news
et J
#
0.94 /jf\\/\/\/ /w o 0.92 il o
v V4 v
= 0.89 © 0.88 _/ 5
— PF a — PF @
© ©
— AP — AP
LR LR
0.79 100 200 400 800 1600 3200 6400 12800 25600 0.79 100 400 800 1600
steps steps
| 12
0.97 as'g_pc

0.84

Delta Tuning: A
Comprehensive Study
of Parameter Efficient
Methods for Pre-
trained Language
Models (Ding et. al,
2023)

ACC

0.6

0.0 - : , : :
100 200 400 800 3200 6400 12800 25600

0.36—

0.72 f=—upp //:”'/M 0.72
- /ﬁﬂlv
= 0.48 /wfr/w‘

Discussion Question

* Suppose you have two tasks, and you want to use multi-task prompt
tuning to train a soft prompt for each of them.

* (a) Prepend task 1(or 2) prompt when training on task 1(or 2) data
* (b) Prepend task 1 and task 2 prompt together when training on all task

data
* Which one works better? (Hint: different conditions lead to different
answers)
A
A A

Transformer] ‘ J

i T i I I T [Transformer
Prompts; || Gc;ld | jumped | after | the | baﬁk Joon 1 \\ ' ?A \ TA y ?A
< o e | Prompts; |...[(Prompts, | Gold |jumped) after |+ - -

[Prompts, | Gold |jumped | after | the | bank]+« -

