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Course Announcements

• Next lecture will be student-presentation lecture
• Presentation Duration: 30-35 min
• Preview question form for the first student presentation will be sent 

out today (required to submit 3 times during the semester)
• The second student presentation lecture is on next Tuesday (Feb.6th)
• Presenters (on Feb.6th) please send your slides to me (cc the TAs) 

before Friday 12:00PM (Feb.2nd)



Background: Vanilla Fine-tuning
• Attach a task-specific layer to the last layer 

of the pre-trained transformer output 
• Update the weights of all the parameters by 

backpropagating gradients on a downstream 
task



Background: Prompting

• Prompting a language model with a natural description of the task, 
and possibly several few-shot examples. No gradient updates.



Vanilla Fine-Tuning vs. Prompting

• Vanilla fine-tuning
• Pros: Can utilize more training data
• Pros: Lead to stronger performance with more training data
• Cons: Computationally expensive to train the complete network
• Cons: Need to store a full set of model weights per task

• Prompting
• Pros: Training-data efficient
• Pros: Computational efficient
• Cons: Performance depends on prompts and examples
• Cons: Finding a good prompt could be challenging



Parameter-Efficient Fine-Tuning

• Rather than fine-tuning the parameters in the entire model, only fine-
tune a small set of weights.
• Addition: add a small external network for each task

• Prompt-based Methods
• Adapter-based Methods

• Reparameterization: reparametrize the model parameter to be more efficient 
for training
• LoRA
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Prompt Engineering

• Paraphrasing the task instruction
• Adding detailed examples
• For each new task, search over the 

possible sequence space to find 
the prompt with the best output 
performance. -> computationally 
expensive!
• Can we use a set of parameters to 

replace these prompts and train 
them with labeled sets?

Pre-trained Language Model



Prompt-Tuning
• Prepend a sequence of tokens as tunable embeddings to the input 

data (as soft prompts)
• freeze the whole Transformer model during training, and only tune 

the prepended soft prompts
• Only a small set of parameters need to be stored for each task



The Power of Scale for Parameter-Efficient 
Prompt Tuning (Lester et. al, 2021)
• Prompt-tuning becomes more effective when the pre-trained 

model becomes larger
• Larger models perform well even with a small number of prompt 

tokens



The Power of Scale for Parameter-Efficient 
Prompt Tuning (Lester et. al, 2021)

• Initializing prompt tokens with real tokens in vocabulary is helpful 



Prefix-Tuning: Optimizing Continuous Prompts 
for Generation (Li et. al, 2021)
• Similar with prompt-tuning, 

except that the soft prompt 
tokens are prepended to each 
layer in the Transformer 
instead of just the input layer.



Experiments on Text Generation

• Prefix-tuning works better than fine-tuning under low-data settings.



Prefix Length

• Performance increases as the prefix length increases up to athreshold
(200 for summarization and 10 for table-to-text) and then a slight 
performance drop occurs.



Prefix Initialization 

• Random initialization leads to low 
performance with high variance.
• Initializing the prefix with real 

words significantly improves 
generation, as shown in Figure5.
• Initializing with task relevant 

words such as “summarization” 
and “table-to-text” obtains 
slightly better performance than 
task irrelevant words such as 
“elephant” and “divide”.



Issues with Prompt/Prefix-Tuning

• Optimal prefix length may be different for tasks
• The prefix occupies the length of your input context to the 

Transformer
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What are Adapters?

• Vanilla fine-tuning can be seen as adding an extra layer to the top of a 
Transformer
• Adapter modules perform more general architectural modifications: 

injecting new layers/modules into the original network.
• During training, the original network weights are untouched, only the 

adapter weights are updated. 



Parameter-Efficient Transfer Learning for NLP 
(Houlsby et. al, 2019)
• Adding adapter layers to each 

transformer layer: after the 
self-attention layer and the 
feed-forward layer
• Adapter modules have two 

main features
• a small number of parameters
• a near-identity initialization

• Only adapter layers and the 
final classification layer is 
updated during training



Comparison with Fine-Tuning

• Adapter-based tuning achieves a similar performance to full fine-
tuning with several orders of magnitude fewer trained parameters.



Pros and Cons of Adapter-based Methods

• Pros:
• Empirically very effective in multi-task settings
• Computationally efficient compared to full fine-tuning

• Cons:
• Adding in new layers makes the model slower during inference time
• Make the model size larger
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Intrinsic Dimension

• An objective function’s intrinsic dimension measures the minimum 
number of parameters needed to reach a satisfactory solution to the 
objective. 
• Alternatively, the intrinsic dimension represents the lowest 

dimensional subspace in which one can optimize the original 
objective function to within a certain level of approximation error.

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. Aghajanyan et. al, 2020.



Intrinsic Dimension

• Let 𝜃! be the parameters of a model
• Instead of optimizing 𝜃!, the subspace method optimizes 𝜃" in a 

lower dimensional space

• P is often a linear projection:

• Fine-tuning tasks have a low intrinsic dimension: the number of 
parameters to be modified are several orders of magnitude less than 
the the full parameterization of the pre-trained model.

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. Aghajanyan et. al, 2020.



LoRA: Low-Rank Adaptation of Large 
Language Models (Hu et. al, 2021)
• A neural network contains many dense layers which perform matrix 

multiplication.
• Inspired by the low intrinsic dimension assumption, hypothesize that the 

update weights can also have a low intrinsic rank
• Pre-trained matrix to be update:

• Updated matrix 



LoRA: Low-Rank Adaptation of Large 
Language Models (Hu et. al, 2021)
• Reparametrize the updated weight with low-rank decomposition

• where A and B are low rank matrices

• For the hidden state      of an input       ,
• The updated hidden state is now 



Applying LoRA to Transformers

• In principle, LoRA can be applied to any weight matrices in deep 
learning
• In this study, they focus on applying LoRA to attention matrices in 

Transformers
• r ranges from 2 to 64
• For GPT3-175B
• VRAM: 1.2TB -> 350GB
• Checkpoint storage: 350GB -> 35MB (10000x smaller)



Comparison with Other Fine-Tuning Methods

• LoRA outperforms several baselines with comparable or fewer 
trainable parameters.



Which Matrices Should We Apply LoRA to?

• Putting all the parameters in             or            results in significantly 
lower performance, while adapting both          and         yields a good 
result.



Optimal Rank for LoRA

• r = 4 and r = 8 already give a good result, and increasing r does not 
cover more meaningful subspaces
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Summary of Parameter-Efficient Fine-Tuning

• Vanilla Fine-Tuning

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/



Summary of Parameter-Efficient Fine-Tuning

• Prompt-Tuning

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/



Summary of Parameter-Efficient Fine-Tuning

• Prefix-Tuning

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/



Summary of Parameter-Efficient Fine-Tuning

• LoRA

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/



Summary of Parameter-Efficient Fine-Tuning

• Adapters

Source: https://www.leewayhertz.com/parameter-efficient-fine-tuning/



Performance Comparison on Various NLP Tasks
• If you have enough data and computing resources:
• Overall performance (on T5-base): Full fine-tuning > LoRA > Adapters 

> Prefix Tuning > Prompt Tuning

Delta Tuning: A 
Comprehensive Study 
of Parameter Efficient 
Methods for Pre-
trained Language 
Models (Ding et. al, 
2023)



Discussion Question

• Suppose you have two tasks, and you want to use multi-task prompt 
tuning to train a soft prompt for each of them.
• (a) Prepend task 1(or 2) prompt when training on task 1(or 2) data
• (b) Prepend task 1 and task 2 prompt together when training on all task 

data
• Which one works better? (Hint: different conditions lead to different 

answers)


