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Abstract e
Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training %
on a large corpus of text followed by fine-tuning on a specmc task. While typically task-agnostic o~ Abstract
in architecture, this method still requires task-specific fine-tuning datasets of or tens of o
thousands of examples. By contrast, humans can generally Pe}‘fﬂm anew language task from only \D Scaling up language models has been shown to predictably improve performance and sample
a few examples or from simple instructions — something which current NLP systems still largely o efficiency on a wide range of downstream tasks. This paper instead discusses an unpredictable
struggle to do. Here we show that scaling up language models greatly \mpmves task-agnostic, (@) phenomenon that we refer to as emergent abilities of large language models. We consider an
few-shot performance, sometimes even reaching with prior state-of-the-art fine- I\l

ability to be emergent if it is not present in smaller models but is present in larger models.
Thus, emergent abilities cannot be predicted simply by extrapolating the performance of
smaller models. The existence of such emergence raises the question of whether additional
scaling could potentially further expand the range of capabilities of language models.

tuning approaches. Specifically, we train GPT-3, an autoregresslve language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified pure]y via text 1nteracuon with the model. GPT-3

arXiv

achieves strong performance on many NLP datasets, includi ti ing, and

cloze tasks, as well as several tasks that require on-the-fl ing or domam d. i such as

unscrambling words, using a novel word in a sentence, or performing 3-digit anlhmetxc At the same 1 Introduction

time, we also identify some datasets where GPT-3’s few-shot learning still struggles, as well as some

datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, L models have re ionized natural language processing (NLP) in recent years. It is now well-known
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty that increasing the scale of language models (e.g., training compute, model parameters, etc.) can lead to

distinguishing from articles written by humans. We discuss broader societal impacts of this finding

3 better performance and sample efficiency on a range of downstream NLP tasks (Devlin et al., 2019; Brown
and of GPT-3 in general.

et al., 2020, inter alia). In many cases, the effect of scale on performance can often be methodologically
licted via scaling 1 f le, scaling curves for cross-entropy loss have been shown to empirically

span more than seven orders of magnitude (Kaplan et al., 2020; Hoffmann et al., 2022). On the other hand,

performance for certain downstream tasks counterintuitively does not appear to continuously improve as a

“Equal contribution function of scale, and such tasks cannot be predicted ahead of time (Ganguli et al., 2022).

*Johns Hopkins University, OpenAl

In this paper, we will discuss the unpredictable phenomena of emergent abilities of large language models.
Author contributions listed at end of paper. Emergence as an idea has been long discussed in domains such as physics, biology, and computer science
(Anderson, 1972; Hwang et al., 2012; Forrest, 1990; Corradini & O’Connor, 2010; Harper & Lewis, 2012, inter
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GPT-3 Pre-training — Architecture

Model Name Nparams Mayers @model Mheads Jhead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 104
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 1074
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-36.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

The GPT-3 models are family of decoder-only LMs using the architecture above.



GPT-3 Pre-training — Training Data

Quantity Weight in Epochs elapsed when
training for 300B tokens

Dataset (tokens)  training mix

Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets

are seen less than once.

GPT-3 was trained on 300 billion tokens drawn from the distribution above.



GPT-3 Pre-training — Training Objective
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GPT-3 Pre-training — Training Curves

GPT-3 Training Curves
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Figure 4.1: GPT-3 Training Curves We measure model performance during training on a deduplicated validation
split of our training distribution. Though there is some gap between training and validation performance, the gap grows
only minimally with model size and training time, suggesting that most of the gap comes from a difference in difficulty
rather than overfitting.

GPT-3’s training and validation loss declines steadily as the training elapses.



GPT-3 Pre-training — Compute and Scaling Laws
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Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models Fig_ure. 3.1: Smooth scaling of perfonnanc_e with compute. Performance (meas.ur.ed in terms of Cross-entropy
[KMH*20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute observed in [KMH "20] continues for an additional two orders of magnitude with only small deviations from the
during pre-training. Methodology for these calculations can be found in Appendix D. predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.

GPT-3 required a lot of compute to train, and it’s performance follows a power-law
trend with the amount of compute used.
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Fine-tuning Learning Paradigm

e Limitations

o For many tasks, it's can be difficult to collect a large
dataset of labeled examples.

o  Expressive, larger models tend to generalize poorly to
downstream tasks.

o Prevents LLMs from being easily adaptable to new tasks.

o  Compute-intensive to train as model size increases.

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N

cheese => prompt



In-context learning — Overview

Meta-learning: Develop a broad set of skills and pattern
recognition abilities during training, then use those

abilities during inference to adapt to the desired task.

In-context Leaning: Using the text input, condition the
LM on natural-language instructions and/or a few

demonstrations.

< Number of In-context Examples (k)

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt



In-context learning — Bayesian Inference View

Signal for Bayesian inference

Input distribution Output space
| Circulation revenue has increased by 5% in Finland. \n Neutral |
| Panostaja did not disclose the purchase price. \n Negative J Format

| Paying off the national debt will be extremely painful. \n Positive |

/nput—@u«@pping

Random outputs add noise,
but doesn’t remove all signals
for Bayesian inference

p(output|prompt) = / p(output|concept, prompt)p(concept|prompt)d(concept)

concept

Graphic: http://ai.stanford.edu/blog/understanding-incontext/



In-context Learning and Scale
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Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate

improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

Efficient use of in-context examples improves with model scale.
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GPT-3 Performance — Aggregate
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Figure 1.3: Aggregate performance for all 42 accuracy-denominated benchmarks While zero-shot performance

improves steadily with model size, few-shot performance increases more rapidly, demonstrating that larger models are
more proficient at in-context learning. See Figure 3.8 for a more detailed analysis on SuperGLUE, a standard NLP

benchmark suite.

GPT-3 exhibits strong performance across many benchmark tasks, and
performance increases with model scale.



GPT-3 Performance - Individual Tasks
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Figure 3.3: On TriviaQA GPT3’s performance grows smoothly with model size, suggesting that language models
continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains
over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG
[LPP+20]
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Figure 3.9: Performance of GPT-3 on ANLI Round 3. Results are on the dev-set, which has only 1500 examples
and therefore has high variance (we estimate a standard deviation of 1.2%). We find that smaller models hover around
random chance, while few-shot GPT-3 175B closes almost half the gap from random chance to SOTA. Results for
ANLI rounds 1 and 2 are shown in the appendix.

On some tasks, GPT-3 is able to outperform the Fine-tuned SOTA baseline, but on

others, it doesn’t come close.



GPT-3 Generates Human-like Text

Title: United Methodists Agree to Historic Split
Subtitle: Those who oppose gay marriage will form their own denomination

Article: After two days of intense debate, the United Methodist Church has agreed to a
historic split - one that is expected to end in the creation of a new denomination, one that will
be "theologically and socially conservative," according to The Washington Post. The majority
of delegates attending the church's annual General Conference in May voted to strengthen
a ban on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy
who officiate at same-sex weddings. But those who opposed these measures have a new
plan: They say they will form a separate denomination by 2020, calling their church the
Christian Methodist denomination.

The Post notes that the denomination, which claims 12.5 million members, was n the early
20th century the "largest Protestant denomination in the U.S.," but that it has been shrinking
in recent decades. The new split will be the second in the church's history. The first occurred
in 1968, when roughly 10 percent of the denomination left to form the Evangelical United
Brethren Church. The Post notes that the proposed split "comes at a critical time for the
church, which has been losing members for years," which has been "pushed toward the
brink of a schism over the role of LGBTQ people in the church." Gay marriage is not the only
issue that has divided the church. In 2016, the denomination was split over ordination of
transgender clergy, with the North Pacific regional conference voting to ban them from
serving as clergy, and the South Pacific regional conference voting to allow them

Only 12% of human rates correctly identified this text as Al generated.



GPT-3 Generates Human-like Text

Human ability to detect model generated news articles
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line at the top, and the random chance (50%) is indicated with the dashed line at the bottom. Line of best fit is a power
law with 95% confidence intervals.

Human rates have a hard time detecting GPT-3 generated text. This becomes
increasingly difficult with model scale.



GPT-3 Exhibits Bias

Sentiment Across Models

Table 6.1: Most Biased Descriptive Words in 175B Model 40 i
Top 10 Most Biased Male Descriptive Words with Raw  Top 10 Most Biased Female Descriptive Words with Raw 30 A Bla.ck
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17. 23 ]
2 39. — E Middle eastern
Large (16) Optimistic (12) o
Mostly (15) Bubbly (12) @ 104
Lazy (14) Naughty (12) £
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Eccentric (13) Petite (10) w07
Protect (10) Tight (10)
Jolly (10) Pregnant (10) ~104
Stable (9) Gorgeous (28)
Personable (22) Sucked (8)
Survive (7) Beautiful (158) -20

350M 760M 1.3B 2.7B 6.7B 13B 175B
Model Size

Figure 6.1: Racial Sentiment Across Models

GPT-3 exhibits bias with respect to gender and race, which narrows slightly as
model size increases.



GPT-3 Contamination of Evaluation Data
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Figure 4.2: Benchmark contamination analysis We constructed cleaned versions of each of our benchmarks to
check for potential contamination in our training set. The x-axis is a conservative lower bound for how much of the
dataset is known with high confidence to be clean, and the y-axis shows the difference in performance when evaluating
only on the verified clean subset. Performance on most benchmarks changed negligibly, but some were flagged for
further review. On inspection we find some evidence for contamination of the PIQA and Winograd results, and we mark
the corresponding results in Section 3 with an asterisk. We find no evidence that other benchmarks are affected.

On the majority of evaluation tasks, removing possibly contaminated instances
during evaluation has little to no impact.
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Emergent Abilities — Background
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Figure 1: Trend of sizes of state-of-the-art NLP models with time.

LLMs have been increasing in scale over time.

Graphic: Smith, et al.



Emergent Abilities — Overview

An ability is emergent if it is not present in smaller models but is present in larger
models.

Zero-shot One-shot Few-shot

175B Params

Natural Language
Prompt

\
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No Prompt
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Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.



Emergent Abilities — Additional Models
e LaMDA (Google)

o  Afamily of pre-trained decoder-only LLMs ranging in size from 2B to 137B parameters
o LaMDA was designed as a language model for dialogue applications
m It's pre-training dataset consists of 1.56T words from 2.97B documents, 1.12B dialogs,
and 13.39B dialog utterances

e Gopher (DeepMind)
o  Afamily of pre-trained decoder-only LLMs ranging in size from 44M to 280B parameters
o Gopher was trained on 300B tokens from MassiveText, a collection of English text datasets
from web pages, books, news articles, and code.



Emergent Abilities — Additional Models

e Chinchilla (DeepMind)
o DeepMind trained 400 LMs from 70M to 16B parameters on 5B to 500B tokens
m Found that training data size should scale with model size
o  Chinchilla is a 70B parameter model, trained on 4x the data of Gopher (1.4 Trillion tokens),
and consistently and significantly outperforms Gopher.

e PalLM (Google)

o Inan attempt to understand the impact of scaling on few-shot performance, Google trained
8B, 62B, and 540B parameter decoder-only models on 780B tokens.
o Evaluation suggest that the improvements from scale on few-shot learning as yet to plateau
m PalLM (5-shot) outperforms humans on average, across 150+ tasks in BIG-bench



Emergent Abilities — In-context Learning

—o— LaMDA —=— GPT-3 —4— Gopher —A— Chinchilla —@— PaLM

- - - Random

(A) Mod. arithmetic
50

Accuracy (%)
[~ w -
[==} (=} o

=
(=]

0F

(B) IPA transliterate
50

40
30
20

BLEU (%)

10

0F

1018 1020 1022 1024

(E) TruthfulQA

1020 10%2

1024

1018 1020 1022 1024

(F) Grounded mappings

(C) Word unscramble
50

'
(=}

20
10 »
0 | -*—omesst®®_ _ __

1018 1020 1022 1024

Exact match (%)

(G) Multi-task NLU

(D) Persian QA

[ Y >Al
o o o O

Exact match (%)
S

0

108 102 1022 1024

(H) Word in context

70 70 70
60 60
¥ 50 X 50 f - - -
B 40 B 40
Q Q
£330 £ 30
3 20 3 20
< <
10 10
0 0 L O L L L
1020 1022 10%* 1020 1022 102 1020 1022 1024

Model scale (training FLOPs)

The ability to perform a task via in-context learning is emergent.



Emergent Abilities — Additional Abilities
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Figure 3: Specialized prompting or finetuning methods can be emergent in that they do not have a positive
effect until a certain model scale. A: Wei et al. (2022b). B: Wei et al. (2022a). C: Nye et al. (2021). D:
Kadavath et al. (2022). An analogous figure with number of parameters on the z-axis instead of training
FLOPs is given in Figure 12. The model shown in A-C is LaMDA (Thoppilan et al., 2022), and the model

shown in D is from Anthropic.

Other abilities show evidence of being emergent at certain levels of compute.



Emergent Abilities — Other Compute Measures
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Figure 4: Top row: the relationships between training FLOPs, model parameters, and perplexity (ppl) on
WikiText103 (Merity et al., 2016) for Chinchilla and Gopher. Bottom row: Overall performance on the
massively multi-task language understanding benchmark (MMLU; Hendrycks et al., 2021a) as a function of
training FLOPs, model parameters, and WikiText103 perplexity.

Emergent abilities still appear when use other measures of model scale.



Emergent Abilities — Possible Explanations

e A problem that requires N sequential steps to solve may require a model with
>= N layers.

e More parameters and more training enable better memorization, which can
help be helpful on closed-book question-answering tasks.

e All-or-nothing metrics (exact string match, etc.) could hide incremental
improvements.

The mechanism behind emergent abilities remains an open research question.



Emergent Abilities — Possible Explanations
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Emergent Abilities — Possible Explanations
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Emergent abilities of large language models are created by the researcher’s chosen

metrics, not unpredictable changes in model behavior with scale.
Graphic: Schaeffer, et al.



