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Rationales can improve LLM performance
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Current issues with rationale generation

• Construction of a fine-tuning dataset of rationales
• Manually by human annotators

• Expensive
• Infeasible to construct for each problem

• Automatically with hand-crafted templates
• Only work when a general solution is already known

• Leverage in-context learning by including only a few rationale 
examples in the language model prompt
• Underperform models fin-tuned to directly predict answers using large 

datasets

3



Theme: Leverage LLM output to reduce 
human input
• STaR: Self-Taught Reasoner Bootstrapping Reasoning with 

Reasoning

• Large Language Models can Self-Improve
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Self-Taught Reasoner (STaR)
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Two steps for the method

• Rationale Generation Bootstrapping
• Rationalization
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Two steps for the method

• Rationale Generation Bootstrapping
• Pretrained LLM M, dataset D = {(xi, yi)}!"#

$

• P = {(𝑥!
%,𝑟!

%𝑦!
%)}!"#

& , where P ≪D (e.g. P = 10) 
• Produce rationale 𝑟! for each 𝑥!
• Filter the generated rationales to include only the ones which result in 

correct answer
• Fine-tune M on filtered rationales

• Rationalization
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Two steps for the method

• Rationale Generation Bootstrapping
• Rationalization 
• Improvement from bootstrap plateaus 
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Two steps for the method

• Rationale Generation Bootstrapping
• Rationalization
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Experiments Set Up and Datasets

• GPT-J (6B-parameter model)
• Large enough to generate rationales of non-trivial quality to be 

bootstrapped from

• Arithmetic
• CommonsenseQA
• Grade School Math (GSM8K)
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Experiments Set Up and Datasets

• GPT-J (6B-parameter model)
• Arithmetic
• Calculate the sum of two n-digit integers
• Everything up to and including “Target” in prompt
• Asked to generate the scratchpad
• Include few-shot prompts for 1-5 digits

• CommonsenseQA
• Grade School Math (GSM8K)
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Results: Symbolic Reasoning

12

• Without iterations, few-shot accuracy on arithmetic problems is 
less than 1% even with rationales



Experiments Set Up and Datasets

• CommonsenseQA
• Diverse set of questions which require commonsense reasoning ability
• Multiple choice questions with 20% by chance
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Results: Natural Language Reasoning
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• STaR without rationalization outperformed GPT-J fine-tuned 
despite less training data
• Inclusion of rationalization performed close to 30x larger GPT-3



Results: Natural Language Reasoning
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• STaR improve CQA rationale quality
• Crowdworkers rank STaR-generated rationales higher than the few-shot 

rationales 



Results: Natural Language Reasoning
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• STaR improve CQA rationale quality
• Crowdworkers rank STaR-generated rationales higher than the few-shot 

rationales 

• Failure cases
• Standard logical fallacies



Experiments Set Up and Datasets

• Mathematical reasoning in language 
• Grade School Math (GSM8L) dataset
• Posed in natural language and require two to eight calculation steps
• Combines the skills needed for arithmetic and commonsense reasoning
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Results: Mathematical Reasoning in Language
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Summary

• Proposed a bootstrapping mechanism to iteratively generate a 
rationale dataset from a few initial examples with rationales—
without needing to check new rationales’ correctness 
• Complemented rationale generation with rationalization, where a 

model is tasked with justifying an answer and then fine-tuned as if 
it had come up with the rationale without any hint. It is shown 
rationalization accelerates and improves the bootstrapping 
process 
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Theme: Leverage LLM output to reduce 
human input
• STaR: Self-Taught Reasoner Bootstrapping Reasoning with 

Reasoning

• Large Language Models can Self-Improve
• This work is similar to Zelikman et al. (2022) where they both propose to fine-

tune a model on self-generated CoT data, but their method does not require 
ground truth labels and shows stronger empirical results with multi-task 
generalization. 
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Theme: Leverage LLM output to reduce 
human input
• Large Language Models can Self-Improve
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Large language model can improve itself
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Method

• Generate and filter multiple reasoning paths
• Train with mixed formats
• Generate questions and prompts
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Generate and filter multiple reasoning paths
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• For each training question xi, sample m CoT reasoning paths
• The most consistent answer is selected as yi
• The paths that leads to yi will be put into the self-training data



Generate and filter multiple reasoning paths

• Did not use any ground truth 
labels to filter out wrong cases
• Consistent CoT paths leads to 

accurate answers
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Train with mixed formats
• Prevent the language 

model from 
overfitting to specific 
prompts or answer 
styles
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Generating questions and prompts

• Question generation
• Randomly select existing questions
• Concatenate them in a random order as input prompt
• Let language model generate consecutive sequences as new questions
• Repeat and use self-consistency to keep confident answers

• Prompt generation
• Generate CoT paths using the model itself
• Start the answer with “A: Let’s think step by step”
• Let the language model generate the consecutive reasoning paths
• Use those as examples for few-shot CoT prompting
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Experiments set up and datasets
• PaLM (540B-parameter model)

• M = 32 reasoning path for each question in a training set
• Each reasoning path is augmented into 4 formats

• Arithmetic
• GSM8K – math problem set
• DROP – reading comprehension benchmark which requires numerical reasong

• CommonsenseQA
• OpenBookAQ
• AI2 Reasoning Challenge (ARC)

• Natural Language Inference
• Adversarial NIL subset
• ANLI-A2 and ANLI-A3, more challenging than ANLI-A1
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Results: Main results
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• Results before and after language model after self-improvement 
(LMSI)



Results: Out of Domain and CoT importance
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• Multi-task self-training for unseen tasks

• Importance of training with CoT formats



Push the limit of self-improvement
• Self-generating 

questions

• Self-generating few-
shot CoT prompt
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Distillation and hyperparameter study
• Distillation to 

smaller model

• Temperature T = 1.2 
benefits the datasets 
the most
• Sampled reasoning 

path = 15 to achieve 
a reasonably good 
accurarcy
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Summary

• A large language model can self-improve by taking datasets with-
out ground truth outputs, by leveraging CoT reasoning and self-
consistency 
• Achieved competitive in-domain multi-task performances as well 

as out-of-domain generalization
• Achieved state-of-the-art-level results on ARC, OpenBookQA, and ANLI 

datasets. 

33


