
CSE 561A: Large Language
Models

Fall 2025

Lecture 1: Course Overview

Jiaxin Huang

Content

• Course Logistics

• Covered Topics Preview

• Language Model Basics

Course Logistics

• Course meeting times: 2:30pm – 3:50pm Tuesday / Thursday

• Location: Jubel / 121

• TAs:
• Zheyuan Wu (w.zheyuan@wustl.edu)

• Isle Song (s.xiaodao@wustl.edu)

Course Logistics

• Course Syllabus: https://teapot123.github.io/CSE561A_2025fl/

• Canvas: https://wustl.instructure.com/courses/155129 (will be
published soon)

• We will be using Canvas for announcements, and project report
submissions, and Piazza for discussions.

https://teapot123.github.io/CSE561A_2025fl/
https://wustl.instructure.com/courses/155129

Course Structure

• Advanced Research-Oriented Course
• We will be teaching and discussing state-of-the-art research papers about large

language model architectures, training and inference.

• Students will choose papers from a list of frontier research papers
(https://teapot123.github.io/CSE561A_2025fl/) to present in the class

• Guest lectures on frontier research topics

• Warning on pre-requisites: Please be aware that this is a fast-paced, research-driven
course, not an introductory course to LLMs. The curriculum is tailored for advanced
students (PhD candidates) doing state-of-the-art LLM-related research.

• Students without a strong machine learning research background and understanding
of fundamental NLP concepts (sequence modeling, contextualized representation,
etc.) will find the pace and technical depth of the material exceptionally challenging.

https://teapot123.github.io/CSE561A_2025fl/

Grading

• 20% Class Participation
• Submit 1 preview question before each paper presentation class (every class

counts for 1 point)
• Guest Lecture

• 25% Paper Presentation

• 55% Final Project (Group with 2-3 students)
• 10% Project Proposal
• 10% Mid-term Report
• 10% Final Course Presentation (Zoom)
• 5% Feedbacks for other groups’ final project presentations
• 20% Final Project Report

Paper Presentation

• Starting from Week 3, each lecture will consist of one research topic of large language
models, with 4 state-of-the-art papers.

• Each lecture will be covered by three students, who are required to prepare a 60-min
presentation in class to cover 4 papers.
• Distribute the presentation among yourselves

• Suggestion: 15 min presentation + 1 min Q&A for each paper

• Sign-up sheet for picking out your presented paper will be released later this week.

• Remember to send over your slides to the instructor (and cc the TA) before your
presentation:
• For Tuesday classes, send over your slides before the previous Friday 12:00PM to both the

instructor (jiaxinh@wustl.edu) and Zheyuan (w.zheyuan@wustl.edu)

• For Thursday classes, send over your slides before the previous Monday 12:00PM to both the
instructor (jiaxinh@wustl.edu) and Isle (s.xiaodao@wustl.edu)

• Late submissions -> not well-prepared, point penalty

In Class Presentation

• How to present a paper?
• Think about the context of the research: introduce the background of the

research topic

• What is the challenge and contribution of this paper, given the research
background?

• The method: from framework to technical details

• What are some interesting experiment results and observations?

• What could be done in the future?

• Summarize the takeaways/highlights of this paper

In Class Presentation

• More tips to do presentations
• Get familiar with your material. Don't read scripts for the whole time.

• Make eye contact with audiences.

• Make your voice loud enough so that everyone can hear you clearly

• Please control your time (15min for each paper)! We will give you notice
when your time is nearly used up.

Preview Question Submission

• When it is not your turn to present, you need to preview the paper in
advance.

• Each student is required to submit 1 preview question for a paper one
day before the presentation. You are also encouraged to raise that
question in class.
• Preview questions cannot be simple ones like “what is the aim of the paper?”, or

“what is the difference between this and previous methods?”

Research Project

• Students need to form groups of 2-3 people to do a large language
model research project.

• Project proposal deadline: 9/15 11:59PM

• Midterm project report deadline: 10/20 11:59PM

• Final project presentation deadline: 12/1 11:59PM
• We will use two lectures for project presentation: 12/2, 12/4

• Final project slides deadline: 12/12 11:59PM

Research Project

• There are typically two types of projects.

• 1) Designing a novel algorithm to train a medium-sized language
model: BERT, GPT-2 for problems that you are interested in.
• Find open-weight models here: https://huggingface.co/models

• 2) Designing a novel algorithm to do inference on large language
models (Qwen, Llama, DeepSeek series, or GPT, Gemini, CLAUDE) to
solve some type of complex problems, and analyze their limitations.
(We may not be able to reimburse for the API costs)
• https://platform.openai.com/docs/introduction

• https://docs.anthropic.com/claude/reference/getting-started-with-the-api

https://huggingface.co/models
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api

Final Project Presentation

• Near the end of the semester, we will use 2 classes (12/2, 12/4) for
every group to present their projects via Zoom.

• Length of project presentation: 5-8min depending on the number of
groups

• Students will need to submit feedback scores for other groups’
presentation (through Google Form).

Content

• Course Logistics

• Covered Topics Preview

• Language Model Basics

Large Language Model Pre-training and Post-
training Framework

InstructGPT: Training language models to follow
instructions with human feedback. (Ouyang et. al, 2022)

Language Model Architectures (will be
covered in the next course)

Encoder Models Decoder Models Encoder-Decoder Models

Scaling Up Language Models
• Performance on validation set (cross entropy

loss on standard language modeling task)
follows a power-law trend with respect to
the amount of computation in training

Language Model Post-Training: Instruction
Tuning

Collecting from multiple public NLP
datasets
Training mixtures:

QA (Question Answering tasks),
structure-to-text,
summarization
Sentiment analysis, topic
classification, paraphrase
identification

Held-out test set:
Sentence completion, BIG-
Bench
Natural language inference,
coreference resolution, word
sense disambiguation

Language Model Post-Training: Reinforcement
Learning from Human Feedback

Topics: Language Model Reasoning

• Today’s LLMs can
solve very hard
math problems,
even those in
AIME’25.

Topics: Language Model Calibration

Topics: Efficient Fine-Tuning

Unsupervised/Self-supervised;
On large-scale general domain corpus

Task-specific supervision;
On target corpus

Efficient LLM Inference
• LLMs are computationally expensive

• Doing inference on a 7B LLM with full precision requires an 80GB GPU, and full-finetuning
can use 4x80GP GPUs!

• LLM computation and memory costs grow quadratically with sequence length

• Efficient inference algorithms are needed for real-time resource-constrained environments
such as mobile devices Language Model Self Attention

First
token

Last
token

First
token

Last
token

Query Vector

Key Vector

Topics: Multimodal Language Model

• Understand a combination of texts and images

Flamingo: a Visual Language Model for Few-Shot Learning. Jean-Baptiste Alayrac et al. NeurIPS 2022.

Topics: Bias of Language Models

• Different language models may have different political views.

Content

• Course Logistics

• Covered Topics Preview

• Language Model Basics

What are language models?

Language models

• The classic definition of a language model (LM) is a probability
distribution over each token sequence 𝑤1, 𝑤2, … , 𝑤𝑛 , whether it’s a
good or bad one.

• Sally fed my cat with meat: P(Sally, fed, my, cat, with, meat) = 0.03,

• My cat fed Sally with meat: P(my, cat, fed, Sally, with, meat) = 0.005,

• fed cat Sally meat my with: P(fed, cat, Sally, meat, my, with) = 0.0001

Autoregressive language models

• The chain rule of probability:

• P(Sally, fed, my, cat, with, meat) = P(Sally)

 * P(fed | Sally)

 * P(my | Sally, fed)

 * P(cat | Sally, fed, my)

 * P(with | Sally, fed, my, cat)

 * P(meat | Sally, fed, my, cat, with)

Sequence generation with language model

• If we already have a good language model, a given text prompt 𝑤 1:𝑛 ,
and we want to generate a good sentence completion with the length
of L: How to find 𝑤 𝑛+1:𝑛+𝐿 ?

• Enumerate over all possible combinations to find the highest
probability?

• Next token prediction: generating the next token step by step,
starting from 𝑤𝑛+1 using 𝑝 𝑤𝑛+1 𝑤 1:𝑛

• To select the next token with 𝑝 𝑤𝑛+1 𝑤 1:𝑛 , there are also different
decoding approaches.

Different Decoding Approaches

• Greedy decoding: At each step, always select 𝑤𝑡 with the highest
𝑝 𝑤𝑡 𝑤 1:𝑡−1 .

• Beam Search: Keep track of k possible paths at each step instead of
just one. Reasonable beam size k: 5-10 .

Different Decoding Approaches

• Top-k sampling: At each step, randomly sample the
next token from 𝑝 𝑤𝑡 𝑤 1:𝑡−1 , but restrict to only
the k most probable tokens.

• Allows you to control diversity:
• Increase k gives you more creative / risky outputs.
• Decrease k gives you safer outputs.

• Top-p sampling: At each step, randomly sample the
next token from 𝑝 𝑤𝑡 𝑤 1:𝑡−1 , but restrict to the set
of tokens with a cumulative probability of p
• throw away long-tailed tokens

• Top-k and Top-p can be used together!

Q: How to train a good language model?

Q: How to train a good language model?

A: Maximizing the language model probability of an observed large corpus.

N-gram Language Models

• Bigram models

P(food | chinese) = 82 / 158 = 0.519
P (chinese | want) = 6/ 927 = 0.00647

Curse of Dimensionality

• Limitation of N-gram models
• Limited Context Length: N-grams have a finite context window of length N,

which means they cannot capture long-range dependencies or context
beyond the previous N-1 words

• Sparsity: As N increases, the number of possible N-grams grows exponentially,
leading to sparse data and increased computational demands
• Suppose vocabulary size is V, the number of possible N-grams increases to V^N.

• Usually V (vocabulary size) could be more than ten thousand. Representing
each word as a one-hot vector is inefficient.
• “Dogs” and “cats” are more similar, compared to “dogs” and “rectangular”.

How to represent text more efficiently?

• Word Embedding: A milestone in NLP and ML
• Unsupervised learning of text representations—No supervision needed

• Embed one-hot vectors into lower-dimensional space—Address “curse of
dimensionality”

• Word embedding captures useful properties of word semantics

• Word similarity: Words with similar meanings are embedded closer

• Word analogy: Linear relationships between words (e.g. king - queen = man -
woman)

Word AnalogyWord Similarity

Distributed Representations: Word2Vec

• Assumption: If two words have similar contexts, then
they have similar semantic meanings!

• Word2Vec Training objective:

• To learn word vector representations that are good
at predicting the nearby words.

Co-occurred words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their
Compositionality. NIPS.

feed

my

cat

with

meat

Considering Subwords: fastText

• fastText improves upon Word2Vec by incorporating subword information into word
embedding

• fastText allows sharing subword representations across words, since words are represented
by the aggregation of their n-grams

Tri-gram extraction

Represent a word by the sum of the
vector representations of its n-grams

N-gram embedding

Word2Vec probability expression

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, 5, 135-146.

Limitations of Word2Vec embeddings

• 1) They are context-free embeddings: each word is mapped to only
one vector regardless of its context!
• E.g. “bank” is a polysemy, but only has one representation

• 2) It does not consider the order of words

• 3) It treats the words in the context window equally

“Open a bank account” “On the river bank”

Share representation

Next Lecture: Self-Attention and Transformers

	Slide 1: CSE 561A: Large Language Models
	Slide 2: Content
	Slide 3: Course Logistics
	Slide 4: Course Logistics
	Slide 5: Course Structure
	Slide 6: Grading
	Slide 7: Paper Presentation
	Slide 8: In Class Presentation
	Slide 9: In Class Presentation
	Slide 10: Preview Question Submission
	Slide 11: Research Project
	Slide 12: Research Project
	Slide 13: Final Project Presentation
	Slide 14: Content
	Slide 15: Large Language Model Pre-training and Post-training Framework
	Slide 16: Language Model Architectures (will be covered in the next course)
	Slide 17: Scaling Up Language Models
	Slide 18: Language Model Post-Training: Instruction Tuning
	Slide 19: Language Model Post-Training: Reinforcement Learning from Human Feedback
	Slide 20: Topics: Language Model Reasoning
	Slide 21: Topics: Language Model Calibration
	Slide 22: Topics: Efficient Fine-Tuning
	Slide 23: Efficient LLM Inference
	Slide 24: Topics: Multimodal Language Model
	Slide 25: Topics: Bias of Language Models
	Slide 26: Content
	Slide 27: What are language models?
	Slide 28: Language models
	Slide 29: Autoregressive language models
	Slide 30: Sequence generation with language model
	Slide 31: Different Decoding Approaches
	Slide 32: Different Decoding Approaches
	Slide 33: Q: How to train a good language model?
	Slide 34: Q: How to train a good language model?
	Slide 35: N-gram Language Models
	Slide 36: Curse of Dimensionality
	Slide 37: How to represent text more efficiently?
	Slide 38: Distributed Representations: Word2Vec
	Slide 39: Considering Subwords: fastText
	Slide 40: Limitations of Word2Vec embeddings
	Slide 41: Next Lecture: Self-Attention and Transformers

