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Course Logistics

• Course meeting times: 2:30pm – 3:50pm Tuesday / Thursday

• Location: Jubel / 121

• TAs:
• Zheyuan Wu (w.zheyuan@wustl.edu)

• Isle Song (s.xiaodao@wustl.edu)



Course Logistics

• Course Syllabus: https://teapot123.github.io/CSE561A_2025fl/

• Canvas: https://wustl.instructure.com/courses/155129 (will be 
published soon)

• We will be using Canvas for announcements, and project report 
submissions, and Piazza for discussions.

https://teapot123.github.io/CSE561A_2025fl/
https://wustl.instructure.com/courses/155129


Course Structure

• Advanced Research-Oriented Course
• We will be teaching and discussing state-of-the-art research papers about large 

language model architectures, training and inference.

• Students will choose papers from a list of frontier research papers 
(https://teapot123.github.io/CSE561A_2025fl/) to present in the class

• Guest lectures on frontier research topics

• Warning on pre-requisites: Please be aware that this is a fast-paced, research-driven 
course, not an introductory course to LLMs. The curriculum is tailored for advanced 
students (PhD candidates) doing state-of-the-art LLM-related research. 

• Students without a strong machine learning research background and understanding 
of fundamental NLP concepts (sequence modeling, contextualized representation, 
etc.) will find the pace and technical depth of the material exceptionally challenging.

https://teapot123.github.io/CSE561A_2025fl/


Grading

• 20% Class Participation
• Submit 1 preview question before each paper presentation class (every class 

counts for 1 point)
• Guest Lecture

• 25% Paper Presentation

• 55% Final Project (Group with 2-3 students)
• 10% Project Proposal
• 10% Mid-term Report
• 10% Final Course Presentation (Zoom)
• 5% Feedbacks for other groups’ final project presentations 
• 20% Final Project Report



Paper Presentation

• Starting from Week 3, each lecture will consist of one research topic of large language 
models, with 4 state-of-the-art papers. 

• Each lecture will be covered by three students, who are required to prepare a 60-min 
presentation in class to cover 4 papers. 
• Distribute the presentation among yourselves

• Suggestion: 15 min presentation + 1 min Q&A for each paper

• Sign-up sheet for picking out your presented paper will be released later this week.

• Remember to send over your slides to the instructor (and cc the TA) before your 
presentation:
• For Tuesday classes, send over your slides before the previous Friday 12:00PM to both the 

instructor (jiaxinh@wustl.edu) and Zheyuan (w.zheyuan@wustl.edu)

• For Thursday classes, send over your slides before the previous Monday 12:00PM to both the 
instructor (jiaxinh@wustl.edu) and Isle (s.xiaodao@wustl.edu)

• Late submissions -> not well-prepared, point penalty



In Class Presentation

• How to present a paper?
• Think about the context of the research: introduce the background of the 

research topic

• What is the challenge and contribution of this paper, given the research 
background?

• The method: from framework to technical details

• What are some interesting experiment results and observations?

• What could be done in the future?

• Summarize the takeaways/highlights of this paper



In Class Presentation

• More tips to do presentations
• Get familiar with your material. Don't read scripts for the whole time.

• Make eye contact with audiences.

• Make your voice loud enough so that everyone can hear you clearly

• Please control your time (15min for each paper)! We will give you notice 
when your time is nearly used up.



Preview Question Submission

• When it is not your turn to present, you need to preview the paper in 
advance. 

• Each student is required to submit 1 preview question for a paper one 
day before the presentation. You are also encouraged to raise that 
question in class.
• Preview questions cannot be simple ones like “what is the aim of the paper?”, or 

“what is the difference between this and previous methods?”



Research Project

• Students need to form groups of 2-3 people to do a large language 
model research project.

• Project proposal deadline: 9/15 11:59PM

• Midterm project report deadline: 10/20 11:59PM

• Final project presentation deadline: 12/1 11:59PM
• We will use two lectures for project presentation: 12/2, 12/4

• Final project slides deadline: 12/12 11:59PM



Research Project

• There are typically two types of projects.

• 1) Designing a novel algorithm to train a medium-sized language 
model: BERT, GPT-2 for problems that you are interested in.
• Find open-weight models here: https://huggingface.co/models

• 2) Designing a novel algorithm to do inference on large language 
models (Qwen, Llama, DeepSeek series, or GPT, Gemini, CLAUDE) to 
solve some type of complex problems, and analyze their limitations. 
(We may not be able to reimburse for the API costs)
• https://platform.openai.com/docs/introduction

• https://docs.anthropic.com/claude/reference/getting-started-with-the-api

https://huggingface.co/models
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api
https://docs.anthropic.com/claude/reference/getting-started-with-the-api


Final Project Presentation

• Near the end of the semester, we will use 2 classes (12/2, 12/4) for 
every group to present their projects via Zoom.

• Length of project presentation: 5-8min depending on the number of 
groups

• Students will need to submit feedback scores for other groups’ 
presentation (through Google Form).
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Large Language Model Pre-training and Post-
training Framework

InstructGPT: Training language models to follow
instructions with human feedback. (Ouyang et. al, 2022)



Language Model Architectures (will be 
covered in the next course)

Encoder Models Decoder Models Encoder-Decoder Models



Scaling Up Language Models
• Performance on validation set (cross entropy 

loss on standard language modeling task) 
follows a power-law trend with respect to 
the amount of computation in training



Language Model Post-Training: Instruction 
Tuning

Collecting from multiple public NLP 
datasets
Training mixtures:

QA (Question Answering tasks), 
structure-to-text, 
summarization
Sentiment analysis, topic 
classification, paraphrase 
identification

Held-out test set:
Sentence completion, BIG-
Bench
Natural language inference, 
coreference resolution, word 
sense disambiguation



Language Model Post-Training: Reinforcement 
Learning from Human Feedback



Topics: Language Model Reasoning

• Today’s LLMs can 
solve very hard 
math problems, 
even those in 
AIME’25.



Topics: Language Model Calibration



Topics: Efficient Fine-Tuning

Unsupervised/Self-supervised; 
On large-scale general domain corpus

Task-specific supervision; 
On target corpus



Efficient LLM Inference
• LLMs are computationally expensive

• Doing inference on a 7B LLM with full precision requires an 80GB GPU, and full-finetuning 
can use 4x80GP GPUs!

• LLM computation and memory costs grow quadratically with sequence length

• Efficient inference algorithms are needed for real-time resource-constrained environments 
such as mobile devices Language Model Self Attention

First 
token

Last 
token

First 
token

Last 
token

Query Vector

Key Vector



Topics: Multimodal Language Model

• Understand a combination of texts and images

Flamingo: a Visual Language Model for Few-Shot Learning. Jean-Baptiste Alayrac et al. NeurIPS 2022.



Topics: Bias of Language Models

• Different language models may have different political views.
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What are language models?



Language models

• The classic definition of a language model (LM) is a probability 
distribution over each token sequence 𝑤1, 𝑤2, … , 𝑤𝑛 , whether it’s a 
good or bad one.

• Sally fed my cat with meat: P(Sally, fed, my, cat, with, meat) = 0.03,

• My cat fed Sally with meat: P(my, cat, fed, Sally, with, meat) = 0.005,

• fed cat Sally meat my with: P(fed, cat, Sally, meat, my, with) = 0.0001



Autoregressive language models

• The chain rule of probability:

• P(Sally, fed, my, cat, with, meat) = P(Sally)

            * P(fed | Sally)

            * P(my | Sally, fed)

            * P(cat | Sally, fed, my)

            * P(with | Sally, fed, my, cat)

            * P(meat | Sally, fed, my, cat, with)



Sequence generation with language model

• If we already have a good language model, a given text prompt 𝑤 1:𝑛 , 
and we want to generate a good sentence completion with the length 
of L: How to find 𝑤 𝑛+1:𝑛+𝐿 ? 

• Enumerate over all possible combinations to find the highest 
probability?

• Next token prediction: generating the next token step by step, 
starting from 𝑤𝑛+1 using 𝑝 𝑤𝑛+1 𝑤 1:𝑛

• To select the next token with 𝑝 𝑤𝑛+1 𝑤 1:𝑛 , there are also different 
decoding approaches.



Different Decoding Approaches

• Greedy decoding: At each step, always select 𝑤𝑡 with the highest 
𝑝 𝑤𝑡 𝑤 1:𝑡−1  . 

• Beam Search: Keep track of k possible paths at each step instead of 
just one. Reasonable beam size k: 5-10 .



Different Decoding Approaches

• Top-k sampling: At each step, randomly sample the 
next token from 𝑝 𝑤𝑡 𝑤 1:𝑡−1 , but restrict to only 
the k most probable tokens.

• Allows you to control diversity:
• Increase k gives you more creative / risky outputs.
• Decrease k gives you safer outputs.

• Top-p sampling: At each step, randomly sample the 
next token from 𝑝 𝑤𝑡 𝑤 1:𝑡−1 , but restrict to the set 
of tokens with a cumulative probability of p
• throw away long-tailed tokens

• Top-k and Top-p can be used together!



Q: How to train a good language model?



Q: How to train a good language model?

A: Maximizing the language model probability of an observed large corpus.



N-gram Language Models

• Bigram models

P( food | chinese) = 82 / 158 = 0.519
P (chinese | want) = 6/ 927 = 0.00647



Curse of Dimensionality

• Limitation of N-gram models
• Limited Context Length: N-grams have a finite context window of length N, 

which means they cannot capture long-range dependencies or context 
beyond the previous N-1 words

• Sparsity: As N increases, the number of possible N-grams grows exponentially, 
leading to sparse data and increased computational demands
• Suppose vocabulary size is V, the number of possible N-grams increases to V^N. 

• Usually V (vocabulary size) could be more than ten thousand. Representing 
each word as a one-hot vector is inefficient.
• “Dogs” and “cats” are more similar, compared to “dogs” and “rectangular”.



How to represent text more efficiently?

• Word Embedding: A milestone in NLP and ML
• Unsupervised learning of text representations—No supervision needed

• Embed one-hot vectors into lower-dimensional space—Address “curse of 
dimensionality”

• Word embedding captures useful properties of word semantics

• Word similarity: Words with similar meanings are embedded closer

• Word analogy: Linear relationships between words (e.g. king - queen = man - 
woman)

Word AnalogyWord Similarity



Distributed Representations: Word2Vec

• Assumption: If two words have similar contexts, then 
they have similar semantic meanings!

• Word2Vec Training objective:

• To learn word vector representations that are good 
at predicting the nearby words.

Co-occurred words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their 
Compositionality. NIPS.

feed

my

cat

with

meat



Considering Subwords: fastText

• fastText improves upon Word2Vec by incorporating subword information into word 
embedding

• fastText allows sharing subword representations across words, since words are represented 
by the aggregation of their n-grams

Tri-gram extraction

Represent a word by the sum of the
vector representations of its n-grams

N-gram embedding

Word2Vec probability expression

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching Word Vectors with Subword Information. Transactions of the Association for 
Computational Linguistics, 5, 135-146.



Limitations of Word2Vec embeddings 

• 1) They are context-free embeddings: each word is mapped to only 
one vector regardless of its context!
• E.g. “bank” is a polysemy, but only has one representation

• 2) It does not consider the order of words

• 3) It treats the words in the context window equally

“Open a bank account” “On the river bank”

Share representation



Next Lecture: Self-Attention and Transformers
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