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Background

RL Powers LLLM Reasoning

Reasoning models leverage Chain-of-Thought (CoT) for stronger reasoning (e.g., OpenAl o1,

DeepSeek R1)

Key driver: Reinforcement learning (RL) enable iterative strategy refinement with PPO and GRPO

Importantly, at rollout stage, generating more prompts can further enhance training

Rollout Scaling Benefits
higher-quality data
Stabilizes RL training

Improves model convergence
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How to focus on sampling more valuable prompts?

Existing Methods
- A new model to identify valuable data point

Static Data Pruning (No conclusive evidence of improving overall efficiency)

——> The value of a data point varies across models
and stages (non-adaptive)

Dynamic Sampling - oversampling and filter out uninformative data only
after rollout (additional rollout cost)

Online data
selection

Ideal selective rollout
‘ Self-adaptive Low

algorithm rollout computational
strateg overheads

From the observation and analysis of GRPO to propose a new algorithm GRESO



Group Relative Policy Optimization (GRPO)

Objective function
Jarro(0)=E[g~P(Q),{0:}%, ~7s,,,(0|q)]
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one prompt — a group of response corresponding with a group of rewards {rl, 12, r3,...,rG}
Ai,t — advantage function to evaluate whether an example can provide learning signal
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GRPO Observations

Observation 1 Effective Prompts Ratio keeps decreasing as the training proceeds
**¢ Varying EPR hurt training stability and final model performance
F Zero-Variance prompts 5 times Rollouts
80% Maintain batch size
" 3 s w0 w0 i Identifying Priors to Rollout
Observation 2 : : . .
The information value of a prompt is continuous and
o ee-e predictable over time
o~
20 ;. P(Previous | Current): P( Current | Previous) — 80%
gory i IN most cases it remains (zero-variance stays
D-ﬁ-j P e e zero-variance), but a small portion may transition.
== P{Previous | Current]

T Retain Potentially Valuable Prompts

Training Epoch



Algorithm GRPO with Efficient Selective Rollout (GRESQO)
Identifying Priorly : formalize the problem of zero-variance prompt detection
1= {:Eifl TRi,l)g---f{:ELHTRLn} R_i,l = {'T‘Eij }f=1

ei,jdenotes the epoch number (example xi and j-th sampling)
Ri,1represents the set of response rewards
To predict whether xi is a zero-variance prompt
Probabilistic Pre-rollout Prompt Filtering :

prlx)=1—p,

Example: variance

[1,1,0, 1]

- Epoch1: O
II bo=tp =)
g=n—k+1 Epoch2: 0O
Z

Z; max{ ke|0,n]

Epoch3: 1 ]
| =

I .— 1, if all rewards in R; ; are identical,
" 0, otherwise, Epoch4: 0



Algorithm GRPO with Efficient Selective Rollout (GRESO)

Probabilistic Pre-rollout Prompt Filtering :
Pe denotes base exploration probability (Pe T Pr )

zi npn . .
prlwi)=1=pc", Ps denotes probability of Pre-rollout Prompt Filtering
1 B‘:_ m; Br — B;lefault; NeasysMhard s THotal 0,00 . . . o
2 /+Rollout Stage. ’ Dynamically adjusting Pe and Batchsize
3 repeat
4 {zi } *, < Sample prompts from D and filter with Eq. 3 until batch size = B, ;
5 {xi,r:} 2% « Rollout generation on {x;} 2,
6 {x;7: }2XC  filter out zero-var prompt in {x;,r; } 29
7 Neasy < Measy 1 filtered easy zero-var prompt count;
8 Thard ¢ Nhard+ filtered hard zero-var prompt count:
9 Ntotal ¢ Ntotal + DBr; .
o0 | BeBU{zird 256 n_filtered /n_total > o ‘ P. !
11 /* Adaptive rollout batch size.
12 B, + min(Bd1t - Adaptive rollout batch size calculated by Eq. 6):

More probability to filter zero-variance

13 until |B| > By

la /# Adjust Base Exploration Probability

15 if ﬂe’ae?;/‘nfomi> Measy 5Y then pf‘asy ‘:_pe*acs't,r *&p ; o . dﬂfﬂuﬂ ..Blll-'j‘L

16 else Pegsy ¢ Peasy +AP: B.p — II1I B-;r‘ . ﬁﬁ
L7 lf ﬂhmdj}ntotal> Chard then phm'd%phcwd_'&p p ¥

L8 else Phard < phm a+Ap:

® /*GRPO Training. Dynamical batchsize — no extra waste

w0 B+ %elect By examples from B;:
11 Update actor model with GRPO on B;



Experiment

End-to-end Efficiency Comparison

Dataset | Method | Math500 AIME24 AMC Gaokao Miner. Olymp. | Avg. | # Rollout . .
ataset | Method | Ma aokao Miner. Olymp. | Avg. | # Rollou Method | Training Other Rollout | Total
Qwen2.5-Math-1.5B Math B
DAL DS 77.3 16.7 61.7 64.2 31.8 38.7 48.4 7.6M Qwen2.5-Math-1.5
o GRESO 76.6 15.0 614  66.2 33.3 38.5 | 48.5 3.3M . o ? E
ORI DS 77.1 16.7 50.3  65.5 30.9 390.7 | 46.7 3.8M DS 8.1 3.6 41.0 (1.0x) 52.6 (1.0x)
GRESO | 76.1 20.0 506  65.1 300 392 | 468 | 1.6M GRESO 8.9 3.9 25.2 (1.6x) | 37.9 (1.4x)
DeepSeek-R1-Distill-Qwen-1.5B DEEPSEEk'RI -Distill- Q‘IUEH-I.EB
DAL DS 87.9 36.7 717 78T 35.3 55.9 | 61.0 2.4M
- GRESO 87.7 36.7 711 784 33.9 55.1 | 605 1.6M DS ‘ 6.1 3.3 92.4 (1.0x) ‘ 101.9 (1.0x)
_ DS 84.8 25.0 68.4  74.0 34.1 54.2 | 56.7 2.4M .
ORL 1 GRESO 85.9 26.7 66.9 752 33.6 55.5 | 57.3 1.5M GRESO 6.8 4.0 62.0 (1.5x) 72.7 (1.4x)
Qwen2.5-Math-7B Qwen2.5-Math-7B
DS 82.9 34.2 792 TLT 35.4 436 | 57.8 13.1M . . P .
DM GrESO 82.2 32.5 807  70.2 35.4 44.1 | 575 6.3M DS 16.1 6.1 155.9 (1.0x) | 178.0 (1.0x)
ORI DS 82.9 34.2 63.1 67.3 34.9 46.3 54.8 11.4M GRESO 16.6 6.3 65.5 ( 2.4% ) 88.3 (2,{] w )
GRESO 82.3 35.0 645  66.8 36.5 45.7 | 55.1 3.4M

No performance drop with
up to 3.35x fewer rollouts and up to 2.4x wall-clock time speed-up



Experiment

Analysis and Ablation Study
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DS: Filters zero-variance prompts after rollout, but effective ratio drops and costs rise
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Experiment

Dynamics of self-adjustable base exploration probabilities.

APrompt
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GRESO adaptively adjusts exploration probabilities without manual tuning
As the model improves, Pe increases to explore harder examples



Conclusion

Key Contribution

GRESO : Act only when it pays, a novel algorithm to optimize rollout selection

2.0x overall
training
Speed up

3.35x fewer 2.4x rollout

rollouts Speed up

Future Prospects

Extending selective rollouts to broader domains and more sophisticated data selection



Beyond the 80/20 Rule: High-Entropy
Minority Tokens Drive Effective
Reinforcement Learning for LLM Reasoning

By Gio Song




Background

Why Token-Level Analysis in RLVR Matters

* Reinforcement Learning for Verifiable Reasoning (RLVR) has become the
standard alignment method for LLMs. But it shows only moderate gains

* Most prior work focuses on:
* Algorithmic innovation (e.g., DAPO)
» Task adaptation beyond math (e.g., Absolute Zero)
e Empirical tricks (e.g., One-shot training)

| Missing: analysis of how specific tokens contribute to performance



Why This Paper?

So What Are We Missing in RLVR?

* Prior work treats all tokens equally during training
e But not all tokens are equally important in reasoning!

* Question: Can we identify and optimize the right tokens?
Quote for emphasis:

* “High-entropy tokens may decide reasoning paths, not just language forms.”

e Studying tokens, in fact, means studying the conditional probability
distribution of the next token output by an LLM.



Token Type Entropy Role in Output
Fills in predictable structure
Low-entropy Very stable (e.g., math formulas, code)
. Dri ing direction;
High-entropy Uncertain rives reasoning direction

controls "forks" in logic

Example:

In decimal, 1+1=2.But how does that translate to base 2?Well, in binary |..]

@ Blue tokens = low-entropy; @ red tokens = high-entropy (forking tokens)

(a) high-entropy minority low-entropy majority
tokens fork the path tokens follow the path




Further Discoveries

* Slightly increasing entropy of high-entropy tokens improves performance

* RLVR primarily adjusts the entropy of high-entropy tokens, while low-
entropy tokens remain largely unchanged



Main Experiment & Ablation Experiment

Based on earlier findings, the authors
hypothesize that:

e Optimizing the conditional distributions of

low-entropy tokens is unnecessary. )60_
* Instead, only high-entropy tokens (=20% of _
all tokens) need targeted gradient updates %50'
to replicate most of the RL benefits. v
g

The authors also tune the proportion of
tokens to treat as “high-entropy” and find:

* 20% is optimal for balancing performance
and gradient efficiency.
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Preliminaries

1.Token Entropy

Token entropy is based on the conditional probability distribution over the vocabulary
at each step, not the specific token identity.

— Z Pt.j logpt!j, where D = Softmax (%)

2.DAPO — Dynamic sAmpling Policy Optimization
 DAPO selects partially correct prompts for training.
* Encourages learning from useful but imperfect trajectories.

* Advantage estimation ensures training focuses on relatively better samples.

o o

E | ; Z Z min (f,(ﬁ" A?' Lllp(rt(ﬁ) — €low, 1 + fhigh)fi;)
=1 =1 t=1

Jparo(f) =



Pre--Experiment

3.1 Token Entropy in Chain-of-Thought (CoT)

* Goal: Analyze entropy distributions in CoT outputs
Key Analysis:

* Token Entropy Distribution:

* Only 20% of tokens have entropy > 0.672
* Most tokens are low-entropy — structural or formulaic
* High-entropy tokens are rare, but impactful

e Word Cloud Visualization

Conclusion:

High-entropy tokens play a decisive role in branching logic
They are termed “forking tokens”

Frequency (log scale)

= =  The 80th percentile: 0.672

103

0 1 2 3 4
Entropy

(a) Distribution of token entropy
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Entropy Intervention Experiment
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Red curve
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Method:

e Define threshold: Htaresnoi=0.672
* Use adaptive temperature scaling:

T — i-_’:“hig;h it Hy > Hinreshold
t .
Tow  otherwise

e Test two conditions:
* Fix Tiow=1, vary Thign (Red Curve)
e Fix Thigh=1; vary Tlow (Blue curve)

Insight:

Selectively increasing entropy at forking
tokens improves Reasoning

This mirrors the effect of RL training, where
entropy change is concentrated at decision-
critical points



Pre--Experiment

3.2: RLVR Retains and Strengthens Entropy Patterns of Base Models
1) RLVR Retains Entropy Structure of the Base Model

Compare the top 20% high-entropy tokens between:
* Base model

_ 86% of high-entropy tokens
* Intermediate RLVR models HEmmmmms) omain concictent
* Final RLVR model

Table 1: The progression of the overlap ratio in the positions of the top 20% high-entropy tokens,
comparing the base model (i.e., step 0) with the model after RLVR training (i.e., step 1360).

Compared w/| Step 0 Step 16 Step 112 Step 160 Step 480 Step 800 Step 864 Step 840 Step 1280 Step 1360
Base Model 100% 98.92% 98.70% 93.04% 93.02% 93.03% 87.45% 87.22%  87.09%  86.67%
RLVR Model |86.67% 86.71% 86.83% 90.64% 90.65% 90.64% 96.61% 97.07%  97.34% 100%




Pre--Experiment

3.2: RLVR Retains and Strengthens
Entropy Patterns of Base Models

3
R
2) RLVR Selective Entropy Adjustment: g’
S 10-
o
=
* Tokens grouped by 5% entro
group y Yy
percentile intervals (from low to high)
0% 5% 10% 15% 20% 25% 30% 35% 40;2‘;2:,‘/«;“5303005;?]3(:‘3?2‘;& 65% 70% 75% 80% 85% 90% 95%100%
* Compute average entropy change T pertentile means St ¥% o the tokens in the cataset have entiarly valogs Joss foan or equal 6 this

value. It is worth noting that the Y-axis is presented on a log scale. Tokens with higher initial entropy tend

a fte r R LV R fo r e a C h g ro u p to experience greater entropy increases after RLVR.

RLVR keeps the original token distribution structure intact
but selectively increases entropy for a small set (top 20%) of tokens
This sets the foundation for training only high-entropy tokens in later sections.



Main--Experiment

Adapted DAPO objective for only high-entropy tokens:
tflggh]ﬂut [9) =K [ . ]I(th = T]:F] IIlil’.l(-?‘E (9)1{1’;1 Clip(-}}] REII'\fOrcement Iea rnlng

performance boost is largely

* Only tokens with entropy > top-p threshold are used . .
driven by forking tokens

* This means RL updates only the most informative tokens

Table 2: Comparison between vanilla DAPO using all tokens and DAPO using only the top 20% high-entropy

63.54 10k
tokens (i.e. forking tokens) in policy gradient loss, evaluated on the Qwen3-32B, Qwen3-14B and Qwen3- w0
8B base models. "Acc@16" and "Len@16" denotes the average accuracy and response length over 16 2. £ 8k
evaluations per benchmark, respectively. @ g
3 % &
Berichniark DAPO w/ All Tokens DAPO w/ Forking Tokens Improvement gao ;‘
Acc@16 Len@16  Acc@16 Len@16 | Acc@l6 Len@16 g g %
RLVR from the Qwen3'328 Base Model —— DAPO w/ only forking tokens 2k —=— DAPO w/ only forking tokens
AIME"24 55.83 9644.15 63.54 12197.54 +7.71 +2553.39 29 i}' E=IDAFO —— DAPO
AIME25 45.63 9037.48 56.67 1184225 +11.04 +2804.77 O R 5 s o 150
radi radi e
AMC23 91.88 5285.03 94.22 5896.47 +2.34 +611.44 (a) AIME"24 scores trained from Qwen3-32B base.  (b) Response lengths trained from Qwen3-32B base.
MATH500 94.36 2853.51 94.88 3366.01 +0.52 +512.5 sl
Minerva 45.70 2675.28 45.82 2759.88 +0.12 +84.6 < i
4
Olympiad 66.16 5597.37 69.02 7300.01 +2.86 +1702.64 3 s
Average 66.59 5848.80 70.69 7227.03 +4.10 +1378.22 g g
RLVR from the Qwen3-14B Base Model 535“ g
] ak
AIME"24 45.21 7945.15 50.42 11814.36 +5.21 +3869.21 g 39 ‘ &
AIME"25 38.13 7056.98 42.92 12060.48 +4.79 +5003.5 25 : :
—=— DAPO w/ only forking tokens 2k —— DAPO w/ only forking tokens
AMC’23 89.53 4509.37 91.56 7095.13 +2.03 +2585.76 20 DAPO + DAPO
MATH500 92.23 2348.22 93.59 3970.10 +1.37 +1621.88 0 500 750 1000 1250 1500 6 250 500 750 1000 1250 1500
» Gradient Steps Gradient Steps
Minerva 42.16 2011.16 43.20 2959.32 +1.03 +948.16 () AIME"24 scores trained from Qwen3-14B base.  (d) Response lengths trained from Qwen3-14B base.
Olympiad 61.14 4642.07 64.62 7871.25 +3.48 +3229.18
Average 61.40 4752.16 64.39 7628.44 +2.99 +2876.28 35013458
A 6k
RLVR from the Qwen3-8B Base Model o4 W .
AIME"24 33.33 6884.89 34.58 9494.29 +1.25 +2609.40 §300 | g
AIME"25 25.42 5915.91 26.25 8120.20 +0.83 +2204.29 £775 Fa
0250 €
AMC’23 77.81 3967.91 77.19 5450.62 -0.625 +1482.71 g S5 %
MATHS500 89.24 2059.00 89.70 267291 +0.46 +613.91 2ojo ©
Minerva 39.77 1450.68 40.26 206841 +0.48 +617.73 R B dmel il = DAPO W/ oy frdng tkens
Olympiad 56.67 3853.55 57.43 5241.54 +0.76 +1387.99 e T T T TR T
Average 53.71 4021.99 54.23 5508.00 +0.53 +1486.01 Sradlant e Gradient taps
: : X . = (¢) AIME24 scores trained from Qwen3-8B base. (f) Response lengths trained from Qwen3-8B base.




Further--Experiment
1. Varying p (proportion of high-entropy tokens)

2. Model Size Impact

65 A 55 1
60 A
= —~ 501
& =
551
2 S45-
> >
L 50 L
5 5401
2 451 c
401
—s— DAPO w/ only forking tokens 30 —— DAPO w/ only forking tokens
351 ¢412s —— DAPO 05| #H083 |~ DAPO
8 14 32 8 14 32

#Parameters (B)
(a) Scaling Trend on AIME 2024

#Parameters (B)
(b) Scaling Trend on AIME 2025

Figure 8: Scaling trend of DAPO using only forking tokens (i.e., top 20% of high-entropy tokens) in
policy gradient loss. These results suggest that concentrating exclusively on forking tokens in the policy
gradient loss may yield greater benefits in larger reasoning models.

Smaller subset of tokens (high entropy) can drive
stronger performance, reducing cost while
increasing quality.

--foundational claim of the article
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Aspect

Finding

Cross-task generalization

High-entropy token updates improve transfer

(math - code)

Long-context reasoning

Training with forking tokens supports longer
outputs and deeper logic

Portability to smaller models

Works well even under low-compute, small-
model cold-start scenarios. model-agnostic

27 -

Accuracy (avg@16)
N
(=]

24

0 200 400 600 800 1000 1200 1400
Gradient Steps

—— DAPO w/ only forking tokens

—— DAPO w/ only forking tokens

-—=- longer context —— DAPO w/ only forking tokens
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Gradient Steps Gradient Steps
(a) AIME’24 scores (b) Response length
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(a) AIME’24 scores trained from Llama-3.1-8B (b) Response length trained from Llama-3.1-8B

after cold-start.

after cold-start.




Discussion, Conclusion & Limitations

. : . Limitations & Further Improvement
Discussion & Conclusions

 Why High-Entropy Tokens Matter in RL
* LLM CoT and Token Entropy
* Why RLVR Works

!

Develop better RLVR algorithms

* Mainly on Qwen models.

e Dataset limited to mathematical
reasoning.

* Results are experiment-specific.

e Supervised fine-tuning (SFT)
* Distillation
* Inference pipelines

* Multi-modal training



Spurious Rewards: Rethinking Training
Signals in RLVR

Lisa Zhu, Hang Yang, Gio Song




Core ldea & Findings

* Reinforcement Learning with Verifiable Rewards (RLVR) improves
reasoning in LLMs

* Surprisingly, it works even with spurious rewards
 Random, wrong, or irrelevant

e Qwen2.5-Math-7B
e Random rewards: 21.4%

* Wrong label: +24.1%
* Performance gains nearly match ground truth training



* Model differences

e Strong gains for Qwen2.5-Math
* Little or negative effect on Llama3 & OLMo2

* Code reasoning (thinking in code without
actual code execution):

e Distinctive behavior for Qwen2.5-Math

| N S|ght5 * Becomes more frequent after RLVR
* From 65% = 90%

* Implication
* RLVR surfacing latent abilities from pretraining '
* Not reward signal itself /

> 4

Additional




Experiment & Results |

e Goal: Test if RLVR still improves reasoning
with weaker or spurious rewards instead of
ground truth

* Method:

* Base model: Qwen2.5-Math

* Training: GRPO algorithm, DeepScaleR
dataset

e GRPO finetune base model

* DeepScaleR trained with spurious
binary (0-1) reward functions

PSS b G0 g Pt Y Harpaimg

* |Investigate the limits of how little { o O j sr., W )4 (J* .,,““)* ” OH

supervision is needed for RLVR training A



Experiment & Results

* Types of rewards tested * Results
 Standard to Weak to Spurious * All reward types. have significant
» Ground Truth = Majority Vote math gains within 1st 50 steps
- Format = Random * Smaller model also improves, but
Slncorrect more slowly

* Takeaway: RLVR boosts

* Ground Truth: Correct answers : .
only performance even with spurious
: signals
* Incorrect: Deliberately reward . .
wrong answers from pseudo- — Elicit latent abilities from
pretraining

labeling



* Goal: Test if spurious-reward gains generalize across

models
* Models: Qwen2.5-Math vs. OLMo2 vs. Llama3
* Findings:
C 'OSS- * Qwen2.5-Math: large gains even with spurious
rewards
M Od 6‘ * OLMo2 & Llama3: minimal or negative gains
. * Why Qwen
A Nd |yS 1S * Exhibits strong code reasoning (i.e. writes math

steps in Python)
e Accuracy: 61% with code vs. 28% without
e Takeaway: Spurious rewards amplify latent code-

reasoning abilities in Qwen, not transferable to
other model



What makes Qwen so SPECIAL?--Code Reasoning

Observation: The Qwen2.5-Math model frequently
generates Python code as a method of reasoning

More structured and accurate solutions.

Evidence: 65%+ code reasoning frequency. After
RLVR (even with random or incorrect rewards), this
frequency rises above 90%.

Why this matters:

Code reasoning leads to significantly higher
accuracy (60.9%) . Only 35.0% on responses
with natural language reasoning.

Other models (e.g., OLMo, LLaMA) either do not
use code (No-Code) or use it ineffectively (Bad-

Code), and hence don’t benefit similarly from RLVR.

MATH Question:

What is the distance, in units, between the points (2, —6) and (—4, 3)? Express your answer
in simplest radical form.

Qwen2.5-Math-7B Solution (correct):

To find the distance between two points (1, y1) and (22, y2) in a Cartesian plane...
Let’s break this down step-by-step and compute the result using Python.

import math

3 |# Calculate the distance using the distance formula
: |distance = math.sqrt (dx**2 + dy**2)
s |print (distance)

output: 10.816653826391969

Thus, the final answer is: [ 31/13

Model Qwen2.5-Math-7B  Qwen2.5-Math-1.5B Qwen2.5-7B OLMo02-7B-SFT
Code Frequency 65.0 53.6 92.2 98.0
Ace. w/ Code 60.9 52.6 39.9 21.0
Acc. w/ Lang 35.0 17.2 61.5 40.0




RLVR with Spurious Rewards Amplifies Pretrained

Reasoning Strategies

 Why do spurious rewards work?

* Evidence: Code Reasoning Frequency Strongly

B Ground Truth B Majority Vote [ Format B Incorrect B Random

Correlates With Accuracy 1o Overall Accuracies 1o Overall Accuracies 10 Overall Accuracies
. _ _ e e~ ———————— S >0
* Before RLVR: Qwen2.5-Math-7B uses code oo 7 bos o o s
. . 2 & 8
reasoning in 65% of outputs. 0: 02 O e

d After RLVR: riSGS tO 90_95%, and accu racy 10 Code Frequencies 1o Code Frequencies 1o Code Frequencies

H . 08 — 0.8 0.8

increases alongside. % X : 0 o
e Random reward leads to slower increase but

eventually hits 95.6% code reasoning rate.

(a) Qwen2.5-Math-7B (b) Qwen2.5-7B (c) OLMo2-7B-SFT
* True label reward causes an initial spike in code
usage, but this later declines as the model

learns to solve more via natural language.



RLVR with Spurious Rewards Amplifies Pretrained

Reasoning Strategies

The authors examine performance shifts across 4 reasoning transition patterns:

Code->Code | Code reasoning before and after training

Code—>Lang | Switch from code to language reasoning

Lang->Code | Switch from language to code reasoning

Lang->Lang | Natural language reasoning both before and after

Two main metrics were tracked:
e Subset frequency (how often that strategy occurred)
e Subset accuracy (how correct it was)



RLVR with Spurious Rewards Amplifies Pretrained

Reasoning Strategies

B Ground Truth B Majority Vote [ Format B Incorrect B Random

10 Overall Accuracies 1o Overall Accuracies 10 Overall Accuracies
Pyt Pt L0B e —————— 08 08
Hoﬁu‘ - 50_62/;\ o6
C~C . S04 S04 = gosa

< <
‘ 0.2 0.2 0.2 e
I —)

l- CaL -m.

0.0 0.0 0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
h Traini P S

; L : :
118 e q ) . . L—-C nnnnnn gStep Trainin gStep Trainin g Step
L—lL . .
e ’ﬂu-| I- - é,,_g_ :lm 3 : . o6 -|?ﬂ = M5=lm Code Frequencies Code Frequencies Code Frequencies
y 782 w404 y : y 738 5% 4g4 5.0 L0 ———— 1.0 L0=
0.8 - 508 508 \—‘M—/\\’
(a) Ground Truth (b) Majority Vote : (d) Incorrect (e) Random 206 £0.6 £0.6
%0 4 ?‘,’0.4 %0.4
“o.2 “o2 “o.2
—~

0.0 0.0 0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Training Step Training Step Training Step

F I n d I n g S fro m St ra t egy S h Ift A na I ys I S: (a) Qwen2.5-Math-7B (b) Qwen2.5-7B (¢) OLM02-7B-SFT

* Under spurious and weak rewards, Qwen2.5-Math-7B tends to:
* Maintain code reasoning if it already used it. (Code—>Lang)
» Switch from language to code reasoning (Lang—>Code) in most other cases.

* True reward does not cause the same shift

Other models behave differently:

 Qwen2.5-7B sees a decline in code reasoning under correct/majority/incorrect rewards
 OLMo02-7B-SFT also shows decreased code use under valid reward signals.

 LLaMA and other No-Code models show no meaningful change in strategy.
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Table 2: Partial contribution to the overall performance gain averaged over rewards that successfully
steered the model’s reasoning strategy (Figure 6).

Model Qwen2.5-Math-7B  Qwen2.5-Math-1.5B  Qwen2.5-7B
Avg. Total Gain 123.5% 128.5% 1 30.6%
CCode_)Code l 1.6% 2.8% 0.2%
CCode_)Lang 8.6% 2.0% 93-9%
ClLang— Code 58.3% 78.7 % 0.0%
ClLang—Lang 21.4% 16.5% 5.9%

Qwen-Math models improve by switching into their strength
(code reasoning).

Other models improve by abandoning inefficient strategies,
like code reasoning, in favor of simpler text reasoning.

For Qwen2.5-Math, the performance gains from spurious
reward do not reflect new skill acquisition, but rather the
amplification of a previously learned, effective strategy (code

reasoning).

RLVR, particularly with non-informative or even
misleading reward signals, can still work extremely well
— if and only if the underlying model has already
internalized useful reasoning strategies during
pretraining.



Interventions on code reasoning

Impact of Increased Code Reasoning on Performance

(1) Prompting (Answer begin with “let‘s (2) RLVR(Assign a positive rewards only
solve this using python”) answer contain “python”)
0.5 Python Reward - MATH
Model Original Prompting Abs. Diff. E CI:E —_—
Qwen2.5-Math-1.5B  36.2%  60.4%  +242% S 0.4 M
Qwen2.5-Math-7B  49.4%  64.4%  +15.0% T 0 .
Qwen2.5-1.5B 3.0% 13.0% +10.0% £ e —————————
Qwen2.5-7B 416%  222%  -19.4% o 20 40 60 80 100
Llama3.2-3B-Instruct  36.8% 8.2% —28.6% raining sten
Llama3.1-8B-Instruct  36.8%  152%  —21.6% Python Reward - AMC@8
OLMo2-7B 9.0% 7.8% ~1.2%
OLMo2-7B-SFT 214%  18.6% 2.8%

B Qwen-Math-7B B Qwen-Math-1.5B B Qwen-7B O Qwen-1.5B
B Olmo2-7B-SFT Bl Olmo2-7B B Llama3.1-8B
[0 Llama3.2-3B M Llama3.1-8B-Instruct B Llama3.2-3B-Instruct

20 a0 60 80 100
_ Traiming 5tep

Qwen model : T Llama, OLMo : | Qwen2.5-Math-7B model generated code
reasoning in its' answer >99% just 20 training steps

=

AMC Avg Acc. @ 8B
=X-X-X-F-F¥-
O WEL



Inhibiting code reasoning during RLVR with spurious rewards
Reward a response if and only if:

(1) spurious reward condition (original) (2) no string "python" (compound)

B Qwen-Math-7B M Qwen-7B B Olmo2-7B-SFT . Overall Accuracies
m— Compound Reward === Original Reward U'H
Format w/o Python - MATH Incorrect w/o Python - MATH GT w/o Python - MATH = =
. /o Py - /o Py 08 /o Py Co.6 M
uQ.7 o 0.4
E; g
0.6 <03
205 '
E 0.4 E- D'Dn 25 &0 75 100 125 150 175 200
=03 e —— Z03 e e Training Step
. 0.2 T s = 0.2 ; ,
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 Code Frequencies

Training Step Training Step Training Step 1.0 L ————

Format w/o Python - AMC@8 Incorrect w/o Python - AMC@8 GT w/o Python - AMC@8 »08
05 ®0.5 o et ivlase A — E-.u.ﬁ 7 = = 5 0.6
- S04

T @S et ==
E'm &'3‘9.4‘/ go4 L @
90.3 003~ == 0.3 0.2
502 5 0.2 5 0.2 ﬂ'ﬂn 25 50 75 100 125 150 175 200
Zo01 Z0.1 e ———— e e Z0.1 e o g e e Training Step
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Training Step Training Step Training Step (a) Qwen2.5-Math-7B
(a) Format w/o Python (b) Incorrect w/o Pithc-n (c) Ground Truth w/o Python
Qwen math model : (1) format rewardd (2) Incorrect reward (AMC {)

(3) Ground truth Performance improvement # sole code reasoning frequency
Bad code model : Compoud rewards > Original (downweight suboptimal model behavior)



Curious cases : Training Signals from Incorrect Rewards and

Random Rewards

Hypothesis: Incorrect Rewards — Reasoning

(1) many incorrect labels remain close to ground truth values ( positive reinforcement)

(2) incorrect labels may function like format reward (some degree of correct )

Random Rewards — Reasoning

Hypothesis from someone : most rewarded answers are correct (X)

Rewarded response : correct > incorrect ‘ Penalized response : correct > incorrect

Normalization of reward in GRPO ‘ Random rewards # bias toward correct answers

Why random rewards worked 7



Why random rewards worked ? Experiment 2: _
Clipping function enabled Vs disabled

Jerpo(0)=E[g~P(Q).{0:}, ~ma,,,(0lq)]

Experiment 1 :
- - mgug . e
Random rewards with varying probabilities iz(nﬂn(mmﬁp(MJ_&HE)AJ_;.mmmm])
G i1 Mo, (0ilq) 79,14(0ilq) . l -
Random Rewards - MATH
L B Random w/ Clipping Enabled B Random w/ Clipping Disabled
0.7 v [ Random w/ Clipping Disabled via Increased Mini-Batch Size
_ ' B Random w/ Clipping Disabled via Decreased Rollout Batch Size
o T 1.0
<0.6 gg‘éﬁﬂ ﬁﬂ . Kﬁ""' : 0.9
o g - =0, Ty VW
3 RNV Tl
T0.5 0. o o
= qgg £ 0.5
= Z0.1 0.4
0.4 0.0 0.3
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Training Step Training Step
0 50 100 150 200 250 (a) Performance on MATH-500 (b) Frequency of Code Reasoning
‘raining Step (1) directly turning off the clipping term
B Random 7 = 0.7 M Random y = 0.5 (2) adjusting training and rollout batch sizes
B Random v = 0.3 B Random v = 0.001 ( 0 Id)
[J Rand =10 — . . ~ .
Aneom n no Clipping: ~21% performance gain

Optimizing algorithm's bias toward exploiting priors learne

Except fory =0,
during pretraining (Amplify penalties, Regulate rewards)

y do not affect the final performance



Conclusion

Summary

(1) RLVR with spurious rewards (random, incorrect, format-only) improves Qwen2.5-
Math by amplifying pre-existing code reasoning patterns rather than teaching new skills.

(2) Code reasoning frequency increases from 65% to 90%+ during training, directly
correlating with performance gains across all reward types.

(3) Model-dependent effects — spurious rewards work for Qwen families but
consistently fail for Llama and OLMo models

Key Implications

(1) Pretraining determines outcomes — RLVR effectiveness depends on what reasoning
patterns already exist in the base model.

(2) Spurious signals can work — when they trigger beneficial pre-trained behaviors like
code reasoning capabilities.



R-Zero: Selt-Evolving LLM from Zero
Data

By Lisa Zhu




Motivation

* LLMs need huge amounts of human-curated data and labels for fine-
tuning

* Costly, slow, and limits scalability toward true self-evolving Al

* Existing “label-free” methods still rely on pre-existing tasks or
external verification

* R-Zero: Fully autonomous framework
* LLMs generates it own training data from scratch



Preliminaries

Group Relative Policy
Optimization(GRPO)

* Reinforcement Learning algorithm
for fine-turning LLMs

+ Separate-vatuefunetion-Compares

responses within the same group

e Uses z-score normalization of
rewards: each answer is judged
relative to others

* Encourages better responses while
preventing large policy drift

Reinforcement Learning with
Verifiable Rewards (RLVR)

e Paradigm for fine-tuning models

* Applies when response quality can
be objectively checked

* Uses rule-based verifier
 Reward =1 if correct, O if wrong

* Foundation for training the Solver
In R-Zero



Update by GRPO with Uncertainty Reward

[ 6 1 d 7 - B iy, 0.2 Yim} o 7

Challenger > = > Solver > m—:;'ﬁ—,,;l’ _

\ J i of \ 44 . {y:.lv Yi2«-. y:,m} Y
Challenger Solver
training training

'«" @"\ L : b f Vi, ¥12---Y1im} . L Y

| ori

' Challenger L" —>»  Solver —> %'ﬁ_ngtl’ -

L LS —] 2; Y e {y..n.y,.z- .o !l.,m} Y

I |

* R-Zero = Challenger + Solver, initialized from the same LLM.

M th d | * Works in an iterative loop:
e 04O Ogy * Challenger generates synthetic questions via GRPO.

Ove rVi ew  Solver trains on these questions with pseudo-labels.
* Self-supervised: no human labels required.

* Goal: Challenger and Solver co-evolve, making Solver
increasingly stronger



Challenger & Solver Training

Challenger (Q06) Solver (S¢)
* Generates challenging questions * Fine-tuned on Challenger’s filtered
via GRPO. guestion set.
* Guided by reward signals * Uses GRPO with a verifiable reward:
(uncertalnty, penaltles). . 1, if x; is identical to the pseudo-label ¥,
e Goal: push Solver to face 7710, otherwise.

rogressively harder tasks
Prog Y * Learns to correctly answer

increasingly difficult questions



runcertainty(x}(P) =1-2 ﬁ(x; SfP) _ %

Rewara
— Unce
Rewaro

Function
tainty

* Encourages questions with mid-level
difficulty.

 Solver’s accuracy on question x:

p(x;S9) = 3 Lity Hy; = §(x)}
* Maximized when Solver accuracy =

50%, forcing learning on “frontier”
problems



Repetition & Format Penalties

* Repetition Penalty
* Prevents generating near-duplicate questions.
* Uses BLEU score similarity; larger clusters - larger penalty.

e Formula: C

* Format Check Penalty

e Structural rule: guestion must be enclosed in <question> & </question>
* If not, reward = 0 and question is discarded



Reward Function — Composite Reward

* Purpose: Combine signals from uncertainty and repetition to train
Challenger effectively.

* Formula:
ri = max (U; runcertamty(xz'} $) — rrep(xi))
* Interpretation:
 Starts from uncertainty reward (challenging but solvable questions).

e Subtracts penalty if question is too similar to others.
* Ensures reward > 0, preventing negative reinforcement.

» Takeaway: Final reward signal balances difficulty with diversity



* Models Tested

* Qwen3-4B / 8B - scale within same
family

* OctoThinker-3B / 8B — different
lineage (Llama-based)

* Ensures evaluation across two distinct
architectures
* Training Details

* Candidate pool: 8,000 questions per
iteration

* Solver samples 10 answers per question

Experiments Setup — * Keep only mid-consistency tasks (3=7
.. matched answers)
Models & Training

* Rewards: uncertainty (Solver confusion)




Experiments Setup — Benchmarks

 Mathematical Reasoning

e 7 Benchmarks: AMC, Minerva, MATH-500, GSMS8K, OlympiadBench, AIME-
2024, AIME-2025

* Test correctness, complexity, and comprehensiveness
* Metrics reported:

* AMC & AIME: mean@123

* Others: accuracy (greedy decoding)

* General Domain Reasoning
 MMLU-Pro: Harder multi-task questions (language model capabilities)
* SuperGPQA: Graduate-level reasoning across 285 disciplines
 BBEH: More difficult BIG-Bench tasks for complex reasoning



Math Reasoning Resu |t5 Scores improve with each iteration; first

+ Findings iteration already gives a strong boost,

. Consistent gains across all showing RL-trained Challenger is critical
models ( QWG n3 & OctoThinker Model Name AVG AMC Minerva MATH GSMSK Olympiad AIME25 AIME24
op- Qwen3-4B-Base
families ) Base Model 4258 4570 3824 6820  87.79 41.04 6.15 10.94
Q 3-8B: +5.51 ] 49 18 Base Challenger 4436 4500 4522 7280  87.87 41.19 7.29 11.15
o wen3-8B: +5. POI nts ( . R-Zero(ter 1) 4806 5156 5147 7860 9128 43.85 9.17 10.52
R-Zero (ter2) 4844 5250 5147 7980  91.66 4430 427 15.10
. . R-Zero (ter 3)  49.07 57.27 5294 7960 9212 44.59 427 12.71
—> 54.69 after 3 iterations) e
. . . Base Model 4918 5195 5000 7800  89.08 4474 16.67 13.85
e OctoThinker-3B: +2.68 points Base Challenger 5187 6070 5772 8160  92.56 46.44 1344 1062
R-Zero(ter 1) 5339 6156 5993 8200 9371 48.00 14.17 14.37
( 26.64 - 29.32 ) RZero(ter2) ~ 5384 6156  59.93 8200  93.93 48.30 1760  13.54
R-Zero (ter 3) 5469 61.67  60.66 8200  94.09 48.89 1917 1635
* L3 rger models im prove more, OctoThinker-3B
] ) Base Model 2664 17.19 2426 5500  73.69 16.15 0.21 0.00
Base Challenger 2751 20.19 2463 5460 7498 15.70 0.10 2.40
but smaller ones still benefit R-Zero(ter 1) ~ 27.76 2039 2574 5460 7551 16.30 0.10 1.67
. . R-Zero(Iter2) 2820 2406 2537 5480 7445 17.48 0.00 1.25
° Ta keaway: R-Ze ro IS EffECtlve & R-Zero (Iter 3) 2932 27.03  27.57 54.20 74.98 18.22 3.23 0.00
. . OctoThinker-8B
mOd el-a g nostic ) bQOSt N g Base Model 3641 3211 4191 65.20 86.96 26.52 1.56 0.62
Base Challenger 3698 2930 4228 6620  88.10 27.56 1.04 438
R-Zero(ter 1) ~ 37.80 3297 4522 6560  86.96 28.44 1.98 3.44
pe rformance across scales and RZero(Iter2) 3823 3258 4853 6720  87.11 27.26 0.00 4.90
R-Zero(ter 3) 3852 3403 4822 6880  87.19 27.56 0.42 3.44

architectures



General Results Reasoning

Model Name Overall AVG MATH AVG  SuperGPQA MMLU-Pro BBEH
Qwen3-4B-Base . .
Base Model 27.10 4258 20.88 37.38 7.57 ® F N d N g S:
Base Challenger 30.83 44.36 24.77 47.59 6.59
R-Zero (Iter 1) 34.27 48.06 27.92 51.69 9.42 ° _ :
roaes L t64s R-Zero improves all tested models
R-Zero (Iter 3) 34.64 49.07 27,55 51.53 10.42 . | .
Ovwen3-3B-Base IN general reasoning
Base Model 34.49 49.18 2833 51.80 8.63 .
Base Challenger 36.43 51.87 30.12 54.14 9.60 * Qwen3-8B: +3.81 points (3449 -
R-Zero (Iter 1) 37.93 53.39 3126 57.17 9.91
R-Zero (Iter 2) 38.45 53.84 31.58 58.20 10.20 3 8 7 3 )
R-Zero (Iter 3) 38.73 54.69 3138 58.23 10.60 .
OctoThinker 3B * OctoThinker-3B: +3.65 points
Base Model 1227 26.64 10.09 10.87 1.46
Base Challenger 14.41 2751 11.19 14.53 4.40 ( )
R-Zero (Iter 1) 14.93 27.76 1221 15.72 4.05 12.27 - 15.67
R-Zero (Iter 2) 15.11 28.20 1243 16.08 3.74 . .
R-Zero (Iter 3) 15.67 29.32 12.44 16.71 4.20 * |terative galns across 3 rou ndS,
OctoThinker-8B . .
Base Model 16.81 32.11 13.26 20.21 1.64 similar to math results
Base Challenger 25.08 36.41 16.99 41.46 5.46 ,
R-Zero (Iter 1) 26.44 37.80 19.15 42.05 6.77 ° e R_ _
ey DR o s 0 o Takeaway: R-Zero’s math-based
R-Zero (Iter 3) 26.88 38.52 19.82 40.92 8.25

training transfers to general
These gains are not domain-specific — they generalize reasoning skills

beyond math and enhance core reasoning ability



Analysis — Ablation Study

* Removing RL-Challenger,
Filtering, or Repetition
Penalty - sharp performance
drop.

e Biggest loss: without RL-
Challenger (-3.7 math, -4.1
general).

e Takeaway: Each module is
essential; Challenger RL drives
curriculum quality

Method Math AVG General AVG
R-Zero (full) 48.06 30.41
Ablations

~w /o RL-Challenger 44 36 26.32

~w /o Rep. Penalty 45.76 27.56

- w /o Filtering 47.35 24.26




Analysis — Difficulty &
Synergy

2.35

Ln
=}

|

=y
o

—a— R-Zero Only
R-Zera + Hurman Labels

L T * Difficulty Evolution: Challenger makes
B tasks harder each round, but pseudo-
label accuracy falls (79% — 63%)

* Synergy with Human Labels: Adding
labeled data after R-Zero training yields

Performance (AWG Score)
& I
I 5]

Performance of Evaluated Model (vs. Ground Truth) [ . .
Base Model Solver (Iter 1) Solver (Iter 2) Solver (Iter 3) Pseudo-Label Acc. +2 L] 3 5 p OI nts Ove r S u p e rV I Se d b a S e | I n e
Diter 1 48.0 59.0 57.0 61.0 79.0%
Dhter 2 52.5 53.0 515 53.5 69.0% . . .
Dis 40 w70 * Takeaway: R-Zero improves difficulty

handling, and works even better when
combined with human labels



R-Zero (ours) Single-R-Zero

° °
Iteration Performance Pseudo-label Acc (%) Performance Pseudo-label Acc (%)
N
Ite 48.06 71.0 47.31 63.4

Iteration Model Size

e Iteration Scaling: Larger models delay collapse; small 06B 1.7B 4B
models degrade earlier. Iter 1 706 694 71.0

* Label Noise: Collapse linked to declining pseudo- ﬂerg gg: ggi ig‘;
label accuracy (but not the sole factor). €r ' ' '

v ) Iter 4 440 452 422

* Two-Model Design: Separate Challenger & Solver
sustains higher performance (49.07 vs 45.57 for g™ : —
Single-R-Zero). 54 —

* Takeaway: Bigger models and two-model design 850 e ————
stabilize training, but collapse risk remains. / Model Size: 1.78

Tl —a— Model Size: 4B

Checkpoint Viarsion



e Contribution: R-Zero is the first framework
to evolve reasoning LLMs with no external
data

* Impact: Moves toward more autonomous &
scalable Al training

e Limitations

* Works best in domains with objectively
verifiable answers (math)

* Remains challenge in open-ended domains

* Future Directions
* Improve label quality
* Extend to broader reasoning
* Prevent long-term collapse




Thank you!
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