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Background

Reasoning models leverage Chain-of-Thought (CoT) for stronger reasoning (e.g., OpenAI o1, 
DeepSeek R1)

Key driver: Reinforcement learning (RL) enable iterative strategy refinement with PPO and GRPO

Importantly,  at rollout stage, generating more prompts can further enhance training

RL Powers LLM Reasoning

Rollout Scaling Benefits

higher-quality data

Stabilizes RL training

Improves model convergence

The main Challenge - Computational Resources



How to focus on sampling more valuable prompts?

Existing Methods
A new model to identify valuable data point

(No conclusive evidence of improving overall efficiency)

The value of a data point varies across models
and stages (non-adaptive)

Dynamic Sampling oversampling and filter out uninformative data only 
after rollout (additional rollout cost)

Ideal selective rollout 

algorithm

Online data 
selection

Self-adaptive 
rollout 

strategy

Low 
computational 

overheads

From the observation and analysis of GRPO to propose a new algorithm GRESO

Static Data Pruning



Group Relative Policy Optimization (GRPO)

Objective function 

one prompt → a group of response corresponding with a group of rewards {r1, r2, r3,…,rG}

Ai,t  → advantage function to evaluate whether an example can provide learning signal

Prompts

Uninformative

Output1：5

Output2：5

…

OutputG: 5​

informative

Output1：1

Output2：5

…

OutputG: 23​
Effective Prompts

High Variance



GRPO Observations

Observation 1 Effective Prompts Ratio keeps decreasing as the training proceeds

Varying EPR  hurt training stability and final model performance

Zero-Variance prompts 

80% 
5 times Rollouts

Maintain batch size

Observation 2

P(Previous | Current): 90% ~ P( Current | Previous) ~ 80%

The information value of a prompt is continuous and 
predictable over time

in most cases it remains consistent (zero-variance stays 
zero-variance), but a small portion may transition.

Identifying  Priors to Rollout

Retain Potentially Valuable Prompts



Algorithm GRPO with Efficient Selective Rollout (GRESO)

ei, j denotes the epoch number （example xi and j-th sampling）
Ri, 1 represents the set of response rewards

Identifying  Priorly ：formalize the problem of zero-variance prompt detection

To predict whether xi is a zero-variance prompt

Probabilistic Pre-rollout Prompt Filtering :

Example: variance

Epoch 1：0

Epoch 2：0

Epoch 3:   1

Epoch 4:    0​

[1, 1, 0, 1]

Zi = 2 



Algorithm GRPO with Efficient Selective Rollout (GRESO)

Probabilistic Pre-rollout Prompt Filtering :

Dynamically adjusting Pe and Batchsize

Pe denotes base exploration probability (Pe   Pf )
Pf denotes probability of Pre-rollout Prompt Filtering

n_filtered /n_total > α Pe 

More  probability to filter zero-variance

Dynamical batchsize → no extra waste



Experiment

End-to-end Efficiency Comparison

No performance drop with 
up to 3.35× fewer rollouts and up to 2.4x wall-clock time speed-up



Experiment

Analysis and Ablation Study

DS：Filters zero-variance prompts after rollout, but effective ratio drops and costs rise
GRESO：Skips zero-variance prompts before rollout, keeping >70% effective ratio and lower cost



Experiment

Dynamics of self-adjustable base exploration probabilities.

GRESO adaptively adjusts exploration probabilities without manual tuning
As the model improves, Pe increases to explore harder examples



Conclusion

Key Contribution

GRESO : Act only when it pays, a novel algorithm to optimize rollout selection

3.35x fewer
rollouts

2.4x rollout
Speed up

2.0x overall 
training

Speed up

Future Prospects

Extending selective rollouts to broader domains and more sophisticated data selection



Beyond the 80/20 Rule: High-Entropy 
Minority Tokens Drive Effective 
Reinforcement Learning for LLM Reasoning

By Gio Song



Background

Why Token-Level Analysis in RLVR Matters

• Reinforcement Learning for Verifiable Reasoning (RLVR) has become the
standard alignment method for LLMs. But it shows only moderate gains

• Most prior work focuses on:

• Algorithmic innovation (e.g., DAPO)

• Task adaptation beyond math (e.g., Absolute Zero)

• Empirical tricks (e.g., One-shot training)

• Missing: analysis of how specific tokens contribute to performance



Why This Paper?

So What Are We Missing in RLVR?

• Prior work treats all tokens equally during training

• But not all tokens are equally important in reasoning!

• Question: Can we identify and optimize the right tokens?

Quote for emphasis:

• “High-entropy tokens may decide reasoning paths, not just language forms.”

• Studying tokens, in fact, means studying the conditional probability
distribution of the next token output by an LLM.



Key insights

Token Type Entropy Role in Output

Low-entropy Very stable
Fills in predictable structure
(e.g., math formulas, code)

High-entropy Uncertain
Drives reasoning direction; 
controls "forks" in logic

Example:

 Blue tokens = low-entropy;  red tokens = high-entropy (forking tokens)



Further Discoveries

• Slightly increasing entropy of high-entropy tokens improves performance

• RLVR primarily adjusts the entropy of high-entropy tokens, while low-
entropy tokens remain largely unchanged



Main Experiment & Ablation Experiment

Based on earlier findings, the authors 
hypothesize that:

• Optimizing the conditional distributions of 
low-entropy tokens is unnecessary.

• Instead, only high-entropy tokens (≈20% of 
all tokens) need targeted gradient updates 
to replicate most of the RL benefits.

The authors also tune the proportion of 
tokens to treat as “high-entropy” and find:

• 20% is optimal for balancing performance 
and gradient efficiency.



Preliminaries

1.Token Entropy

Token entropy is based on the conditional probability distribution over the vocabulary 
at each step, not the specific token identity.

2.DAPO – Dynamic sAmpling Policy Optimization

• DAPO selects partially correct prompts for training.

• Encourages learning from useful but imperfect trajectories.

• Advantage estimation ensures training focuses on relatively better samples.



Pre--Experiment
3.1 Token Entropy in Chain-of-Thought (CoT)

• Goal: Analyze entropy distributions in CoT outputs

Key Analysis:

• Token Entropy Distribution:
• Only 20% of tokens have entropy > 0.672

• Most tokens are low-entropy — structural or formulaic

• High-entropy tokens are rare, but impactful

• Word Cloud Visualization

Conclusion:

High-entropy tokens play a decisive role in branching logic
They are termed “forking tokens”



Entropy Intervention Experiment
Method:
• Define threshold: Hthreshold=0.672

• Use adaptive temperature scaling:

• Test two conditions:

• Fix Tlow=1, vary Thigh (Red Curve)

• Fix Thigh=1, vary Tlow (Blue Curve)

Insight:
Selectively increasing entropy at forking

tokens improves Reasoning

This mirrors the effect of RL training, where
entropy change is  concentrated at decision-
critical points



Pre--Experiment
3.2: RLVR Retains and Strengthens Entropy Patterns of Base Models

1) RLVR Retains Entropy Structure of the Base Model

Compare the top 20% high-entropy tokens between:

• Base model

• Intermediate RLVR models

• Final RLVR model

86% of high-entropy tokens 
remain consistent



Pre--Experiment

3.2: RLVR Retains and Strengthens
Entropy Patterns of Base Models

2) RLVR Selective Entropy Adjustment:

• Tokens grouped by 5% entropy 
percentile intervals (from low to high)

• Compute average entropy change 
after RLVR for each group

RLVR keeps the original token distribution structure intact
but selectively increases entropy for a small set (top 20%) of tokens

This sets the foundation for training only high-entropy tokens in later sections.



Main--Experiment
Adapted DAPO objective for only high-entropy tokens:

 

• Only tokens with entropy ≥ top-p threshold  are used

• This means RL updates only the most informative tokens

Reinforcement learning 
performance boost is largely 
driven by forking tokens



Further--Experiment
1. Varying ρ (proportion of high-entropy tokens)

2. Model Size Impact

Smaller subset of tokens (high entropy) can drive 
stronger performance, reducing cost while 
increasing quality.
--foundational claim of the article



Analysis

Aspect Finding

Cross-task generalization
High-entropy token updates improve transfer
(math → code)

Long-context reasoning
Training with forking tokens supports longer 
outputs and deeper logic

Portability to smaller models
Works well even under low-compute, small-
model cold-start scenarios. model-agnostic



Discussion, Conclusion & Limitations

Discussion & Conclusions

• Why High-Entropy Tokens Matter in RL

• LLM CoT and Token Entropy

• Why RLVR Works

Limitations & Further Improvement

• Mainly on Qwen models.

• Dataset limited to mathematical 
reasoning.

• Results are experiment-specific.

Develop better RLVR algorithms

• Supervised fine-tuning (SFT)

• Distillation

• Inference pipelines

• Multi-modal training



Spurious Rewards: Rethinking Training 
Signals in RLVR

Lisa Zhu, Hang Yang, Gio Song



Core Idea & Findings

• Reinforcement Learning with Verifiable Rewards (RLVR) improves 
reasoning in LLMs

• Surprisingly, it works even with spurious rewards
• Random, wrong, or irrelevant

• Qwen2.5-Math-7B
• Random rewards: 21.4%

• Wrong label: +24.1%

• Performance gains nearly match ground truth training



Additional 
Insights

• Model differences
• Strong gains for Qwen2.5-Math

• Little or negative effect on Llama3 & OLMo2

• Code reasoning (thinking in code without 
actual code execution):
• Distinctive behavior for Qwen2.5-Math

• Becomes more frequent after RLVR

• From 65% → 90%

• Implication
• RLVR surfacing latent abilities from pretraining

• Not reward signal itself



Experiment & Results I

• Goal: Test if RLVR still improves reasoning 
with weaker or spurious rewards instead of 
ground truth

• Method:

• Base model: Qwen2.5-Math

• Training: GRPO algorithm, DeepScaleR 
dataset

• GRPO finetune base model

• DeepScaleR trained with spurious 
binary (0-1) reward functions 

• Investigate the limits of how little 
supervision is needed for RLVR training



Experiment & Results II

• Types of rewards tested
• Standard to Weak to Spurious

• Ground Truth → Majority Vote 
→ Format → Random 
→Incorrect
• Ground Truth: Correct answers 

only

• Incorrect: Deliberately reward 
wrong answers from pseudo-
labeling

• Results
• All reward types have significant 

math gains within 1st 50 steps

• Smaller model also improves, but 
more slowly

• Takeaway: RLVR boosts 
performance even with spurious 
signals

→ Elicit latent abilities from 
pretraining



Cross-
Model 
Analysis

• Goal: Test if spurious-reward gains generalize across 
models

• Models: Qwen2.5-Math vs. OLMo2 vs. Llama3

• Findings:
• Qwen2.5-Math: large gains even with spurious 

rewards

• OLMo2 & Llama3: minimal or negative gains

• Why Qwen

• Exhibits strong code reasoning (i.e. writes math 
steps in Python)

• Accuracy: 61% with code vs. 28% without

• Takeaway: Spurious rewards amplify latent code-
reasoning abilities in Qwen, not transferable to 
other model



What makes Qwen so SPECIAL?--Code Reasoning

• Observation: The Qwen2.5-Math model frequently 
generates Python code as a method of reasoning 

• More structured and accurate solutions.

• Evidence: 65%+ code reasoning frequency. After 
RLVR (even with random or incorrect rewards), this 
frequency rises above 90%.

• Why this matters:
Code reasoning leads to significantly higher 
accuracy（60.9%）.   Only 35.0% on responses 
with natural language reasoning.

• Other models (e.g., OLMo, LLaMA) either do not 
use code (No-Code) or use it ineffectively (Bad-
Code), and hence don’t benefit similarly from RLVR.



RLVR with Spurious Rewards Amplifies Pretrained 
Reasoning Strategies

• Why do spurious rewards work?

• Evidence: Code Reasoning Frequency Strongly 
Correlates with Accuracy

• Before RLVR: Qwen2.5-Math-7B uses code 
reasoning in 65% of outputs.

• After RLVR: rises to 90–95%, and accuracy 
increases alongside.

• Random reward leads to slower increase but 
eventually hits 95.6% code reasoning rate.

• True label reward causes an initial spike in code 
usage, but this later declines as the model 
learns to solve more via natural language.



RLVR with Spurious Rewards Amplifies Pretrained 
Reasoning Strategies

The authors examine performance shifts across 4 reasoning transition patterns:

Two main metrics were tracked:
• Subset frequency (how often that strategy occurred)
• Subset accuracy (how correct it was)

Code→Code Code reasoning before and after training

Code→Lang Switch from code to language reasoning

Lang→Code Switch from language to code reasoning

Lang→Lang Natural language reasoning both before and after



RLVR with Spurious Rewards Amplifies Pretrained 
Reasoning Strategies

Findings from Strategy Shift Analysis:
• Under spurious and weak rewards, Qwen2.5-Math-7B tends to:

• Maintain code reasoning if it already used it.（Code→Lang）
• Switch from language to code reasoning (Lang→Code) in most other cases.

• True reward does not cause the same shift 

Other models behave differently:
• Qwen2.5-7B sees a decline in code reasoning under correct/majority/incorrect rewards 

• OLMo2-7B-SFT also shows decreased code use under valid reward signals.

• LLaMA and other No-Code models show no meaningful change in strategy.



Analysis

• Qwen-Math models improve by switching into their strength 
(code reasoning).

• Other models improve by abandoning inefficient strategies, 
like code reasoning, in favor of simpler text reasoning.

• For Qwen2.5-Math, the performance gains from spurious 
reward do not reflect new skill acquisition, but rather the 
amplification of a previously learned, effective strategy (code 
reasoning).

• RLVR, particularly with non-informative or even 
misleading reward signals, can still work extremely well 
— if and only if the underlying model has already 
internalized useful reasoning strategies during 
pretraining.



Interventions on code reasoning

Impact of Increased Code Reasoning on Performance

（1）Prompting (Answer begin with “let‘s 
solve this using python”)

（2）RLVR(Assign a positive rewards only 
answer contain “python”)

Qwen model :       Llama, OLMo : Qwen2.5-Math-7B model generated code 
reasoning in its' answer >99% just 20 training steps



Inhibiting code reasoning during RLVR with spurious rewards

Reward a response if and only if：

（1）spurious reward condition (original) （2）no string "python" (compound)

Qwen math model : (1) format reward   (2) Incorrect reward  (AMC )  
            （3）Ground truth  Performance improvement ≠ sole code reasoning frequency

Bad code model : Compoud rewards >  Original  (downweight suboptimal  model behavior)



Curious cases： Training Signals from Incorrect Rewards and 
Random Rewards 

Hypothesis： Incorrect Rewards → Reasoning

（1）many incorrect labels remain close to ground truth values  （ positive reinforcement）

（2）incorrect labels may function like format reward （some degree of correct ）

Hypothesis from someone：most rewarded answers are correct （X）

Random Rewards → Reasoning

Rewarded response : correct > incorrect Penalized response : correct > incorrect

Normalization of reward in GRPO Random rewards ≠  bias toward correct answers

Why random rewards worked？



Why random rewards worked？

Experiment 1 ：
Random rewards with varying probabilities 

Experiment 2：
Clipping function enabled Vs disabled

Except for γ = 0,
γ  do not affect the final performance

（1）directly turning off the clipping term 

（2）adjusting training and rollout batch sizes 
（ πθ = πold）Clipping: ~21% performance gain

Optimizing algorithm's bias toward exploiting priors learned 
during pretraining (Amplify penalties, Regulate rewards)



Conclusion

Summary

（1）RLVR with spurious rewards (random, incorrect, format-only) improves Qwen2.5-
Math by amplifying pre-existing code reasoning patterns rather than teaching new skills.
（2）Code reasoning frequency increases from 65% to 90%+ during training, directly 
correlating with performance gains across all reward types.
（3）Model-dependent effects — spurious rewards work for Qwen families but 
consistently fail for Llama and OLMo models

Key Implications​

（1）Pretraining determines outcomes — RLVR effectiveness depends on what reasoning 
patterns already exist in the base model.
（2）Spurious signals can work — when they trigger beneficial pre-trained behaviors like 
code reasoning capabilities.



R-Zero: Self-Evolving LLM from Zero 
Data

By Lisa Zhu



Motivation



Preliminaries
Group Relative Policy 
Optimization(GRPO)

• Reinforcement Learning algorithm 
for fine-turning LLMs

• Separate value function Compares 
responses within the same group

• Uses z-score normalization of 
rewards: each answer is judged 
relative to others

• Encourages better responses while 
preventing large policy drift

Reinforcement Learning with 
Verifiable Rewards (RLVR)

• Paradigm for fine-tuning models

• Applies when response quality can 
be objectively checked

• Uses rule-based verifier
• Reward = 1 if correct, 0 if wrong

• Foundation for training the Solver 
in R-Zero



Methodology 
Overview

• R-Zero = Challenger + Solver, initialized from the same LLM.

• Works in an iterative loop:
• Challenger generates synthetic questions via GRPO.

• Solver trains on these questions with pseudo-labels.

• Self-supervised: no human labels required.

• Goal: Challenger and Solver co-evolve, making Solver 
increasingly stronger



Challenger & Solver Training

Challenger (Qθ)
• Generates challenging questions 

via GRPO.

• Guided by reward signals 
(uncertainty, penalties).

• Goal: push Solver to face 
progressively harder tasks

Solver (Sφ)
• Fine-tuned on Challenger’s filtered 

question set.

• Uses GRPO with a verifiable reward: 

• Learns to correctly answer 
increasingly difficult questions



Reward Function 
– Uncertainty 
Reward

• Encourages questions with mid-level 
difficulty.

• Solver’s accuracy on question 𝑥:

• Maximized when Solver accuracy ≈ 
50%, forcing learning on “frontier” 
problems



Repetition & Format Penalties

• Repetition Penalty
• Prevents generating near-duplicate questions.

• Uses BLEU score similarity; larger clusters → larger penalty.

• Formula:

• Format Check Penalty
• Structural rule: question must be enclosed in <question> & </question>

• If not, reward = 0 and question is discarded



Reward Function – Composite Reward

• Purpose: Combine signals from uncertainty and repetition to train 
Challenger effectively.

• Formula:

• Interpretation:
• Starts from uncertainty reward (challenging but solvable questions).

• Subtracts penalty if question is too similar to others.

• Ensures reward ≥ 0, preventing negative reinforcement.

• Takeaway: Final reward signal balances difficulty with diversity



Experiments Setup – 
Models & Training

• Models Tested
• Qwen3-4B / 8B → scale within same 

family

• OctoThinker-3B / 8B → different 
lineage (Llama-based)

• Ensures evaluation across two distinct 
architectures

• Training Details
• Candidate pool: 8,000 questions per 

iteration

• Solver samples 10 answers per question

• Keep only mid-consistency tasks (3–7 
matched answers)

• Rewards: uncertainty (Solver confusion)



Experiments Setup – Benchmarks

• Mathematical Reasoning
• 7 Benchmarks: AMC, Minerva, MATH-500, GSM8K, OlympiadBench, AIME-

2024, AIME-2025
• Test correctness, complexity, and comprehensiveness
• Metrics reported:

• AMC & AIME: mean@123
• Others: accuracy (greedy decoding)

• General Domain Reasoning
• MMLU-Pro: Harder multi-task questions (language model capabilities)
• SuperGPQA: Graduate-level reasoning across 285 disciplines
• BBEH: More difficult BIG-Bench tasks for complex reasoning



Math Reasoning Results
• Findings

• Consistent gains across all 
models (Qwen3 & OctoThinker 
families)

• Qwen3-8B: +5.51 points (49.18 
→ 54.69 after 3 iterations)

• OctoThinker-3B: +2.68 points 
(26.64 → 29.32)

• Larger models improve more, 
but smaller ones still benefit

• Takeaway: R-Zero is effective & 
model-agnostic, boosting 
performance across scales and 
architectures

Scores improve with each iteration; first 
iteration already gives a strong boost, 

showing RL-trained Challenger is critical



General Results Reasoning

• Findings:
• R-Zero improves all tested models 

in general reasoning
• Qwen3-8B: +3.81 points (34.49 → 

38.73)
• OctoThinker-3B: +3.65 points 

(12.27 → 15.67)
• Iterative gains across 3 rounds, 

similar to math results

• Takeaway: R-Zero’s math-based 
training transfers to general 
reasoning skillsThese gains are not domain-specific — they generalize 

beyond math and enhance core reasoning ability



Analysis – Ablation Study

• Removing RL-Challenger, 
Filtering, or Repetition 
Penalty → sharp performance 
drop.

• Biggest loss: without RL-
Challenger (−3.7 math, −4.1 
general).

• Takeaway: Each module is 
essential; Challenger RL drives 
curriculum quality



Analysis – Difficulty & 
Synergy

• Difficulty Evolution: Challenger makes 
tasks harder each round, but pseudo-
label accuracy falls (79% → 63%)

• Synergy with Human Labels: Adding 
labeled data after R-Zero training yields 
+2.35 points over supervised baseline

• Takeaway: R-Zero improves difficulty 
handling, and works even better when 
combined with human labels



Analysis – Scaling & 
Design

• Iteration Scaling: Larger models delay collapse; small 
models degrade earlier.

• Label Noise: Collapse linked to declining pseudo-
label accuracy (but not the sole factor).

• Two-Model Design: Separate Challenger & Solver 
sustains higher performance (49.07 vs 45.57 for 
Single-R-Zero).

• Takeaway: Bigger models and two-model design 
stabilize training, but collapse risk remains.



Conclusion

• Contribution: R-Zero is the first framework 
to evolve reasoning LLMs with no external 
data

• Impact: Moves toward more autonomous & 
scalable AI training

• Limitations
• Works best in domains with objectively 

verifiable answers (math)

• Remains challenge in open-ended domains

• Future Directions
• Improve label quality

• Extend to broader reasoning

• Prevent long-term collapse



Thank you!
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