
Efficient RLVR
(Data & Computation)

Hang Yang, Gio Song, Lisa Zhu

Act Only When It Pays: Efficient
Reinforcement Learning for LLM
Reasoning via Selective Rollouts

By Hang Yang

Background

Reasoning models leverage Chain-of-Thought (CoT) for stronger reasoning (e.g., OpenAI o1,
DeepSeek R1)

Key driver: Reinforcement learning (RL) enable iterative strategy refinement with PPO and GRPO

Importantly, at rollout stage, generating more prompts can further enhance training

RL Powers LLM Reasoning

Rollout Scaling Benefits

higher-quality data

Stabilizes RL training

Improves model convergence

The main Challenge - Computational Resources

How to focus on sampling more valuable prompts?

Existing Methods
A new model to identify valuable data point

(No conclusive evidence of improving overall efficiency)

The value of a data point varies across models
and stages (non-adaptive)

Dynamic Sampling oversampling and filter out uninformative data only
after rollout (additional rollout cost)

Ideal selective rollout

algorithm

Online data
selection

Self-adaptive
rollout

strategy

Low
computational

overheads

From the observation and analysis of GRPO to propose a new algorithm GRESO

Static Data Pruning

Group Relative Policy Optimization (GRPO)

Objective function

one prompt → a group of response corresponding with a group of rewards {r1, r2, r3,…,rG}

Ai,t → advantage function to evaluate whether an example can provide learning signal

Prompts

Uninformative

Output1：5

Output2：5

…

OutputG: 5​

informative

Output1：1

Output2：5

…

OutputG: 23​
Effective Prompts

High Variance

GRPO Observations

Observation 1 Effective Prompts Ratio keeps decreasing as the training proceeds

Varying EPR hurt training stability and final model performance

Zero-Variance prompts

80%
5 times Rollouts

Maintain batch size

Observation 2

P(Previous | Current): 90% ~ P(Current | Previous) ~ 80%

The information value of a prompt is continuous and
predictable over time

in most cases it remains consistent (zero-variance stays
zero-variance), but a small portion may transition.

Identifying Priors to Rollout

Retain Potentially Valuable Prompts

Algorithm GRPO with Efficient Selective Rollout (GRESO)

ei, j denotes the epoch number （example xi and j-th sampling）
Ri, 1 represents the set of response rewards

Identifying Priorly ：formalize the problem of zero-variance prompt detection

To predict whether xi is a zero-variance prompt

Probabilistic Pre-rollout Prompt Filtering :

Example: variance

Epoch 1：0

Epoch 2：0

Epoch 3: 1

Epoch 4: 0​

[1, 1, 0, 1]

Zi = 2

Algorithm GRPO with Efficient Selective Rollout (GRESO)

Probabilistic Pre-rollout Prompt Filtering :

Dynamically adjusting Pe and Batchsize

Pe denotes base exploration probability (Pe Pf)
Pf denotes probability of Pre-rollout Prompt Filtering

n_filtered /n_total > α Pe

More probability to filter zero-variance

Dynamical batchsize → no extra waste

Experiment

End-to-end Efficiency Comparison

No performance drop with
up to 3.35× fewer rollouts and up to 2.4x wall-clock time speed-up

Experiment

Analysis and Ablation Study

DS：Filters zero-variance prompts after rollout, but effective ratio drops and costs rise
GRESO：Skips zero-variance prompts before rollout, keeping >70% effective ratio and lower cost

Experiment

Dynamics of self-adjustable base exploration probabilities.

GRESO adaptively adjusts exploration probabilities without manual tuning
As the model improves, Pe increases to explore harder examples

Conclusion

Key Contribution

GRESO : Act only when it pays, a novel algorithm to optimize rollout selection

3.35x fewer
rollouts

2.4x rollout
Speed up

2.0x overall
training

Speed up

Future Prospects

Extending selective rollouts to broader domains and more sophisticated data selection

Beyond the 80/20 Rule: High-Entropy
Minority Tokens Drive Effective
Reinforcement Learning for LLM Reasoning

By Gio Song

Background

Why Token-Level Analysis in RLVR Matters

• Reinforcement Learning for Verifiable Reasoning (RLVR) has become the
standard alignment method for LLMs. But it shows only moderate gains

• Most prior work focuses on:

• Algorithmic innovation (e.g., DAPO)

• Task adaptation beyond math (e.g., Absolute Zero)

• Empirical tricks (e.g., One-shot training)

• Missing: analysis of how specific tokens contribute to performance

Why This Paper?

So What Are We Missing in RLVR?

• Prior work treats all tokens equally during training

• But not all tokens are equally important in reasoning!

• Question: Can we identify and optimize the right tokens?

Quote for emphasis:

• “High-entropy tokens may decide reasoning paths, not just language forms.”

• Studying tokens, in fact, means studying the conditional probability
distribution of the next token output by an LLM.

Key insights

Token Type Entropy Role in Output

Low-entropy Very stable
Fills in predictable structure
(e.g., math formulas, code)

High-entropy Uncertain
Drives reasoning direction;
controls "forks" in logic

Example:

 Blue tokens = low-entropy; red tokens = high-entropy (forking tokens)

Further Discoveries

• Slightly increasing entropy of high-entropy tokens improves performance

• RLVR primarily adjusts the entropy of high-entropy tokens, while low-
entropy tokens remain largely unchanged

Main Experiment & Ablation Experiment

Based on earlier findings, the authors
hypothesize that:

• Optimizing the conditional distributions of
low-entropy tokens is unnecessary.

• Instead, only high-entropy tokens (≈20% of
all tokens) need targeted gradient updates
to replicate most of the RL benefits.

The authors also tune the proportion of
tokens to treat as “high-entropy” and find:

• 20% is optimal for balancing performance
and gradient efficiency.

Preliminaries

1.Token Entropy

Token entropy is based on the conditional probability distribution over the vocabulary
at each step, not the specific token identity.

2.DAPO – Dynamic sAmpling Policy Optimization

• DAPO selects partially correct prompts for training.

• Encourages learning from useful but imperfect trajectories.

• Advantage estimation ensures training focuses on relatively better samples.

Pre--Experiment
3.1 Token Entropy in Chain-of-Thought (CoT)

• Goal: Analyze entropy distributions in CoT outputs

Key Analysis:

• Token Entropy Distribution:
• Only 20% of tokens have entropy > 0.672

• Most tokens are low-entropy — structural or formulaic

• High-entropy tokens are rare, but impactful

• Word Cloud Visualization

Conclusion:

High-entropy tokens play a decisive role in branching logic
They are termed “forking tokens”

Entropy Intervention Experiment
Method:
• Define threshold: Hthreshold=0.672

• Use adaptive temperature scaling:

• Test two conditions:

• Fix Tlow=1, vary Thigh (Red Curve)

• Fix Thigh=1, vary Tlow (Blue Curve)

Insight:
Selectively increasing entropy at forking

tokens improves Reasoning

This mirrors the effect of RL training, where
entropy change is concentrated at decision-
critical points

Pre--Experiment
3.2: RLVR Retains and Strengthens Entropy Patterns of Base Models

1) RLVR Retains Entropy Structure of the Base Model

Compare the top 20% high-entropy tokens between:

• Base model

• Intermediate RLVR models

• Final RLVR model

86% of high-entropy tokens
remain consistent

Pre--Experiment

3.2: RLVR Retains and Strengthens
Entropy Patterns of Base Models

2) RLVR Selective Entropy Adjustment:

• Tokens grouped by 5% entropy
percentile intervals (from low to high)

• Compute average entropy change
after RLVR for each group

RLVR keeps the original token distribution structure intact
but selectively increases entropy for a small set (top 20%) of tokens

This sets the foundation for training only high-entropy tokens in later sections.

Main--Experiment
Adapted DAPO objective for only high-entropy tokens:

• Only tokens with entropy ≥ top-p threshold are used

• This means RL updates only the most informative tokens

Reinforcement learning
performance boost is largely
driven by forking tokens

Further--Experiment
1. Varying ρ (proportion of high-entropy tokens)

2. Model Size Impact

Smaller subset of tokens (high entropy) can drive
stronger performance, reducing cost while
increasing quality.
--foundational claim of the article

Analysis

Aspect Finding

Cross-task generalization
High-entropy token updates improve transfer
(math → code)

Long-context reasoning
Training with forking tokens supports longer
outputs and deeper logic

Portability to smaller models
Works well even under low-compute, small-
model cold-start scenarios. model-agnostic

Discussion, Conclusion & Limitations

Discussion & Conclusions

• Why High-Entropy Tokens Matter in RL

• LLM CoT and Token Entropy

• Why RLVR Works

Limitations & Further Improvement

• Mainly on Qwen models.

• Dataset limited to mathematical
reasoning.

• Results are experiment-specific.

Develop better RLVR algorithms

• Supervised fine-tuning (SFT)

• Distillation

• Inference pipelines

• Multi-modal training

Spurious Rewards: Rethinking Training
Signals in RLVR

Lisa Zhu, Hang Yang, Gio Song

Core Idea & Findings

• Reinforcement Learning with Verifiable Rewards (RLVR) improves
reasoning in LLMs

• Surprisingly, it works even with spurious rewards
• Random, wrong, or irrelevant

• Qwen2.5-Math-7B
• Random rewards: 21.4%

• Wrong label: +24.1%

• Performance gains nearly match ground truth training

Additional
Insights

• Model differences
• Strong gains for Qwen2.5-Math

• Little or negative effect on Llama3 & OLMo2

• Code reasoning (thinking in code without
actual code execution):
• Distinctive behavior for Qwen2.5-Math

• Becomes more frequent after RLVR

• From 65% → 90%

• Implication
• RLVR surfacing latent abilities from pretraining

• Not reward signal itself

Experiment & Results I

• Goal: Test if RLVR still improves reasoning
with weaker or spurious rewards instead of
ground truth

• Method:

• Base model: Qwen2.5-Math

• Training: GRPO algorithm, DeepScaleR
dataset

• GRPO finetune base model

• DeepScaleR trained with spurious
binary (0-1) reward functions

• Investigate the limits of how little
supervision is needed for RLVR training

Experiment & Results II

• Types of rewards tested
• Standard to Weak to Spurious

• Ground Truth → Majority Vote
→ Format → Random
→Incorrect
• Ground Truth: Correct answers

only

• Incorrect: Deliberately reward
wrong answers from pseudo-
labeling

• Results
• All reward types have significant

math gains within 1st 50 steps

• Smaller model also improves, but
more slowly

• Takeaway: RLVR boosts
performance even with spurious
signals

→ Elicit latent abilities from
pretraining

Cross-
Model
Analysis

• Goal: Test if spurious-reward gains generalize across
models

• Models: Qwen2.5-Math vs. OLMo2 vs. Llama3

• Findings:
• Qwen2.5-Math: large gains even with spurious

rewards

• OLMo2 & Llama3: minimal or negative gains

• Why Qwen

• Exhibits strong code reasoning (i.e. writes math
steps in Python)

• Accuracy: 61% with code vs. 28% without

• Takeaway: Spurious rewards amplify latent code-
reasoning abilities in Qwen, not transferable to
other model

What makes Qwen so SPECIAL?--Code Reasoning

• Observation: The Qwen2.5-Math model frequently
generates Python code as a method of reasoning

• More structured and accurate solutions.

• Evidence: 65%+ code reasoning frequency. After
RLVR (even with random or incorrect rewards), this
frequency rises above 90%.

• Why this matters:
Code reasoning leads to significantly higher
accuracy（60.9%）. Only 35.0% on responses
with natural language reasoning.

• Other models (e.g., OLMo, LLaMA) either do not
use code (No-Code) or use it ineffectively (Bad-
Code), and hence don’t benefit similarly from RLVR.

RLVR with Spurious Rewards Amplifies Pretrained
Reasoning Strategies

• Why do spurious rewards work?

• Evidence: Code Reasoning Frequency Strongly
Correlates with Accuracy

• Before RLVR: Qwen2.5-Math-7B uses code
reasoning in 65% of outputs.

• After RLVR: rises to 90–95%, and accuracy
increases alongside.

• Random reward leads to slower increase but
eventually hits 95.6% code reasoning rate.

• True label reward causes an initial spike in code
usage, but this later declines as the model
learns to solve more via natural language.

RLVR with Spurious Rewards Amplifies Pretrained
Reasoning Strategies

The authors examine performance shifts across 4 reasoning transition patterns:

Two main metrics were tracked:
• Subset frequency (how often that strategy occurred)
• Subset accuracy (how correct it was)

Code→Code Code reasoning before and after training

Code→Lang Switch from code to language reasoning

Lang→Code Switch from language to code reasoning

Lang→Lang Natural language reasoning both before and after

RLVR with Spurious Rewards Amplifies Pretrained
Reasoning Strategies

Findings from Strategy Shift Analysis:
• Under spurious and weak rewards, Qwen2.5-Math-7B tends to:

• Maintain code reasoning if it already used it.（Code→Lang）
• Switch from language to code reasoning (Lang→Code) in most other cases.

• True reward does not cause the same shift

Other models behave differently:
• Qwen2.5-7B sees a decline in code reasoning under correct/majority/incorrect rewards

• OLMo2-7B-SFT also shows decreased code use under valid reward signals.

• LLaMA and other No-Code models show no meaningful change in strategy.

Analysis

• Qwen-Math models improve by switching into their strength
(code reasoning).

• Other models improve by abandoning inefficient strategies,
like code reasoning, in favor of simpler text reasoning.

• For Qwen2.5-Math, the performance gains from spurious
reward do not reflect new skill acquisition, but rather the
amplification of a previously learned, effective strategy (code
reasoning).

• RLVR, particularly with non-informative or even
misleading reward signals, can still work extremely well
— if and only if the underlying model has already
internalized useful reasoning strategies during
pretraining.

Interventions on code reasoning

Impact of Increased Code Reasoning on Performance

（1）Prompting (Answer begin with “let‘s
solve this using python”)

（2）RLVR(Assign a positive rewards only
answer contain “python”)

Qwen model : Llama, OLMo : Qwen2.5-Math-7B model generated code
reasoning in its' answer >99% just 20 training steps

Inhibiting code reasoning during RLVR with spurious rewards

Reward a response if and only if：

（1）spurious reward condition (original) （2）no string "python" (compound)

Qwen math model : (1) format reward (2) Incorrect reward (AMC)
 （3）Ground truth Performance improvement ≠ sole code reasoning frequency

Bad code model : Compoud rewards > Original (downweight suboptimal model behavior)

Curious cases： Training Signals from Incorrect Rewards and
Random Rewards

Hypothesis： Incorrect Rewards → Reasoning

（1）many incorrect labels remain close to ground truth values （ positive reinforcement）

（2）incorrect labels may function like format reward （some degree of correct ）

Hypothesis from someone：most rewarded answers are correct （X）

Random Rewards → Reasoning

Rewarded response : correct > incorrect Penalized response : correct > incorrect

Normalization of reward in GRPO Random rewards ≠ bias toward correct answers

Why random rewards worked？

Why random rewards worked？

Experiment 1 ：
Random rewards with varying probabilities

Experiment 2：
Clipping function enabled Vs disabled

Except for γ = 0,
γ do not affect the final performance

（1）directly turning off the clipping term

（2）adjusting training and rollout batch sizes
（ πθ = πold）Clipping: ~21% performance gain

Optimizing algorithm's bias toward exploiting priors learned
during pretraining (Amplify penalties, Regulate rewards)

Conclusion

Summary

（1）RLVR with spurious rewards (random, incorrect, format-only) improves Qwen2.5-
Math by amplifying pre-existing code reasoning patterns rather than teaching new skills.
（2）Code reasoning frequency increases from 65% to 90%+ during training, directly
correlating with performance gains across all reward types.
（3）Model-dependent effects — spurious rewards work for Qwen families but
consistently fail for Llama and OLMo models

Key Implications​

（1）Pretraining determines outcomes — RLVR effectiveness depends on what reasoning
patterns already exist in the base model.
（2）Spurious signals can work — when they trigger beneficial pre-trained behaviors like
code reasoning capabilities.

R-Zero: Self-Evolving LLM from Zero
Data

By Lisa Zhu

Motivation

Preliminaries
Group Relative Policy
Optimization(GRPO)

• Reinforcement Learning algorithm
for fine-turning LLMs

• Separate value function Compares
responses within the same group

• Uses z-score normalization of
rewards: each answer is judged
relative to others

• Encourages better responses while
preventing large policy drift

Reinforcement Learning with
Verifiable Rewards (RLVR)

• Paradigm for fine-tuning models

• Applies when response quality can
be objectively checked

• Uses rule-based verifier
• Reward = 1 if correct, 0 if wrong

• Foundation for training the Solver
in R-Zero

Methodology
Overview

• R-Zero = Challenger + Solver, initialized from the same LLM.

• Works in an iterative loop:
• Challenger generates synthetic questions via GRPO.

• Solver trains on these questions with pseudo-labels.

• Self-supervised: no human labels required.

• Goal: Challenger and Solver co-evolve, making Solver
increasingly stronger

Challenger & Solver Training

Challenger (Qθ)
• Generates challenging questions

via GRPO.

• Guided by reward signals
(uncertainty, penalties).

• Goal: push Solver to face
progressively harder tasks

Solver (Sφ)
• Fine-tuned on Challenger’s filtered

question set.

• Uses GRPO with a verifiable reward:

• Learns to correctly answer
increasingly difficult questions

Reward Function
– Uncertainty
Reward

• Encourages questions with mid-level
difficulty.

• Solver’s accuracy on question 𝑥:

• Maximized when Solver accuracy ≈
50%, forcing learning on “frontier”
problems

Repetition & Format Penalties

• Repetition Penalty
• Prevents generating near-duplicate questions.

• Uses BLEU score similarity; larger clusters → larger penalty.

• Formula:

• Format Check Penalty
• Structural rule: question must be enclosed in <question> & </question>

• If not, reward = 0 and question is discarded

Reward Function – Composite Reward

• Purpose: Combine signals from uncertainty and repetition to train
Challenger effectively.

• Formula:

• Interpretation:
• Starts from uncertainty reward (challenging but solvable questions).

• Subtracts penalty if question is too similar to others.

• Ensures reward ≥ 0, preventing negative reinforcement.

• Takeaway: Final reward signal balances difficulty with diversity

Experiments Setup –
Models & Training

• Models Tested
• Qwen3-4B / 8B → scale within same

family

• OctoThinker-3B / 8B → different
lineage (Llama-based)

• Ensures evaluation across two distinct
architectures

• Training Details
• Candidate pool: 8,000 questions per

iteration

• Solver samples 10 answers per question

• Keep only mid-consistency tasks (3–7
matched answers)

• Rewards: uncertainty (Solver confusion)

Experiments Setup – Benchmarks

• Mathematical Reasoning
• 7 Benchmarks: AMC, Minerva, MATH-500, GSM8K, OlympiadBench, AIME-

2024, AIME-2025
• Test correctness, complexity, and comprehensiveness
• Metrics reported:

• AMC & AIME: mean@123
• Others: accuracy (greedy decoding)

• General Domain Reasoning
• MMLU-Pro: Harder multi-task questions (language model capabilities)
• SuperGPQA: Graduate-level reasoning across 285 disciplines
• BBEH: More difficult BIG-Bench tasks for complex reasoning

Math Reasoning Results
• Findings

• Consistent gains across all
models (Qwen3 & OctoThinker
families)

• Qwen3-8B: +5.51 points (49.18
→ 54.69 after 3 iterations)

• OctoThinker-3B: +2.68 points
(26.64 → 29.32)

• Larger models improve more,
but smaller ones still benefit

• Takeaway: R-Zero is effective &
model-agnostic, boosting
performance across scales and
architectures

Scores improve with each iteration; first
iteration already gives a strong boost,

showing RL-trained Challenger is critical

General Results Reasoning

• Findings:
• R-Zero improves all tested models

in general reasoning
• Qwen3-8B: +3.81 points (34.49 →

38.73)
• OctoThinker-3B: +3.65 points

(12.27 → 15.67)
• Iterative gains across 3 rounds,

similar to math results

• Takeaway: R-Zero’s math-based
training transfers to general
reasoning skillsThese gains are not domain-specific — they generalize

beyond math and enhance core reasoning ability

Analysis – Ablation Study

• Removing RL-Challenger,
Filtering, or Repetition
Penalty → sharp performance
drop.

• Biggest loss: without RL-
Challenger (−3.7 math, −4.1
general).

• Takeaway: Each module is
essential; Challenger RL drives
curriculum quality

Analysis – Difficulty &
Synergy

• Difficulty Evolution: Challenger makes
tasks harder each round, but pseudo-
label accuracy falls (79% → 63%)

• Synergy with Human Labels: Adding
labeled data after R-Zero training yields
+2.35 points over supervised baseline

• Takeaway: R-Zero improves difficulty
handling, and works even better when
combined with human labels

Analysis – Scaling &
Design

• Iteration Scaling: Larger models delay collapse; small
models degrade earlier.

• Label Noise: Collapse linked to declining pseudo-
label accuracy (but not the sole factor).

• Two-Model Design: Separate Challenger & Solver
sustains higher performance (49.07 vs 45.57 for
Single-R-Zero).

• Takeaway: Bigger models and two-model design
stabilize training, but collapse risk remains.

Conclusion

• Contribution: R-Zero is the first framework
to evolve reasoning LLMs with no external
data

• Impact: Moves toward more autonomous &
scalable AI training

• Limitations
• Works best in domains with objectively

verifiable answers (math)

• Remains challenge in open-ended domains

• Future Directions
• Improve label quality

• Extend to broader reasoning

• Prevent long-term collapse

Thank you!

	Slide 1: Efficient RLVR (Data & Computation)
	Slide 2: Act Only When It Pays: Efficient Reinforcement Learning for LLM Reasoning via Selective Rollouts
	Slide 3: Background
	Slide 4: How to focus on sampling more valuable prompts?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Experiment
	Slide 10: Experiment
	Slide 11: Experiment
	Slide 12: Conclusion
	Slide 13: Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning
	Slide 14: Background
	Slide 15: Why This Paper?
	Slide 16: Key insights
	Slide 17: Further Discoveries
	Slide 18: Main Experiment & Ablation Experiment
	Slide 19: Preliminaries
	Slide 20: Pre--Experiment
	Slide 21: Entropy Intervention Experiment
	Slide 22: Pre--Experiment
	Slide 23: Pre--Experiment
	Slide 24: Main--Experiment
	Slide 25: Further--Experiment
	Slide 26: Analysis
	Slide 27: Discussion, Conclusion & Limitations
	Slide 28: Spurious Rewards: Rethinking Training Signals in RLVR
	Slide 29: Core Idea & Findings
	Slide 30: Additional Insights
	Slide 31: Experiment & Results I
	Slide 32: Experiment & Results II
	Slide 33: Cross-Model Analysis
	Slide 34: What makes Qwen so SPECIAL?--Code Reasoning
	Slide 35: RLVR with Spurious Rewards Amplifies Pretrained Reasoning Strategies
	Slide 36: RLVR with Spurious Rewards Amplifies Pretrained Reasoning Strategies
	Slide 37: RLVR with Spurious Rewards Amplifies Pretrained Reasoning Strategies
	Slide 38: Analysis
	Slide 39: Interventions on code reasoning
	Slide 40
	Slide 41: Curious cases： Training Signals from Incorrect Rewards and Random Rewards
	Slide 42
	Slide 43: Conclusion
	Slide 44: R-Zero: Self-Evolving LLM from Zero Data
	Slide 45: Motivation
	Slide 46: Preliminaries
	Slide 47: Methodology Overview
	Slide 48: Challenger & Solver Training
	Slide 49: Reward Function – Uncertainty Reward
	Slide 50: Repetition & Format Penalties
	Slide 51: Reward Function – Composite Reward
	Slide 52: Experiments Setup – Models & Training
	Slide 53: Experiments Setup – Benchmarks
	Slide 54: Math Reasoning Results
	Slide 55: General Results Reasoning
	Slide 56: Analysis – Ablation Study
	Slide 57: Analysis – Difficulty & Synergy
	Slide 58: Analysis – Scaling & Design
	Slide 59: Conclusion
	Slide 60: Thank you!

