
Paper 1

Presenter: Ethan Morton

Motivation
● Autoregressive models are inherently sequential

● Each token requires a full forward pass

● For large model
sizes, this is a
HUGE
bottleneck

Speculative Decoding
● Uses a smaller “draft model” (Mq) to generate a sequence

of draft tokens
● A larger “target model” (Mp) to verify and change incorrect

tokens

Decoding Loop

Speculative generation

Target Verification Pass

Token Comparison/Verification

Speculative Sampling
● Token is accepted if p(x)/q(x) is less than a

uniformly sampled threshold

● Generated sequence is adjusted. If there’s a
rejection, “sync” the models by renormalizing

● New sequence is returned with n accepted
draft tokens and one target generated token

Metrics - Acceptance Length

𝛃 = probability of a draft token to be accepted

𝛾 = draft sequence length

Metrics - Speedup and Ops

c = cost of running Mq
a = average rate of draft token acceptance
a = draft sequence length
c = ratio of arithmetic operations for Mq to Mp

Results - Numerical Predictions
Speedup =

Operations =

Results

● Alpha increases with model size
● Speedup is greater for small models
● Higher acceptance/speedup for argmax

Q/A

MEDUSA: Simple LLM Inference
Acceleration Framework w/ Multiple
Decoding Heads

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D.
Lee, Deming Chen, Tri Dao

ICML 2024

Presenter: Qiyang Li

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Executive summary
Problem: autoregressive LLM inference (batch size 1) is
memory-bandwidth bound because each output token requires
streaming the full model parameters repeatedly.
Key idea: attach K lightweight decoding heads to the last hidden state
to predict multiple future tokens in parallel, form multiple candidate
continuations, and verify them jointly via a tree-structured attention
mask (no separate draft model).
Two training modes: MEDUSA-1 (freeze backbone, train only heads) for
lossless integration; MEDUSA-2 (joint fine-tuning with a training recipe)
for higher head accuracy and larger speedups.
Results: on Vicuna family, MEDUSA-1 yields ∼2.2x speedups; MEDUSA-2
yields up to ∼2.8x while maintaining generation quality on MT-Bench.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Background and motivation

Bottleneck: repeated HBM → accelerator cache transfers
dominate latency in single-stream decoding, under-utilizing
arithmetic units.
Speculative decoding uses a separate draft model to generate
continuations; practical issues: obtaining/serving a compatible
draft, distribution mismatch, extra serving complexity.
Goal: increase arithmetic intensity per HBM transfer and reduce
number of sequential decoding steps with minimal serving
complexity and small parameter overhead.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Transformer
Layers

Embedding

LM Head

❄/🔥
Original Model

Medusa Head 1

Medusa Head 2

Medusa Head 3

🔥Medusa Heads
Last Hidden

is, ', the

It, I, As

difficult, is, '

not, difficult, a

🔝Top-k Predictions

📝Input

What will happen if
Medusa meets a llama?

📜Candidates
It is difficult not ✅
It' difficult a ❌
It is' not ❌ ...

 Single step prediction

It is difficult

Figure: MEDUSA pipeline: attach extra decoding heads to last hidden states; sample top
candidates per head; build candidate continuations; process them in parallel via tree
attention; accept the longest verified prefix (rejection sampling or typical acceptance).
MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

MEDUSA heads: architecture and initialization

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Figure: Tree attention: build candidates from top-sk tokens per head (Cartesian
product). The attention mask enforces that tokens only attend to their predecessors
within the same candidate branch; positional indices are adjusted accordingly.
MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Tree attention: construction and complexity

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Training strategies overview

MEDUSA-1 (frozen backbone): train only the new heads
with cross-entropy to ground-truth tokens at offsets. Low
memory; compatible with quantized backbone.
MEDUSA-2 (joint training): jointly train backbone and heads with a
combined loss and training recipe to preserve original LM quality
and improve head accuracy.
Self-distillation: if original SFT data is unavailable (or for RLHF
models), generate a dataset by sampling the target model and
distill using LoRA adapters to avoid hosting two full models.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

MEDUSA-1 loss (frozen backbone)

Practical tips:
Use decay weights λ

k
(for example λ

k
= ck with c ≈ 0.8) to

downweight farther predictions.
With a quantized backbone you can train heads on a single
consumer GPU (few hours for typical datasets).

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

MEDUSA-2 joint training recipe

Key techniques:
Combined loss keeps backbone next-token capability.
Differential learning rates: smaller LR for backbone, larger LR
for heads.
Heads warmup: two-stage schedule (train heads only, then
joint fine-tune with small backbone LR or gradually increasing
weight).

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Typical acceptance: quick verification
(entropy adaptive)

Idea: accept tokens that are not extremely improbable under
the original model instead of full distribution matching
(rejection sampling).
Greedily accept first token to guarantee progress; among
candidates accept the longest prefix satisfying the threshold.
Empirically yields higher throughput than rejection sampling
while keeping generation quality similar.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Self-distillation workflow (when SFT data
unavailable)

Generate a dataset: use public seed prompts (e.g., ShareGPT,
UltraChat) and sample the target model (chosen temperature)
to produce multi-turn examples.
Distill backbone behavior using KL between teacher logits (original
model) and student logits; to avoid storing two full models,
fine-tune with LoRA adapters so teacher = backbone with adapters
off.
Use the generated dataset to train heads (and optionally
joint-distill backbone) with minimal extra memory.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Figure: Tokens/sec comparison: baseline vs. MEDUSA-1 vs. MEDUSA-2 on
Vicuna-7B and Vicuna-13B. MEDUSA-1 achieves ∼2.2x; MEDUSA-2 up to ∼2.8x.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Figure: Detailed speedups per category (Vicuna-7B, MEDUSA-2): some categories
like coding and extraction benefit especially (3x+).

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Figure: Raw tokens/sec as tree size increases. Larger trees increase compute
and may reduce raw speed; choose tree config to balance expected accepted
length and compute overhead.
MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Figure: Typical acceptance ablation: trade-off between threshold and
acceleration/quality (writing + roleplay tasks). Higher threshold tends to improve
quality at some cost to acceleration.
MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Ablations and practical results (summary)

Practical pipeline impact (rough numbers): heads-only (no tree)
∼1.5x; add tree attention ∼1.9x; optimized sparse tree ∼2.2x; full
MEDUSA-2 joint training ∼2.8x.
MEDUSA-1 is easy to deploy and preserves original model
quality; MEDUSA-2 requires care (warmup, joint loss) but yields
larger speedups.
Typical acceptance accelerates decoding in sampling regimes
(temperature > 0) more effectively than rejection sampling in
practice.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Limitations and future work

Limitations: tree attention increases compute per step and can
become compute-bound; hyperparameters (K, s

k
, thresholds)

need tuning per model/task.
Future work: hardware-aware scheduling, automatic tree
construction using per-prediction calibration, extension to larger
batch sizes and distributed multi-GPU serving.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Concluding remarks

MEDUSA offers a simple, parameter-efficient way to accelerate
single-stream LLM inference by predicting multiple future tokens
and verifying them jointly.
Two training modes enable both lossless integration (MEDUSA-1)
and maximal speedup with preserved quality (MEDUSA-2).
Empirical results show consistent ∼2.2–2.8x speedups on Vicuna
and related models with preserved MT-Bench scores.

MEDUSA: Simple LLM Inference Acceleration Framework w/ Multiple
Decoding Heads

Q/A

Paper 3

Presenter: Lian Lian

Motivation
Points:

● Large Language Models (LLMs) → slow inference
● Autoregressive decoding = one token per step
● Latency is critical in dialogue, code, math reasoning

Speculative Sampling Recap

● The draft model quickly proposes several
candidate tokens in advance, rather than
generating them one by one.

● The target LLM then evaluates all these
drafted tokens in a single forward pass,
accepting valid ones and rejecting the rest.

● Overall efficiency depends critically on the
acceptance rate — the fraction of drafted
tokens that survive validation, which
determines how many tokens can be
generated per step.

Computational process

Challenge of Existing Methods

● Tokens level: discrete,
irregular

● Draft often misaligned with
target

● Prior art: Medusa /
Lookahead draft at token
level→ limited speedup

Challenge of Existing Methods

Feature trajectories depend
on sampled tokens
 For example, after “I”, the
next hidden state could
correspond to “am” or
“always”, leading to very
different branches.

Key Observations in EAGLE

1. Feature-level
autoregression =
smoother, easier

2. But features are still
uncertain (depend on
sampled token)

Key Observations in EAGLE

Example: “I” → “am” vs
“always”

EGALE Solution (shifted tokens：token to feature level)

1. Add one-step-ahead
token into feature
prediction

2. Removes uncertainty
→ higher accuracy

3. Draft features align
better with target LLM

4.

5.

Corresponding generation results for each step

Draft Model Architecture

green blocks represent
token embeddings,

orange blocks represent
features, red boxes
indicate the predicions of
the draft model

blue modules with
snowflake icons
represent the use of
target LLM parameters,
which are not subject to
training

Draft Model Architecture

1. Embedding + LM
head (shared)

2. Lightweight
autoregression
head (trainable)

3. Output: hidden
states → mapped
to tokens

Training Objectives

1. SmoothL1 (Feature-level regression)

2. Cross-Entropy- (token-level classification)

Regression loss for predicting next hidden feature.

Ensures predicted token distribution
matches the ground truth.

Training Objectives

Combined Objective

● Lreg: Smooth L1 for feature-level
Autoregression.

● Lcls: Cross-Entropy for token-level
accuracy.

= 0.1 is chosen to balance the two objective

Drafting Process (Tree Attention)

Draft structure when tree attention is employed Draft structure without the use of tree attention

● Vanilla speculative decoding = linear chain
● EAGLE uses tree attention, drafting multiple branches per forward pass.
● Increases acceptance length without extra target passes

Experimental Setup

● Models: Vicuna, LLaMA2-Chat, Mixtral

● Benchmarks: MT-bench, HumanEval,
GSM8K, Alpaca

● Tasks: dialogue, code, math, instructions

EAGLE achieves 3–4.5× speedup at
temperature 0 with average acceptance
length 3.8–4.5 tokens. Performance
drops under higher temperature (T=1), but
still maintains 2–3× acceleration. 13B
models consistently show the best
balance of speedup and acceptance

Main Results

Main Results

Across all models, we achieve 2.7×–3.1× speedups with an

average acceptance length of 3–4 tokens per pass,

consistently outperforming Medusa and Lookahead.

● Speedup: 2.7×–3.1× across all models

● Avg. acceptance length: 3–4 tokens per
pass

● Outperforms Medusa & Lookahead
consistently

Training Efficiency

● Fewer than 1 billion trainable parameters:
 The draft autoregression head is lightweight compared to the full model,
so the training cost is modest.

● Only about 70,000 dialogue samples needed:
 Training can be done on a relatively small dataset such as ShareGPT
conversations, without requiring massive corpora.

● 1–2 days on 4×A100 GPUs for LLaMA2-Chat 70B:
 Even for a very large target model, the draft head can be trained within a
couple of days on a small GPU cluster.

Strengths

● Lossless acceleration
 Output distribution is provably preserved — same quality as target LLM.

● General applicability
 Works across many LLM families and sizes without modifying the target
model.

● Compatible with other methods
 Can stack with quantization or compilation (e.g., gpt-fast) for extra
speedup.

Limitations

● Gains drop with large batch
sizes

● Smaller improvement on MoE
models (e.g., Mixtral)

● Still requires training a draft
module

Conclusion

● Speculative sampling is shifted from the token level to the feature level,
making drafting smoother and more predictable.

● The uncertainty of feature sequences is resolved by conditioning on shifted
tokens.

● A lightweight draft head combined with tree attention enables efficient
multi-branch drafting.

● EAGLE achieves 2–4× faster inference while fully preserving the target LLM’s
output distribution.

QA

Learning Harmonized Representations for Speculative
Sampling

Lefan Zhang, Xiaodan Wang, Yanhua Huang*, Ruiwen
Xu Xiaohongshu Inc., Shanghai, China

{lefan,xiaodan2,yanhuahuang,ruiwenxu}@xiaohongshu.com

arXiv preprint, 2024

Presenter: Ethan Morton, Qiyang Li, Lian Lian

HASS: Harmonized Speculative
Sampling

Executive Summary
HASS is a new speculative sampling method for LLM decoding, addressing
both objective misalignment and context misalignment in draft model
training.
Proposes harmonized objective distillation, focusing draft model training
on the top-K tokens with highest probability from the target LLM, thereby
boosting acceptance rates.
Proposes harmonized context alignment to eliminate context inconsistency
between training and decoding, mitigating exposure bias and error
accumulation.
Outperforms prior work (notably EAGLE-2) on LLaMA2-Chat 7/13B and
LLaMA3-Instruct 8/70B across MT-bench, HumanEval, and GSM8K: achieves
2.81x–4.05x speedup, with 8%-20% higher acceleration than EAGLE-2.

HASS: Harmonized Speculative
Sampling

Speculative Sampling: Background and Motivation

Large Language Models (LLMs) decode auto-regressively,
resulting in limited concurrency and slow generation.
Speculative sampling accelerates decoding by using a
lightweight draft model to propose a batch of tokens, which is
then verified in parallel by the target LLM.
Performance hinges on (1) low draft model cost and (2)
alignment between draft and target model distributions.
Prior approaches use target LLM states (e.g., hidden states,
KV cache) in draft input, but suffer from context
misalignment and mismatched training vs. decoding
objectives.

HASS: Harmonized Speculative
Sampling

Problems in Prior Draft Model Training
Context Misalignment: During training, draft models always see
target LLM hidden states; during decoding, they must generate
some features themselves, leading to feature ”exposure bias”.
Objective Misalignment: Draft models are usually distilled
on full-vocabulary cross-entropy, yet during decoding, only
high-probability tokens (top-K or top-P) matter for acceptance;
this leads to inefficient draft proposals.
Both issues widen the distribution gap, decreasing acceptance
length τ and limiting wall-clock speedup.
Figure on next slide illustrates the context misalignment
between training and decoding using EAGLE as an example.

HASS: Harmonized Speculative
Sampling

Figure: Context misalignment: During training, the draft model sees target LLM
states at all steps; during decoding, it must rely on its own past outputs, leading
to drift and mismatch.

HASS: Harmonized Speculative
Sampling

Speculative Sampling and Acceptance Length
In speculative sampling:

Draft model M(s) predicts a sequence of L draft tokens
auto-regressively. Target LLM M(l) evaluates all L tokens in parallel.
A subset of tokens is accepted to preserve the target LLM’s
distribution (modified rejection sampling).

Key metric: Acceptance length τ — number of draft
tokens accepted per cycle. Speedup is directly proportional
to τ .
Efficient speculative sampling requires draft alignment only
on high-probability tokens, not across the full vocabulary.
Prior distillation focused on full-vocabulary likelihood, suboptimal
for acceptance length.

HASS: Harmonized Speculative
Sampling

Overview of the HASS Method

HASS (HArmonized Speculative Sampling) introduces:
Harmonized Objective Distillation: Draft model is trained to focus on
top-K likely tokens from the target LLM, inspired by ranking distillation
from recommender systems.
Harmonized Context Alignment: Training procedure mimics real
decoding context by chaining draft model outputs over several steps,
mixing in only available target LLM features.

Both components improve alignment where it matters — on
likely tokens in realistic inference contexts — boosting
acceptance length and speedup.

HASS: Harmonized Speculative
Sampling

Figure: Harmonized context alignment in HASS: During training, query/key-value
chains mix target LLM features (superscript (l)) with draft model features
(superscript (sj)) to simulate decoding context over n steps.

HASS: Harmonized Speculative
Sampling

Harmonized Objective Distillation: Top-K Loss

HASS: Harmonized Speculative
Sampling

Harmonized Context Alignment: Training
Training is divided into n steps; at each, simulate the draft model
operating with progressively more self-generated (inaccurate)
context features.
At training step j:

Query: previous draft model output f j−1(s)
t .

Key/Value: mixture of target LLM features (f (l)1:t−j+1) and draft model
features(f 1:j−1(s)

t−j+2:t).

Adapts attention masks so the draft model must generate
next-feature inputs like during real decoding.
Result: Draft model learns to compensate for compounded
self-generated context, reducing error accumulation and exposure
bias.

HASS: Harmonized Speculative
Sampling

Implementation and Practical Details
Evaluated with LLaMA2-Chat 7B/13B and LLaMA3-Instruct 8B/70B
as target LLMs.
Tasks: MT-bench (dialogue), HumanEval (code), GSM8K
(math reasoning).
Metrics:

Speedup ratio: Wall-clock time vs. vanilla decoding on NVIDIA H800.
Acceptance length τ : Accepted tokens per draft cycle.

Draft alignment steps n = 3 and Top-K parameter K = 10 found to
be empirically effective and efficient.
No fine-tuning of target LLM; method is lossless with respect
to output quality.

HASS: Harmonized Speculative
Sampling

Figure: Speedup ratios of HASS and recent baselines on LLaMA2-Chat
7/13B, LLaMA3-Instruct 8/70B across MT-bench, HumanEval, GSM8K (T = 0,

1). HASS provides 2.81x–4.05x speedup, consistently outperforming
EAGLE-2 by 8%–20%.

HASS: Harmonized Speculative
Sampling

Results: Acceptance Length and Speedup

HASS achieves top performance on acceptance length τ and
actual speedup ratio:

LLaMA2-Chat 7B: HASS τ = 5.15 (EAGLE-2: 4.61), speedup 3.24x
(EAGLE-2: 2.81x).
LLaMA2-Chat 13B: HASS τ = 5.58 (EAGLE-2: 5.16), speedup
3.65x (EAGLE-2: 3.30x).
LLaMA3-Instruct 8B: HASS τ = 5.08, speedup 3.09x.
LLaMA3-Instruct 70B: HASS τ = 5.21, 4.05x.

Comparable trends for both T = 0 (greedy) and T = 1 (sampling).
HASS is robust across tasks (dialogue, code, math);
outperforms baselines on all evaluated LLMs.

HASS: Harmonized Speculative
Sampling

Figure: Ablation on Top-K parameters: Acceptance length increases with Top-K
loss (w > 0); K = 5 and w = 0.5 is optimal. Too small K underperforms as draft
ignores other likely tokens.

HASS: Harmonized Speculative
Sampling

Ablation: Loss Functions for Harmonized Objective Distillation

HASS: Harmonized Speculative
Sampling

Figure: Acceptance rate per speculation step: HASS vs. EAGLE-2. HASS
substantially improves acceptance rate in later steps, indicating reduced error
accumulation.

HASS: Harmonized Speculative
Sampling

Ablation: Steps in Context Alignment

Varying the number of alignment steps (n) in HASS:
Best at n = 3 or 4. For LLaMA2-Chat 7B: n = 3: τ = 5.15; n = 4: τ = 5.16. Too
many steps (n = 5) can degrade performance slightly, possibly due to limited
draft model capacity.

Loss reweighting across steps (β): Assigning higher importance to
early steps increases first-step acceptance rate and overall τ .
HASS remains efficient, as acceleration gains converge for small n.

HASS: Harmonized Speculative
Sampling

Figure: Ablation on loss reweighting: Emphasizing early steps (β = 0.5)
increases acceptance at the first step and lifts overall acceptance length.

HASS: Harmonized Speculative
Sampling

Conclusion and Impact

HASS delivers substantial wall-clock acceleration for LLM decoding
via harmonized draft training.
Innovations: Focus draft on high-likelihood tokens (Top-K
loss); simulate decoding context with multi-step context
alignment.
Outperforms leading baselines (EAGLE-2: 8–20% greater
speedup) across LLaMA2/3, dialogue, code, math, and
translation tasks.
Opens new research: tailoring distillation loss and efficient
context simulation. Code/models open-sourced at
https://github.com/HArmonizedSS/HASS.

HASS: Harmonized Speculative
Sampling

https://github.com/HArmonizedSS/HASS

Q/A

