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Motivation

e Autoregressive models are inherently sequential
e Each token requires a full forward pass

e Forlarge model
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Speculative Decoding

e Uses a smaller “draft model” Mq to generate a sequence

of draft tokens

e Alarger “target model” Mp to verify and change incorrect

tokens
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Decoding Loop

Algorithm 1 SpeculativeDecodingStep

Inputs: M, My, prefiz.

> Sample y guesses x1

for 2 = 1to~ydo
gi(z) < My(prefiz + [z1,. .., 2i1]) Speculative generation
z; ~ ¢i(7)

end for

> Run M, in parallel.

Pl(-’I»’),---,P7+1(-’B) — . g .
My (prefiz), ..., My(prefiz + [z1,.. ., 2-]) Target Verification Pass

> Determine the number of accepted guesses n. —_—
r, ~U(0,1),...,7y ~U(0,1)
n+<mn{i—1[1<i<~,r> ZJ(%}U{W})
> Adjust the distribution from M), if needed.
P'(x) = pni(2)
if n < vy then

P (®) < norm(maz (0, pus1 (z) — g1 (2)))

~ from M, autoregressively.

.....

Token Comparison/Verification

end if

> Return one token from M,,, and n tokens from M.
t ~ p'(z)

return prefiz + (1, ..., %y, t]




Speculative Sampling

> Determine the number of accepted guesses n.
r, ~U(0,1),...,m7y ~U(0,1)
n<mn{i—1|1<i<~,r;> %:—;}U{”y})
> Adjust the distribution from M), if needed.

p'(z) ¢ ppy1(z)
if n <~y then ()
P (@) + norm(maz (0, pus1 () — g1 (2)))

end if

> Return one token from M), and n tokens from M,.
t ~p'(z)

return prefiz + (1, ..., 2y, t]

Token is accepted if p(x)/q(x) is less than a
uniformly sampled threshold

Generated sequence is adjusted. If there’s a
rejection, “sync” the models by renormalizing

New sequence is returned with n accepted
draft tokens and one target generated token



Metrics - Acceptance Length

1 — O[Y‘Fl
E(# generated tokens) =

a = E(f)

1l — «

B = probability of a draft token to be accepted

+ = draft sequence length




Metrics - Speedup and Ops

1_a7+1

(1—a)(yet+1)”

Theorem 3.8. The excted improvement factor in total
is

walltime by Algorithm

Theorem 3.11. The expected factor of increase in the num-

. . . (1—@)(76—’—7—{—1) w0 —— Speedy=1 1
ber of total operations of Algorithm E ) T—ar T | o 8

¢ = cost of running M_ | o ’
a = average rate of draft token acceptance B /
7y = draft sequence length S e

¢ = ratio of arithmetic operations for Mq to I\/Ip 2]
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Figure 4. The speedup factor and the increase in number of arith-
metic operations as a function of « for various values of ~.



Results - Numerical Predictions
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Figure 3. The optimal -y as a function of « for various values of c.



Results

Table 3. Empirical « values for various target models M, approx-

imation models M, and sampling settings. T=0 and T=1 denote
argmax and standard sampling respectively®.

M, M, SMPL  «
.. ) : PT- ™ =0 0.0

Table 2. Empirical results for speeding up inference from a T5- gPT_t;EE Eg7M; gfg;}iﬁM Lo 0_02

XXL 11B model. GPT-LIKE (97M) GPT-LIKE (6M) T=0 0.88

GPT-LIKE (97M) UNIGRAM T=1 0.03

GPT-LIKE (97M) BIGRAM T=1  0.05

TASK M, TEMP v o SPEED GPT-LIKE (97M) GPT-LIKE (6M) T=1  0.89

ENDE T5-SMALL % 0 7 0.75 3.4X T5-XXL (ENDE) UNIGRAM T=0 0.08

T5-XXL (ENDE) BIGRAM T=0 0.20

ENDE TS5-BASE 0 708 2.8X T5-XXL (ENDE) T5-SMALL =0  0.75

ENDE T5-LARGE 0 7 0.82 1.7X T5-XXL (ENDE) T5-BASE T=0 0.80

ENDE T5-SMALL % 1 7 0.62 2.6X T5-XXL (ENDE) T5-LARGE =0  0.82

N T5-XXL (ENDE) UNIGRAM T=1 0.07

ENDE T5-BASE i 5 06? %jx T5-XXL (ENDE) BIGRAM T=1 0.19

ENDE T5-LARGE 307 4X T5-XXL (ENDE) T5-SMALL =1  0.62

T5-XXL (ENDE) T5-BASE T=1 0.68

gﬁggﬁ ig‘SMALL * 8 g 8?2 ;’(1)§ T5-XXL (ENDE) TS-LARGE =1  0.71
-BASE ) )

T5-XXL (CNNDM) UNIGRAM T=0  0.13

CNNDM T5-LARGE 0 3 0.74 2.2X T5-XXL (CNNDM)  BIGRAM Py

CNNDM  T5-SMALL % 1 5 0.53 2.3X T5-XXL (CNNDM)  T5-SMALL =0  0.65

CNNDM T5-BASE 1 3 0.55 2.2X T5-XXL (CNNDM) T5-BASE =0  0.73

: T5-XXL (CNNDM) TS5-LARGE T=0  0.74

CNNDM  T5-LARGE 1 3 056 1.7X T5-XXL (CNNDM) UNIGRAM T=1 0.08

T5-XXL (CNNDM) BIGRAM T=1 0.16

T5-XXL (CNNDM) T5-SMALL =1 053

: : : T5-XXL (CNNDM) T5-BAS =1 0.55

Alpha increases with model size T RAL CONNDAE T e i e

Speedup is greater for small models LAMDA (137B) ~ LAMDA (100M) T=0 0.6l

' LAMDA (137B) LAMDA (2B) =0 0.71

LAMDA (137B) LAMDA (8B) =0  0.75

Higher acceptance/speedup for argmax  Lampa sy pHDaee . R e

LAMDA (137B) LAMDA (2B) =1 0.71

LAMDA (137B) LAMDA (8B) =1  0.74
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Executive summary

m Problem: autoregressive LLM inference (batch size 1) is
memory-bandwidth bound because each output token requires
streaming the full model parameters repeatedly.

B Key idea: attach K lightweight decoding heads to the last hidden state
to predict multiple future tokens in parallel, form multiple candidate
continuations, and verify them jointly via a tree-structured attention
mask (no separate draft model).

® Two training modes: Mepusa-1 (freeze backbone, train only heads) for

lossless integration; Mepusa-2 (joint fine-tuning with a training recipe)

for higher head accuracy and larger speedups.

Results: on Vicuna family, Mepusa-1 yields ~2.2x speedups; Mebpusa-2

yields up to ~2.8x while maintaining generation quality on MT-Bench.
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Background and motivation

m Bottleneck: repeated HBM — accelerator cache transfers
dominate latency in single-stream decoding, under-utilizing
g arithmetic units.

Speculative decoding uses a separate draft model to generate
continuations; practical issues: obtaining/serving a compatible
g draft, distribution mismatch, extra serving complexity.

Goal: increase arithmetic intensity per HBM transfer and reduce
number of sequential decoding steps with minimal serving
complexity and small parameter overhead.
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Figure: MEepusa pipeline: attach extra decoding heads to last hidden states; sample top
candidates per head; build candidate continuations; process them in parallel via tree
attention; accept the longest verified prefix (rejection sampling or typical acceptance).




MEepusa heads: architecture and initialization

h: € R® (last hidden state at position t)

Rt = SILUWL O hy) + by, WY € REX

pgk) = softmax(Wz(k)ﬁgk)), Wék) e RV*4

Notes:
m Each head is a single feed-forward layer with residual (lightweight).
m Initialize Wz(k) to match the backbone LM head and Wfk) =0 so
initial outputs align with the backbone logits.

m Heads can be trained with the backbone frozen (MEDUSA-1) or jointly
with the backbone (MEDUSA-2).
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Figure: Tree attention: build candidates from top-s, tokens per head (Cartesian
product). The attention mask enforces that tokens only attend to their predecessors

within the same candidate branch; positional indices are adjusted accordingly.
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Tree attention: construction and complexity

m Candidate construction: for head k take top s; tokens; leaf candidates
= [1&_, si (Cartesian product).

m Process candidates in a single forward by arranging tokens as tree
nodes with a causal mask that permits attention only along each
branch’s prefix.

m New tokens computed in one forward: ¥  [1¥ , s;, increasing
arithmetic intensity per HBM transfer.

m [rade-off: larger trees increase expected accepted length but also add
compute/attention overhead; choose tree sparsity judiciously.
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Training strategies overview

m Mepusa-1 (frozen backbone): train only the new heads
with cross-entropy to ground-truth tokens at offsets. Low
memory; compatible with quantized backbone.

m MEepusa-2 (joint training): jointly train backbone and heads with a
combined loss and training recipe to preserve original LM quality
and improve head accuracy.

m Self-distillation: if original SFT data is unavailable (or for RLHF
models), generate a dataset by sampling the target model and
distill using LoRA adapters to avoid hosting two full models.




Mebusa-1 loss (frozen backbone)

S (k)
LMepusa-1 = — Ak, log py (yt+k+1)
k=1

Practical tips:

= Use decay weights A (for example A _= cwith ¢~ 0.8) to
downweight farther predictions.

m With a quantized backbone you can train heads on a single
consumer GPU (few hours for typical datasets).




MEDusa-2 joint training recipe

Ltepusa2 = LM + Ao LMepusa-1, Liv=—log p§0) (yt+1)

Key techniques:
m Combined loss keeps backbone next-token capability.

m Differential learning rates: smaller LR for backbone, larger LR
for heads.

m Heads warmup: two-stage schedule (train heads only, then
joint fine-tune with small backbone LR or gradually increasing
weight).




Typical acceptance: quick verification
(entropy adaptive)

Accept Tk, if Dorig(Tnik | T<nk—1) > min(e, 5€_H(p°”g('|x3"+k_l)))

m Idea: accept tokens that are not extremely improbable under
the original model instead of full distribution matching
(rejection sampling).

m Greedily accept first token to guarantee progress; among
candidates accept the longest prefix satisfying the threshold.

m Empirically yields higher throughput than rejection sampling
wh|Ie keeping generation quallty similar.




Self-distillation workflow (when SFT data

unavailable)

m Generate a dataset: use public seed prompts (e.g., ShareGPT,
UltraChat) and sample the target model (chosen temperature)
to produce multi-turn examples.

m Distill backbone behavior using KL between teacher logits (original
model) and student logits; to avoid storing two full models,
fine-tune with LoRA adapters so teacher = backbone with adapters

g Off.

Use the generated dataset to train heads (and optionally
joint-distill backbone) with minimal extra memory.




Speedup on different model sizes

2.83x

Model Size

2.18x

7B

=
o
o

(o0}
o

(@)}
o

IS
o

B w/o Medusa
P Medusa-1
[ Medusa 2

Tokens per Second

N
o

Figure: Tokens/sec comparison: baseline vs. Mepusa-1 vs. MEDUSA-2 ON
Vicuna-7B and Vicuna-13B. Mepusa-1 achieves ~2.2x; Mepusa-2 up to ~2.8x.




Speedup on different categories for Vicuna-7B
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Figure: Detailed speedups per category (Vicuna-7B, Mepusa-2): some categories
like coding and extraction benefit especially (3x+).
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Figure: Acceleration rate for random dense trees (blue dots) vs optimized sparse trees (red
stars). Optimized sparse trees (with same node budget) can give higher acceptance length.
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acceleration/quality (writing + roleplay tasks). Higher threshold tends to improve

quality at some cost to acceleration.
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Ablations and practical results (summary)

m Practical pipeline impact (rough numbers): heads-only (no tree)
~1.5x; add tree attention ~1.9x; optimized sparse tree ~2.2x; full
MEbusa-2 joint training ~2.8X.

s MEepusa-1 is easy to deploy and preserves original model
quality; Mepusa-2 requires care (warmup, joint loss) but yields
larger speedups.

m lypical acceptance accelerates decoding in sampling regimes
(temperature > 0) more effectively than rejection sampling in
practice.




Limitations and future work

m Limitations: tree attention increases compute per step and can
become compute-bound; hyperparameters (K, s,, thresholds)
need tuning per model/task.

m Future work: hardware-aware scheduling, automatic tree
construction using per-prediction calibration, extension to larger
batch sizes and distributed multi-GPU serving.




Concluding remarks

m Mepusa offers a simple, parameter-efficient way to accelerate
single-stream LLM inference by predicting multiple future tokens
and verifying them jointly.

m Two training modes enable both lossless integration (Mepusa-1)
and maximal speedup with preserved quality (Mebpusa-2).

m Empirical results show consistent ~2.2—2.8x speedups on Vicuna
and related models with preserved MT-Bench scores.
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Motivation

Points:

e Large Language Models (LLMs) — slow inference
e Autoregressive decoding = one token per step
e Latency is critical in dialogue, code, math reasoning

EEm EAGLE B Medusa I Lookahead W#m Speculative sampling DistillSpec Vanilla
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25
s
320
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Speculative Sampling Recap

The draft model quickly proposes several
candidate tokens in advance, rather than
generating them one by one.

The target LLM then evaluates all these
drafted tokens in a single forward pass,

accepting valid ones and rejecting the rest.

Overall efficiency depends critically on the
acceptance rate — the fraction of drafted
tokens that survive validation, which

determines how many tokens can be
generated per step.
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Challenge of Existing Methods

Tokens level: discrete,
IrreQUIar Speculative Sampling
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Challenge of Existing Methods

s p(begin)=0.8 mm p(am)=0.6 m plexcited)=0.

Feature trajectories depend { e J { b ] [ b 3}

on sampled tOkenS - P(IO:k)=0-2 p £ p(alrays)=0.4 1 == p(reidv)=0.7
For example, after “I”, the gy sopuiig. A saripling  Jam
o Lt -

next hidden state could

Correspond to “am” or Figure 3: Uncertainty in feature sequences. The next fea-

“ql " leadi t ture following fr is contingent on the sampling outcome
always , leading to very and cannot be determined solely based on f;, where both
different branches. “always” and “am” are possible to follow the token “I”” and

lead to two branches.



Key Observations in EAGLE

1. Feature-level

autoregression = T e e

smoother, easier A =
2. But features are still = ——

uncertain (depend on

sdm pled tO ken) Figure 4: Accuracy and speedup ratio of draft models based

on tokens, features and feature&shifted-token at tempera-
ture=0, tested on MT-bench with Vicuna 7B as the original
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Key Observations in EAGLE
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Figure 4: Accuracy and speedup ratio of draft models based
on tokens, features and feature&shifted-token at tempera-
ture=0, tested on MT-bench with Vicuna 7B as the original
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EGALE Solution (shifted tokens:token to feature level)

1. Add one-step-ahead Query o]
token into feature Sa’“"““g“S‘“g"”gi“"'“mz T
prediction e e =

2. Removes uncertainty ol e “”‘ i-}‘f"i:;‘ T
— higher accuracy e your 1 fo ) (e

3. Draft features align
better with target LLM Corresponding generation results for each step



Draft Model Architecture
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1.

Draft Model Architecture

Embedding + LM
head (shared)
Lightweight
autoregression
head (trainable)
Output: hidden
states — mapped
to tokens
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EAGLE

Training Objectives N R

i f

. SmoothL1 (Feature-level regression ) £ £ - s |~ El~

Regression loss for predicting next hidden feature. %dz, d| < B,
L (d) — d = ilt+1 = ht+1

L?’eg = Smooth L1 (f’i-i-lt Draft_Model(TQ,L-H, Fl:/i))- - 3

|d| — 5 otherwise,

2. Cross-Entropy- (token-level classification)

Ensures predicted token distribution Pi+o = Softmax(LM_Head(f;11)),
matches the ground truth. )
Pivro = Softmax(LM_Head( f;11)),
Lc1s = Cross_Entropy(pi+2, Pi+2)-



Training Objectives

. . . Speculative Sampling Lookahead
Combined Objective 4t ~LSmalertin ][] & ~(2Gan o] ]
bt b o]~ Smateriiv ] [t;] e~ Z:Gram, facobi ] — [z
Medusa EAGLE
— _ ty t3 Embedding.layer &
L Lreg + wcls LCIS i m@ ol B & Auto-regression Head _’_’
|:_—’@ EEE Embedding layer &
f: fz Ed Auto-regression Head _'_’

e Lreg: Smooth L1 for feature-level

Autoregression. Figure 5: A comparison of the methods for drafting the

fourth and fifth tokens, t4 and ¢5. t (represented by blue
blocks) denotes tokens, and f (orange blocks) signifies the
features, with subscripts indicating their positions in the se-
quence. The red border indicates the predictions of the draft
model. For simplicity, the n in the n-gram for Lookahead,
as shown in the figure, has been set to 2.

e Lcls: Cross-Entropy for token-level
accuracy.

Wels = 0.1 is chosen to balance the two objective



Drafting Process (Tree Attention)

e Vanilla speculative decoding = linear chain
e EAGLE uses tree attention, drafting multiple branches per forward pass.
e Increases acceptance length without extra target passes

Draft structure when tree attention is employed Draft structure without the use of tree attention



Experimental Setup

Table 1: Speedup ratio and average acceptance length 7 on

e Models: Vicuna, LLaMA2-Chat, Mixtral HumanEval, GSMS8K, and Alpaca. T denotes temperature,
V represents Vicuna, and LC stands for LLaMA?2-Chat.

e Benchmarks: MT-bench, HumanEval,

GSMSK, A|paca HumanEval GSMS8K Alpaca

e Tasks: dialogue, code, math, instructions Model Bpeedup ¢  Specdlp. 7 Spsedup 7
V7B 3.33x 4.29 3.01x 4.00 2.79x 3.86
VI3B  3.58x 439 308x 397 303 395
V33B  3.67x 428 325x 394 297x 3.6l
T=0 1c7B 1 (75 ¢ 424 2.91x 3.82 2.78x 371

EAGLE achieves 3—4.5% speedup at LCI13B  3.76x 452 320x 403 30Ix 383
. LC70B  3.52x 442 303x 393 297x 3.77

temperature 0 with average acceptance 3 = =
V7B 239x 343 234x 329 22Ix 330
length 3.8—4.5 tokens. Performance VI3B  2.65x 363 257x 3.60 245x 357
drops under h|gher temperature (T=1 ), but . V 33B 2.76x  3.62 277x 3.60 252x 3.32
: L . =l LCc7B  261x 379 240x 352 229x 3.33
still maintains 2-3x acceleration. 13B LC13B  2.89x 378 282x 3.67 266x 3.55
models Cons|stent|y ShOW the best LC 70B 2.92x 3.76 2.74x 3.58 2.65x 3.47

balance of speedup and acceptance



Main

Results

EEE EAGLE I Medusa Il lLookahead #m Speculative sampling DistillSpec Vanilla

2.90x 3.07x 2.95x

3.03x 3.01x

N/A 1.00x

N/A 1.00x N/A 1.00x

1% 29 29
\I'\‘-‘“\a \j'\c\“‘a = \[\c\)“a >

Models

Figure 1: Speedup ratio of Vicuna and LLaMA2-Chat inference latency on the MT-bench for greedy (temperature=0)
settings. Speedup ratio of Medusa and Lookahead are copied from their original technical reports. With speculative sampling,
there is a lack of suitable draft models to accelerate the 7B model. Employing a 7B model as the draft model for a 13B
model results in slow speeds due to the high overhead of the 7B model, rendering it less efficient than vanilla autoregressive
decoding. These scenarios are marked as N/A. In this paper, we only compare with speculative sampling based methods that
do not need to finetune the backbone models, ensuring the output text distribution remains constant.



Main Results
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Figure 2: Speedup ratio on the MT-bench for non-greedy
(temperature=1) settings. Lookahead is confined to greedy e
decoding, and the non-greedy generation of Medusa does
not guarantee lossless performance. Therefore, EAGLE is

not compared with these methods.

Across all models, we achieve 2.7x-3.1x speedups with an
average acceptance length of 3—4 tokens per pass,

consistently outperforming Medusa and Lookahead.

Speedup: 2.7x-3.1x across all models

Avg. acceptance length: 3—4 tokens per
pass

e Outperforms Medusa & Lookahead

consistently



Training Efficiency

e Fewer than 1 billion trainable parameters:
The draft autoregression head is lightweight compared to the full model,
so the training cost is modest.

e Only about 70,000 dialogue samples needed:
Training can be done on a relatively small dataset such as ShareGPT
conversations, without requiring massive corpora.

e 1-2 days on 4xA100 GPUs for LLaMA2-Chat 70B:
Even for a very large target model, the draft head can be trained within a
couple of days on a small GPU cluster.



Strengths

e Lossless acceleration
Output distribution is provably preserved — same quality as target LLM.

e General applicability
Works across many LLM families and sizes without modifying the target
model.

e Compatible with other methods
Can stack with quantization or compilation (e.g., gpt-fast) for extra
speedup.



Limitations

e (Gains drop with large batch
sizes

e Smaller improvement on MoE
models (e.g., Mixtral)

e Still requires training a draft
module

Table 3: Speedup ratio, average acceptance length 7, and
acceptance rate « on MT-bench at temperature=0. The
target LLM is Mixtral 8x7B Instruct-v0.1.

Speedup T 0-a l-a 2-a 3a 4«
1.50x 325 0.67 062 0.61 064 0.63




Conclusion

e Speculative sampling is shifted from the token level to the feature level,
making drafting smoother and more predictable.

e The uncertainty of feature sequences is resolved by conditioning on shifted
tokens.

e Alightweight draft head combined with tree attention enables efficient
multi-branch drafting.

e EAGLE achieves 2—4x faster inference while fully preserving the target LLM’s
output distribution.
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Executive Summary

m HASS is a new speculative sampling method for LLM decoding, addressing
both objective misalignment and context misalignment in draft model
training.

m Proposes harmonized objective distillation, focusing draft model training
on the top-K tokens with highest probability from the target LLM, thereby
boosting acceptance rates.

m Proposes harmonized context alignment to eliminate context inconsistency
between training and decoding, mitigating exposure bias and error
accumulation.

m Outperforms prior work (notably EAGLE-2) on LLaMA2-Chat 7/13B and
LLaMA3-Instruct 8/70B across MT-bench, HumanEval, and GSM8K: achieves
2.81x—4.05x speedup, with 8%-20% higher acceleration than EAGLE-2.




Speculative Sampling: Background and Motivation

m Large Language Models (LLMs) decode auto-regressively,
resulting in limited concurrency and slow generation.

m Speculative sampling accelerates decoding by using a
lightweight draft model to propose a batch of tokens, which is
then verified in parallel by the target LLM.

m Performance hinges on (1) low draft model cost and (2)
alignment between draft and target model distributions.

m Prior approaches use target LLM states (e.qg., hidden states,
KV cache) in draft input, but suffer from context
misalignment and mismatched training vs. decoding
objectives.




Problems in Prior Draft Model Training

m Context Misalignment: During training, draft models always see
target LLM hidden states; during decoding, they must generate
some features themselves, leading to feature “exposure bias”.

m Objective Misalignment: Draft models are usually distilled
on full-vocabulary cross-entropy, yet during decoding, only
high-probability tokens (top-K or top-P) matter for acceptance;
this leads to inefficient draft proposals.

m Both issues widen the distribution gap, decreasing acceptance
length rand limiting wall-clock speedup.

m Figure on next slide illustrates the context misalignment
between training and decoding using EAGLE as an example.
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Figure: Context misalignment: During training, the draft model sees target LLM
states at all steps; during decoding, it must rely on its own past outputs, leading

to drift and mismatch.
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Speculative Sampling and Acceptance Length

m In speculative sampling:
i Draft model M®) predicts a sequence of L draft tokens
, auto-regressively. Target LLM M\ evaluates all L tokens in parallel.
m A subset of tokens is accepted to preserve the target LLM’s

distribution (modified rejection sampling).

- Key metric: Acceptance length r— number of draft

tokens accepted per cycle. Speedup is directly proportional
“"tor.

Efficient speculative sampling requires draft alignment only
. . g

on high-probability tokens, not across the full vocabulary.

Prior distillation focused on full-vocabulary likelihood, suboptimal

for acceptance length.
 HASS: Harmonized Speculative




Overview of the HASS Method

m HASS (HArmonized Speculative Sampling) introduces:

= Harmonized Objective Distillation: Draft model is trained to focus on
top-K likely tokens from the target LLM, inspired by ranking distillation
from recommender systems.

" Harmonized Context Alignment: Training procedure mimics real
decoding context by chaining draft model outputs over several steps,
mixing in only available target LLM features.

Both components improve alignment where it matters — on
likely tokens in realistic inference contexts — boosting
acceptance length and speedup.
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chains mix target LLM features (superscript (/)) with draft model features
(superscript (sj )) to simulate decoding context over n steps.



Harmonized Objective Distillation: Top-K Loss

m ¢(z) and p(z): target LLM and draft model predicted distributions,
respectively.

s (0 set of K tokens with highest probability under target LLM; loss
focuses distillation on these probable next tokens.

m Motivation: Encourages recall on important tokens for acceptance,
not full-vocabulary accuracy. Top-K set can be computed efficiently
using target hidden states (when using EAGLE interface).

m Outperforms alternatives (e.g., BiLD, Recall@k losses) in acceptance
length across all tasks and LLMs tested.




Harmonized Context Alignment: Training

m Training is divided into n steps; at each, simulate the draft model
operating with progressively more self-generated (inaccurate)
context features.

m At training step j:

= Query: previous draft model output £ .
= Key/Value: mixture of target LLM features (f{’_;,; ) and draft model
featu res(ft(f};{‘zl:)t ).

m Adapts attention masks so the draft model must generate
next-feature inputs like during real decoding.

m Result: Draft model learns to compensate for compounded

self-generated context, reducing error accumulation and exposure

bias.
e



Implementation and Practical Details

s Evaluated with LLaMA2-Chat 7B/13B and LLaMA3-Instruct 8B/70B
as target LLMs.

m Tasks: MT-bench (dialogue), HumanEval (code), GSM8K
(math reasoning).

m Metrics:
s Speedup ratio: Wall-clock time vs. vanilla decoding on NVIDIA H800.

®m Acceptance length 7: Accepted tokens per draft cycle.

® Draft alignment steps n = 3 and Top-K parameter K = 10 found to
be empirically effective and efficient.

® No fine-tuning of target LLM; method is lossless with respect
to output quality.
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Figure: Speedup ratios of HASS and recent baselines on LLaMA2-Chat
7/13B, LLaMA3-Instruct 8/70B across MT-bench, HumanEval, GSM8K (T =0,
1). HASS provides 2.81x—4.05x speedup, consistently outperforming
EAGLE-2 by 8%—-20%.




Results: Acceptance Length and Speedup

m HASS achieves top performance on acceptance length rand
actual speedup ratio:
® LLaMA2-Chat 7B: HASS r=5.15 (EAGLE-2: 4.61), speedup 3.24x
. (EAGLE-2: 2.81x).
LLaMA2-Chat 13B: HASS 7=5.58 (EAGLE-2: 5.16), speedup
m 3.65X (EAGLE-2: 3.30x).
® | | aMA3-Instruct 8B: HASS r=5.08, speedup 3.09x.
LLaMA3-Instruct 70B: HASS r=5.21, 4.05X.
® Comparable trends for both 7=0 (greedy) and T =1 (sampling).
m HASS is robust across tasks (dialogue, code, math);
outperforms baselines on all evaluated LLMs.
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Figure: Ablation on Top-K parameters: Acceptance length increases with Top-K
loss (w >0); K=5and w=0.5is optimal. Too small K underperforms as draft
ignores other likely tokens.




Ablation: Loss Functions for Harmonized Objective Distillation

m Evaluated several loss functions for draft distillation:
m Top-P Loss (probability mass cutoff)
m Normed Top-K Loss (with/without softmax)
m Bi-directional Top-K Loss
m Recall@k Surrogate Loss
m BiLD Loss (logit ranking)

m Results (LLaMA2-Chat 7B, MT-bench):
m Top-K: 7 =4.92 (best)
m Top-P: 7=4.90
m BiLD: 7=4.90
m All others 7 between 4.85-4.90

m Top-K loss gives strongest consistent benefit, especially at higher
temperature (7' = 1).
 HASS: Harmonized Speculative
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Figure: Acceptance rate per speculation step: HASS vs. EAGLE-2. HASS
substantially improves acceptance rate in later steps, indicating reduced error
accumulation.




Ablation: Steps in Context Alignment

m Varying the number of alignment steps (n) in HASS:
m Best at n=3or 4. For LLaMA2-Chat 7B: n=3: 1=5.15; n=4: 1=5.16. TOO
m many steps (n =5) can degrade performance slightly, possibly due to limited
draft model capacity.

B | oss reweighting across steps (8): Assigning higher importance to
early steps increases first-step acceptance rate and overall 7.

m HASS remains efficient, as acceleration gains converge for small n.
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Conclusion and Impact

m HASS delivers substantial wall-clock acceleration for LLM decoding
via harmonized draft training.

m Innovations: Focus draft on high-likelihood tokens (Top-K
loss); simulate decoding context with multi-step context
g alignment.

Outperforms leading baselines (EAGLE-2: 8—20% greater
g Speedup) across LLaMA2/3, dialogue, code, math, and
translation tasks.

Opens new research: tailoring distillation loss and efficient
context simulation. Code/models open-sourced at

https://github.com/HArmonizedSS/HASS.
resinnereres T
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