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Motivation
● Autoregressive models are inherently sequential

● Each token requires a full forward pass

● For large model
sizes, this is a
HUGE
bottleneck



Speculative Decoding
● Uses a smaller “draft model” (Mq) to generate a sequence 

of draft tokens
● A larger “target model” (Mp) to verify and change incorrect 

tokens



Decoding Loop

Speculative generation

Target Verification Pass

Token Comparison/Verification



Speculative Sampling
● Token is accepted if p(x)/q(x) is less than a 

uniformly sampled threshold

● Generated sequence is adjusted. If there’s a 
rejection, “sync” the models by renormalizing

● New sequence is returned with n accepted 
draft tokens and one target generated token



Metrics - Acceptance Length

𝛃 = probability of a draft token to be accepted

𝛾 = draft sequence length



Metrics - Speedup and Ops

c = cost of running Mq
a = average rate of draft token acceptance
a = draft sequence length
c = ratio of arithmetic operations for Mq to Mp



Results - Numerical Predictions
Speedup    = 

Operations = 



Results

● Alpha increases with model size
● Speedup is greater for small models
● Higher acceptance/speedup for argmax
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Executive summary
Problem: autoregressive LLM inference (batch size 1) is 
memory-bandwidth bound because each output token requires 
streaming the full model parameters repeatedly.
Key idea: attach K lightweight decoding heads to the last hidden state 
to predict multiple future tokens in parallel, form multiple candidate 
continuations, and verify them jointly via a tree-structured attention 
mask (no separate draft model).
Two training modes: MEDUSA-1 (freeze backbone, train only heads) for 
lossless integration; MEDUSA-2 (joint fine-tuning with a training recipe) 
for higher head accuracy and larger speedups.
Results: on Vicuna family, MEDUSA-1 yields ∼2.2x speedups; MEDUSA-2 
yields up to ∼2.8x while maintaining generation quality on MT-Bench.
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Background and motivation

Bottleneck: repeated HBM → accelerator cache transfers 
dominate latency in single-stream decoding, under-utilizing 
arithmetic units.
Speculative decoding uses a separate draft model to generate 
continuations; practical issues: obtaining/serving a compatible 
draft, distribution mismatch, extra serving complexity.
Goal: increase arithmetic intensity per HBM transfer and reduce 
number of sequential decoding steps with minimal serving 
complexity and small parameter overhead.
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Figure: MEDUSA pipeline: attach extra decoding heads to last hidden states; sample top 
candidates per head; build candidate continuations; process them in parallel via tree 
attention; accept the longest verified prefix (rejection sampling or typical acceptance).
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MEDUSA heads: architecture and initialization
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Figure: Tree attention: build candidates from top-sk tokens per head (Cartesian 
product). The attention mask enforces that tokens only attend to their predecessors 
within the same candidate branch; positional indices are adjusted accordingly.
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Tree attention: construction and complexity
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Training strategies overview

MEDUSA-1 (frozen backbone): train only the new heads 
with cross-entropy to ground-truth tokens at offsets. Low 
memory; compatible with quantized backbone.
MEDUSA-2 (joint training): jointly train backbone and heads with a 
combined loss and training recipe to preserve original LM quality 
and improve head accuracy.
Self-distillation: if original SFT data is unavailable (or for RLHF 
models), generate a dataset by sampling the target model and 
distill using LoRA adapters to avoid hosting two full models.
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MEDUSA-1 loss (frozen backbone)

Practical tips:
Use decay weights λ

k 
(for example λ

k 
= ck with c ≈ 0.8) to 

downweight farther predictions.
With a quantized backbone you can train heads on a single 
consumer GPU (few hours for typical datasets).
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MEDUSA-2 joint training recipe

Key techniques:
Combined loss keeps backbone next-token capability.
Differential learning rates: smaller LR for backbone, larger LR 
for heads.
Heads warmup: two-stage schedule (train heads only, then 
joint fine-tune with small backbone LR or gradually increasing 
weight).
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Typical acceptance: quick verification 
(entropy adaptive)

Idea: accept tokens that are not extremely improbable under 
the original model instead of full distribution matching 
(rejection sampling).
Greedily accept first token to guarantee progress; among 
candidates accept the longest prefix satisfying the threshold.
Empirically yields higher throughput than rejection sampling 
while keeping generation quality similar.
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Self-distillation workflow (when SFT data 
unavailable)

Generate a dataset: use public seed prompts (e.g., ShareGPT, 
UltraChat) and sample the target model (chosen temperature) 
to produce multi-turn examples.
Distill backbone behavior using KL between teacher logits (original 
model) and student logits; to avoid storing two full models, 
fine-tune with LoRA adapters so teacher = backbone with adapters 
off.
Use the generated dataset to train heads (and optionally 
joint-distill backbone) with minimal extra memory.
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Figure: Tokens/sec comparison: baseline vs. MEDUSA-1 vs. MEDUSA-2 on 
Vicuna-7B and Vicuna-13B. MEDUSA-1 achieves ∼2.2x; MEDUSA-2 up to ∼2.8x.
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Figure: Detailed speedups per category (Vicuna-7B, MEDUSA-2): some categories 
like coding and extraction benefit especially (3x+).
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Figure: Raw tokens/sec as tree size increases. Larger trees increase compute 
and may reduce raw speed; choose tree config to balance expected accepted 
length and compute overhead.
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Figure: Typical acceptance ablation: trade-off between threshold and 
acceleration/quality (writing + roleplay tasks). Higher threshold tends to improve 
quality at some cost to acceleration.
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Ablations and practical results (summary)

Practical pipeline impact (rough numbers): heads-only (no tree)
∼1.5x; add tree attention ∼1.9x; optimized sparse tree ∼2.2x; full
MEDUSA-2 joint training ∼2.8x.
MEDUSA-1 is easy to deploy and preserves original model 
quality; MEDUSA-2 requires care (warmup, joint loss) but yields 
larger speedups.
Typical acceptance accelerates decoding in sampling regimes 
(temperature > 0) more effectively than rejection sampling in 
practice.
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Limitations and future work

Limitations: tree attention increases compute per step and can 
become compute-bound; hyperparameters (K, s

k
, thresholds) 

need tuning per model/task.
Future work: hardware-aware scheduling, automatic tree 
construction using per-prediction calibration, extension to larger 
batch sizes and distributed multi-GPU serving.
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Concluding remarks

MEDUSA offers a simple, parameter-efficient way to accelerate 
single-stream LLM inference by predicting multiple future tokens 
and verifying them jointly.
Two training modes enable both lossless integration (MEDUSA-1) 
and maximal speedup with preserved quality (MEDUSA-2).
Empirical results show consistent ∼2.2–2.8x speedups on Vicuna 
and related models with preserved MT-Bench scores.
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Motivation
Points:

● Large Language Models (LLMs) → slow inference
● Autoregressive decoding = one token per step
● Latency is critical in dialogue, code, math reasoning



Speculative Sampling Recap

● The draft model quickly proposes several 
candidate tokens in advance, rather than 
generating them one by one.

● The target LLM then evaluates all these 
drafted tokens in a single forward pass, 
accepting valid ones and rejecting the rest.

● Overall efficiency depends critically on the 
acceptance rate — the fraction of drafted 
tokens that survive validation, which 
determines how many tokens can be 
generated per step.

Computational process



Challenge of Existing Methods

● Tokens level: discrete, 
irregular

● Draft often misaligned with 
target

● Prior art: Medusa / 
Lookahead draft at token 
level→ limited speedup



Challenge of Existing Methods

Feature trajectories depend 
on sampled tokens
 For example, after “I”, the 
next hidden state could 
correspond to “am” or 
“always”, leading to very 
different branches.



Key Observations in EAGLE

1. Feature-level 
autoregression = 
smoother, easier

2. But features are still 
uncertain (depend on 
sampled token)



Key Observations in EAGLE

Example: “I” → “am” vs 
“always”



EGALE Solution (shifted tokens：token to feature level)

1. Add one-step-ahead 
token into feature 
prediction

2. Removes uncertainty 
→ higher accuracy

3. Draft features align 
better with target LLM

4.

5.

Corresponding generation results for each step



Draft Model Architecture

green blocks represent 
token embeddings, 

orange blocks represent 
features, red boxes 
indicate the predicions of 
the draft model 

blue modules with 
snowflake icons 
represent the use of 
target LLM parameters, 
which are not subject to 
training



Draft Model Architecture

1. Embedding + LM 
head (shared)

2. Lightweight 
autoregression 
head (trainable)

3. Output: hidden 
states → mapped 
to tokens



Training Objectives

1. SmoothL1 (Feature-level regression )

2. Cross-Entropy- (token-level classification)

Regression loss for predicting next hidden feature.

Ensures predicted token distribution
matches the ground truth.



Training Objectives

Combined Objective

● Lreg: Smooth L1 for feature-level
Autoregression.

● Lcls: Cross-Entropy for token-level
accuracy.

= 0.1 is chosen to balance the two objective



Drafting Process (Tree Attention)

Draft structure when tree attention is employed Draft structure without the use of tree attention

● Vanilla speculative decoding = linear chain
● EAGLE uses tree attention, drafting multiple branches per forward pass.
● Increases acceptance length without extra target passes



Experimental Setup

● Models: Vicuna, LLaMA2-Chat, Mixtral

● Benchmarks: MT-bench, HumanEval, 
GSM8K, Alpaca

● Tasks: dialogue, code, math, instructions

EAGLE achieves 3–4.5× speedup at 
temperature 0 with average acceptance 
length 3.8–4.5 tokens. Performance 
drops under higher temperature (T=1), but 
still maintains 2–3× acceleration. 13B 
models consistently show the best 
balance of speedup and acceptance



Main Results



Main Results

Across all models, we achieve 2.7×–3.1× speedups with an 

average acceptance length of 3–4 tokens per pass, 

consistently outperforming Medusa and Lookahead.

● Speedup: 2.7×–3.1× across all models

● Avg. acceptance length: 3–4 tokens per 
pass

● Outperforms Medusa & Lookahead 
consistently



Training Efficiency

● Fewer than 1 billion trainable parameters:
 The draft autoregression head is lightweight compared to the full model, 
so the training cost is modest.

● Only about 70,000 dialogue samples needed:
 Training can be done on a relatively small dataset such as ShareGPT 
conversations, without requiring massive corpora.

● 1–2 days on 4×A100 GPUs for LLaMA2-Chat 70B:
 Even for a very large target model, the draft head can be trained within a 
couple of days on a small GPU cluster.



Strengths

● Lossless acceleration
 Output distribution is provably preserved — same quality as target LLM.

● General applicability
 Works across many LLM families and sizes without modifying the target 
model.

● Compatible with other methods
 Can stack with quantization or compilation (e.g., gpt-fast) for extra 
speedup.



Limitations

● Gains drop with large batch 
sizes

● Smaller improvement on MoE 
models (e.g., Mixtral)

● Still requires training a draft 
module



Conclusion

● Speculative sampling is shifted from the token level to the feature level, 
making drafting smoother and more predictable.

● The uncertainty of feature sequences is resolved by conditioning on shifted 
tokens.

● A lightweight draft head combined with tree attention enables efficient 
multi-branch drafting.

● EAGLE achieves 2–4× faster inference while fully preserving the target LLM’s 
output distribution.
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Executive Summary
HASS is a new speculative sampling method for LLM decoding, addressing 
both objective misalignment and context misalignment in draft model 
training.
Proposes harmonized objective distillation, focusing draft model training 
on the top-K tokens with highest probability from the target LLM, thereby 
boosting acceptance rates.
Proposes harmonized context alignment to eliminate context inconsistency 
between training and decoding, mitigating exposure bias and error 
accumulation.
Outperforms prior work (notably EAGLE-2) on LLaMA2-Chat 7/13B and 
LLaMA3-Instruct 8/70B across MT-bench, HumanEval, and GSM8K: achieves 
2.81x–4.05x speedup, with 8%-20% higher acceleration than EAGLE-2.
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Speculative Sampling: Background and Motivation

Large Language Models (LLMs) decode auto-regressively, 
resulting in limited concurrency and slow generation.
Speculative sampling accelerates decoding by using a 
lightweight draft model to propose a batch of tokens, which is 
then verified in parallel by the target LLM.
Performance hinges on (1) low draft model cost and (2) 
alignment between draft and target model distributions.
Prior approaches use target LLM states (e.g., hidden states, 
KV cache) in draft input, but suffer from context 
misalignment and mismatched training vs. decoding 
objectives.
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Problems in Prior Draft Model Training
Context Misalignment: During training, draft models always see 
target LLM hidden states; during decoding, they must generate 
some features themselves, leading to feature ”exposure bias”.
Objective Misalignment: Draft models are usually distilled 
on full-vocabulary cross-entropy, yet during decoding, only
high-probability tokens (top-K or top-P) matter for acceptance; 
this leads to inefficient draft proposals.
Both issues widen the distribution gap, decreasing acceptance 
length τ and limiting wall-clock speedup.
Figure on next slide illustrates the context misalignment 
between training and decoding using EAGLE as an example.
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Figure: Context misalignment: During training, the draft model sees target LLM 
states at all steps; during decoding, it must rely on its own past outputs, leading 
to drift and mismatch.
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Speculative Sampling and Acceptance Length
In speculative sampling:

Draft model M(s) predicts a sequence of L draft tokens 
auto-regressively. Target LLM M(l) evaluates all L tokens in parallel.
A subset of tokens is accepted to preserve the target LLM’s 
distribution (modified rejection sampling).

Key metric: Acceptance length τ — number of draft 
tokens accepted per cycle. Speedup is directly proportional 
to τ .
Efficient speculative sampling requires draft alignment only 
on high-probability tokens, not across the full vocabulary.
Prior distillation focused on full-vocabulary likelihood, suboptimal 
for acceptance length.
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Overview of the HASS Method

HASS (HArmonized Speculative Sampling) introduces:
Harmonized Objective Distillation: Draft model is trained to focus on 
top-K likely tokens from the target LLM, inspired by ranking distillation 
from recommender systems.
Harmonized Context Alignment: Training procedure mimics real 
decoding context by chaining draft model outputs over several steps, 
mixing in only available target LLM features.

Both components improve alignment where it matters — on 
likely tokens in realistic inference contexts — boosting 
acceptance length and speedup.

HASS: Harmonized Speculative 
Sampling



Figure: Harmonized context alignment in HASS: During training, query/key-value 
chains mix target LLM features (superscript (l)) with draft model features 
(superscript (sj )) to simulate decoding context over n steps.
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Harmonized Objective Distillation: Top-K Loss
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Harmonized Context Alignment: Training
Training is divided into n steps; at each, simulate the draft model 
operating with progressively more self-generated (inaccurate) 
context features.
At training step j:

Query: previous draft model output f j−1(s )
t .

Key/Value: mixture of target LLM features (f (l)1:t−j+1 ) and draft model 
features(f 1:j−1(s )

t−j+2:t ).

Adapts attention masks so the draft model must generate 
next-feature inputs like during real decoding.
Result: Draft model learns to compensate for compounded
self-generated context, reducing error accumulation and exposure 
bias.
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Implementation and Practical Details
Evaluated with LLaMA2-Chat 7B/13B and LLaMA3-Instruct 8B/70B 
as target LLMs.
Tasks: MT-bench (dialogue), HumanEval (code), GSM8K 
(math reasoning).
Metrics:

Speedup ratio: Wall-clock time vs. vanilla decoding on NVIDIA H800.
Acceptance length τ : Accepted tokens per draft cycle.

Draft alignment steps n = 3 and Top-K parameter K = 10 found to 
be empirically effective and efficient.
No fine-tuning of target LLM; method is lossless with respect 
to output quality.
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Figure: Speedup ratios of HASS and recent baselines on LLaMA2-Chat 
7/13B, LLaMA3-Instruct 8/70B across MT-bench, HumanEval, GSM8K (T = 0, 

1). HASS provides 2.81x–4.05x speedup, consistently outperforming 
EAGLE-2 by 8%–20%.
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Results: Acceptance Length and Speedup

HASS achieves top performance on acceptance length τ and 
actual speedup ratio:

LLaMA2-Chat 7B: HASS τ = 5.15 (EAGLE-2: 4.61), speedup 3.24x 
(EAGLE-2: 2.81x).
LLaMA2-Chat 13B: HASS τ = 5.58 (EAGLE-2: 5.16), speedup 
3.65x (EAGLE-2: 3.30x).
LLaMA3-Instruct 8B: HASS τ = 5.08, speedup 3.09x. 
LLaMA3-Instruct 70B: HASS τ = 5.21, 4.05x.

Comparable trends for both T = 0 (greedy) and T = 1 (sampling). 
HASS is robust across tasks (dialogue, code, math); 
outperforms baselines on all evaluated LLMs.

HASS: Harmonized Speculative 
Sampling



Figure: Ablation on Top-K parameters: Acceptance length increases with Top-K 
loss (w > 0); K = 5 and w = 0.5 is optimal. Too small K underperforms as draft 
ignores other likely tokens.
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Ablation: Loss Functions for Harmonized Objective Distillation
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Figure: Acceptance rate per speculation step: HASS vs. EAGLE-2. HASS 
substantially improves acceptance rate in later steps, indicating reduced error 
accumulation.
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Ablation: Steps in Context Alignment

Varying the number of alignment steps (n) in HASS:
Best at n = 3 or 4. For LLaMA2-Chat 7B: n = 3: τ = 5.15; n = 4: τ = 5.16. Too 
many steps (n = 5) can degrade performance slightly, possibly due to limited 
draft model capacity.

Loss reweighting across steps (β): Assigning higher importance to 
early steps increases first-step acceptance rate and overall τ .
HASS remains efficient, as acceleration gains converge for small n.
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Figure: Ablation on loss reweighting: Emphasizing early steps (β = 0.5) 
increases acceptance at the first step and lifts overall acceptance length.
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Conclusion and Impact

HASS delivers substantial wall-clock acceleration for LLM decoding 
via harmonized draft training.
Innovations: Focus draft on high-likelihood tokens (Top-K 
loss); simulate decoding context with multi-step context 
alignment.
Outperforms leading baselines (EAGLE-2: 8–20% greater 
speedup) across LLaMA2/3, dialogue, code, math, and 
translation tasks.
Opens new research: tailoring distillation loss and efficient 
context simulation. Code/models open-sourced at 
https://github.com/HArmonizedSS/HASS.
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