Lost in the Middle: How
Language Models Use Long

Contexts
Nelson Liu et al., 2023

Today I'll summarize “Lost in the Middle,” which investigates how large
language models (LLMs) actually use long input contexts. The authors design
controlled experiments to test whether models can find and use relevant
information when its position varies within the prompt. Their central finding:
performance is highest when the answer is at the very beginning or very end of

the context, and it drops when the answer sits in the middle—hence “lost in the
middle.”

—— Tianzhuang
Xiong



Motivation

e LLMs can accept very long contexts (4K—-100K tokens).
e But: Do they robustly use information anywhere in that context?

e Many real apps (RAG, chat history, long docs) depend on this.

We often assume “bigger window — better reasoning,” especially
In retrieval-augmented generation or long document analysis. But if
a model is sensitive to where information appears, then simply
stuffing more text into the prompt can hurt rather than help. This

paper probes that assumption with targeted tests.



Core Research Questions

e How does position of relevant info affect accuracy?

e Does context length change this sensitivity?

e How do architectures (decoder-only vs encoder-decoder) behave?
e Do query-aware prompt layouts help?

e \What about instruction fine-tuning?

The authors measure not just raw accuracy but trends as they move relevan
passages around and make contexts longer. They also compare architectura
families, test prompt formatting tricks, and evaluate models with and without
instruction tuning to see what's fundamental versus what can be fixed by

prompting



Experimental Tasks (Overview)

e Multi-Document QA: one relevant passage among distractors.
e Synthetic Key—Value Retrieval: JSON key—value pairs; return v for key K.
e Systematically vary:

e Context length (e.g., number of docs/pairs)

e Position of the relevant item (start / middle / end)

Two complementary tasks: a realistic multi-document QA setting where
exactly one passage contains the answer, and a minimal, controlled key—

value lookup task. In both, they can cleanly move the relevant item across

positions to observe performance curves.



Multi-Document QA: Setup

e Questions from NaturalQuestions-Open; passages from Wikipedia.
e Exactly one passage has the answer; others are distractors.
e Distractors are topically relevant (retrieved) but incorrect.

e Evaluate accuracy vs. position of the correct passage.

For each question, they place the answer passage at the beginning, middle, or
end of the input, with high-quality distractors elsewhere. This simulates a
retriever + LLM pipeline where the reader must use the provided evidence—

not its parametric memory—to answer.
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Key Finding #1 (U-Shaped Curve)
e Accuracy is highest when evidence is at the start or end.

e Accuracy drops when evidence is in the middle (“lost in the middle”).

e Seen across several models (open & closed)
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Extended Context # Robust Use

e “Long-context” variants don’t automatically fix the problem.

e Models with larger windows can still struggle to use mid-

context info.

e Adding more documents saturates performance quickly.
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Synthetic Key—Value Task

e Minimal test of exact retrieval (k—vV).
e Some models still show U-shape: middle positions are hardest.
e However, query-aware formatting can help a lot here.

Even in a very structured setting—just matching a key to its value—
some models falter when the pair sits mid-context. This indicates the
phenomenon isn’t only about natural language messiness; it can

appear in clean, synthetic formats too.
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Architecture Matter (But...)

eEncoder—decoder models are more position-robust within

their training-time sequence length.

e\When tested beyond that length, they also show U-shapes.
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Query-Aware Contextualization

e Place the query both before and after the documents/pairs.
e Near-perfect on synthetic key—value retrieval.

e Minimal change to trends in multi-doc QA.

A practical prompting trick—repeat the question at both ends—
dramatically helps the key—value task but doesn’t fundamentally
change the position-sensitivity

trends in multi-document QA. In realistic reading scenarios, better
formatting helps a bit, but it doesn’t solve the core problem.



Instruction Tuning is Not the Fix

e Even base models (no instruction tuning) show U-shapes.

e Suggests a fundamental limitation in attention/position

generalization.
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Practical Implications

e RAG pipelines: Re-rank so the best evidence is first (or last).

e Prompt design: Put summaries/quotes near the query;

optionally repeat the query at the end.
e [rim irrelevant text; avoid unnecessary length.
e Prefer chunking/sliding windows or hierarchical aggregation.

eDon’'t assume longer window = better accuracy.

If you control the prompt, bias it so key evidence is early (or echoed late). Pre-summarize
highlight, or quote the most relevant spans. Keep contexts lean. For documents you don't
control, use retrieval + re-ranking to bring the best passages forward. Consider

hierarchical or multi-step reading, rather than a single monolithic prompt.



Why “U-Shaped”? (Intuition)

e Attention dilution: more tokens = harder to focus on the right span.
e Positional encoding limits: extrapolation beyond training length is fragile.
e Boundary effects: starts/ends get disproportionate attention.

e Cognitive analogy: primacy/recency effects in memory.

The paper discusses empirical trends rather than mechanistic proofs, but
these factors are consistent with prior understanding: attention budgets
dilute with length, and many position encoding schemes struggle when
extrapolating. Start/end tokens also benefit from structural prominence

during generation.



Limitations & Scope

e Benchmarks emphasize English, specific models, and tasks.
e Multi-doc QA uses one relevant passage by design.

e Results don’t claim impossibility—just current model behavior.

As with any controlled study, external validity has bounds. Still, the
consistency of the U-shape across tasks and models suggests a

robust phenomenon worth addressing in both research and

practice.



Takeaways & Looking Forward

e Key message: Models are not position-robust over long contexts; they favor

beginnings and ends.

e Engineering guidance: curate/re-rank, front-load evidence, repeat the query, and

keep the prompt concise.

e Research directions: better long-range attention, position encodings with
reliable extrapolation, training curricula for long contexts, and

aggregation/reading strategies.

To claim a model can truly use long contexts, we should test not only maximum
window size but position robustness: minimal spread between best- and worst-
case evidence positions. Future work could combine improved architectures with

training regimes and interface designs that emphasize robust retrieval across the

entire prompt.



LongNet: Scaling Transformers
to 1,000,000,000 Tokens

Oct 14, 2025

Yusheng Tan



The outline of today’s presentation

e Motivation

e Proposed Method

e Engineering Implementation
e Results

e Take away

LongNet « 2023



The outline of today’s presentation

e Motivation

LongNet « 2023



Motivation / Problem

Scaling sequence length is the last frontier in neural network scaling.
While depth and width have been successfully scaled (e.g., deep networks, MoE
models), sequence length remains fundamentally constrained by computational limits.

Existing long-sequence models face a trade-off between efficiency and
expressivity.

RNNs and state-space models handle long sequences efficiently but lack the
expressivity of Transformers, while standard Transformers are powerful but
computationally infeasible for long contexts.

Quadratic attention cost severely limits Transformer scalability.
The O(N?) complexity of self-attention makes it impossible to train or infer with extremel
long contexts, restricting the ability to model long-range dependencies.

LongNet « 2023



Goal

Greatly extend the Transformer’s context length (to extremely long sequences) in order to
better model long-range dependencies and multi-sample or multi-segment prompts.

Break free from the O(N*2) bottleneck of standard attention by introducing sparse dilated
attention, which reduces computation to near-linear complexity while preserving efficient
information flow (logarithmic depth).

Enable practical training on ultra-long contexts by designing distributed training along the
sequence dimension, making long-context learning feasible on hardware/communication
budgets and compatible with optimizations such as FlashAttention.
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Proposed Method

Segment Length: 4 Segment Length: 8 Segment Length: 16
Dilated Rate: 1 Dilated Rate: 2 Dilated Rate: 4

\/

Figure 2: Building blocks of dilated attention used in LONGNET. It consists of a series of attention
patterns for modeling both short-range and long-range dependency. The number of attention patterns
can be extended according to the sequence length.

Figure explanation:
LongNet introduces dilated attention to efficiently capture dependencies across

different ranges.
Each segment has a different dilation rate, enabling both short-range and long-range

interactions.
Combining these patterns forms a scalable attention mechanism that extends with

sequence length.



Dilated attention with multiple heads

1st head 2nd head 3 head 4th head

Segment Length: 8
Dilated Rate: 2
Heads: 4

Figure 3: Dilated attention with multiple heads. The attention patterns differ among heads by shifting
the position successively.

The core of LongNet lies in combining multi-scale dilated attention with multi-head
attention.

Across different scales (with varying dilation rates and segment lengths), the model
captures dependencies ranging from local to global contexts.
Within each scale, multiple attention heads are applied.

This hierarchical design allows LongNet to achieve both multi-scale perception and
multi-view contextual modeling, while maintaining linear computational complexity

LongNeg« 202

or lona-sequence processing.



Computational Complexity and Token Dependency

Given dilated attention with a segment size and dilation rate of (r, w), each query-key-value pair is

sparsified from (Q, K,V) € RY* 1o (Q,K,V) e R " so the flops of the attention computation

are estimated as:

ON O9Nwd
FLOPs = = ()’d =
T

(16)

We further extend it to dilated attention with multiple segment sizes and dilation rates. The flops can
be written as:

k
FLOPs = 2Nd Z (17)

With the segment sizes and dilation rates in Equation (11) and Equation (12), the flops are given by

20

FLOPs = 2w,Nd Z —

1[]

—woNd (o> 1) (18)

where wy is a predefined constant and « is the common ratio for geometric sequences w and 7.
Therefore, the computation complexity of dilated attention is approximate to Q(Nd).

LongNet « 2023
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Engineering Implementation
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Figure 4: Distributed training of LONGNET on two GPU devices. It parallelizes the training by
partitioning the sequence dimension. The computation and communication costs are nearly constant
as the number of devices grows.

The figure shows distributed training of LongNet on two GPUs, where the
sequence is partitioned across devices and only sparsified key—value pairs
are communicated.

This approach easily scales to more GPUs with nearly constant computation
and communication costs.
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Github
Model Length Batch 2K SK 1K
Transformer [VSP+ 17] 2K 256 4.24 5.07 11.29
Sparse Transformer [CGRS19] 3K 64 4.39 3.35 8.79
LONGNET (ours) 4.23 3.24 3.36
Sparse Transformer [CGRS19] 16K 1 4.85 3.73 19.77
LONGNET (ours) 4.27 3.26 3.31
Sparse Transformer [CGRS19] 1K 16 5.15 4.00 3.64
LONGNET (ours) 4.37 3.33 3.01

Table 2: Perplexity of language models for LONGNET and the baselines.

In the experiments, torchscale was used as the base
library. After replacing the attention layer, a 12-layer
model with hidden size 768 was trained and examined.
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Figure 6: Test perplexity of LONGNET and dense Transformers using different sequence lengths dur-

ing training. LONGNET outperforms dense Transformers with a lower perplexity and a significantly
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Figure 7: Left: Test loss of LONGNET with an increasing model size. The scaling curve follows
a similar law to the vanilla Transformers. Right: Test loss of LONGNET using different context
windows. A longer context window yields better language modeling.
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== [ilated attention w/ FlashAttention

<000 | Vanilla attention w/ FlashAttention

4000

00000

Runtime (ms)

2000

1000 4

BK 16K 372K 64K128K 512K 2M am =M 128M 18
Sequence Length

Figure 5: Runtime of our dilated attention and vanilla attention. Both are equipped with FlashAtten-
tion [DFE"22].

The results directly demonstrate LongNet's ability to handle long-
text processing. Compared with the rapid growth of vanilla

Transformers, Dilated Attention shows almost no significant
change.

LongNet « 2023



Conclusion — Three Takeaways

e Scalable Context Expansion
LongNet extends Transformer context length to billions of tokens, enabling
effective modeling of long-range dependencies and multi-segment prompts.

e Efficient Sparse Attention
Dilated Attention reduces the quadratic cost of standard attention to near-
linear while maintaining information flow, making ultra-long context training

feasible.

e Strong Performance & Practicality
LongNet shows competitive or improved perplexity across benchmarks,
scales efficiently with model size and context window, and remains
compatible with distributed training and optimizations like FlashAttention.

LongNet « 2023



RoFormer: Enhanced Transformer with Rotary
Position Embedding

Sayee Sreenivas G B



Problem

Transformers are position-agnostic; we must inject position info.

Prior schemes: absolute (sinusoidal/learned) vs relative (bias terms).

Goal of RoPE: encode absolute index as rotations so that attention
scores depend only on relative offsets (m—-n).



Introduction

RoFormer: Rotary Position Embedding (RoPE):

A new positional encoding.

Multiplicative, lightweight, and theory-backed.

RoFormer (Transformer + RoPE).

RoPE multiplies positions into Q/K as rotations.



Implementation of RoPE
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In attention, rotations subtract — score depends on (n—m).



Proposed Approach

Formulation - (Goal of RoPE)

Problem: Inject positions so attention depends on relative offset only.

We want encoders f,, fi so the inner product of query/key at positions m, n

satisfies

(fo(xm,m), fe(xn,n)) = g(Xm:Xn, m —n) (Eq.11)
Interpretation: attention score should use content (x,,, X,,) and relative distance
(m — n), not the absolute indices separately.

Target: find a position encoding that builds relative dependence directly into the

dot-product, without extra bias terms.



Absolute Position Encoding (Additive)

General additive form:

ff(xi!i) — Wt(xi | pi)a S {q',-kaﬂ}-

Fixed sinusoidal (Vaswani'17):
Dior = E-'.in(i/l(lﬂﬂﬂz"’-“’i), Piogi1 = cns(i/lﬂﬂﬂﬂm-’f‘i).
Learned absolute tables (BERT/RoBERTa): p; trainable up to max length L.



Relative Position Embedding

Shaw et al."18 (clipped relative embeddings):

Fo(%m) = WX, fi(%nsn) = Wi(xn + B), ful-) = Wa(xa + B1),
r = clip(m — 1, ypin, Tmax)-

Transformer-XL (Dai'19) decomposition of logit:

q, k, = x.r;qu' Wix,, xTLW{I' ﬁf;,:ﬁm_.” Fua' Wix, + v ﬁfkﬁT,L_H.
T5 (Raffel’20) learned relative bias:

q,r-nkn - bm.n (bucketed relative offsets).

DeBERTa (He'20), Ke'20, Huang'20: variants mixing content & relative terms.



Properties of RoPE

Long-term decay: f:=10000""/".

With RoPE, the attention logit is a sum of oscillators whose
phases separate as Im—n| grows = destructive interference =
the maximum of | g_m”T . decays with distance (see Fig. 2).

Compatibility with linear attention

General attention (per token m) (Eq. 17):

. > Eim{Qrm kﬂ} Vi
Attn(Q. K, V), = =2——— .
[ ]m Ln s1m( iy, k:-t}I

Linearized form (Eq. 18):
1 "k, ) v
Attﬂ?n — LI_L [I'-:Ii-nj ( .l‘i':] 1
> on @lam) "Y(k,)
RoPE plug-in (Eq. 19): rotate the feature-mapped queries/keys (rotations are

, with non-negative feature maps ¢, .

orthogonal = norm-preserving):

-y () 7 T ':li. ¢
Z‘-n[RIE-)..:-n"-DI:Q?'?!}} I:Rif-l_]nw{knj)vl?

Attn,,, = - _
" 3 dlam) v(k,)




Long-Term Decay of RoPE

Group features into 2-D pairs — RoPE logit is a sum of oscillators

d/2—1
QI;tkH = RE[ Z hi Efﬁﬁf} (Eq. 35)
i—0
Apply Abel transform (summation by parts):

i1

Z hie'2 = — Z'S:’—l (hiz1 —h;) with §; = Zef‘ﬁﬂ' (Eq. 36)
i i t—0)
Triangle inequality bound:

‘Zh_lﬂ;m«,-
E.
1

= (HlfiK hisa — hil) Z|Sr’—l| (Eq. 37)

RoOPE turns positions into phases; as tokens get farther apart,
cross-band phase mismatch causes destructive interference,
naturally reducing long-range attention.



Long-Term Decay of RoPE - Figure

100

RoPE naturally down-weights distant tokens but its maximum
iInfluence declines with distance, which tends to stabilize
training and improve long-context behavior.



Experiments & Evaluation Results

Tasks (by category)

. Pretrain: BERT-base on BookCorpus+Wiki (MLM)
. Downstream: GLUE (MRPC, SST-2, QNLI, STS-B, QQP, MNLI)

. Linear Attn: Performer on Enwik8

Table 1: The proposed RoFormer gives better BLEU scores compared to its baseline alternative Vaswani et al. [2017)]
on the WMT 2014 English-to-German translation taskBojar et al. [2014].

Model BLEU
Transformer-base Vaswani et al. [2017] 27.3
RoFormer 27.5

On WMT 14 En—De, RoFormer slightly outperforms
Transformer-base—27.5 vs 27.3 BLEU under the same
setup—showing a modest but consistent gain from RoPE.



Experiments — Pretraining & GLUE

Pretraining loss curves (Figure: BERT/RoFormer « Performer w/ & w/o RoPE)

+« BERT vs RoFormer (MLM): RoFormer converges faster and to a lower loss under the
same recipe — swapping sinusoid — RoPE helps optimization.
+ Performer (linear attention): Adding RoPE keeps linear complexity and yields lower

loss across steps — confirms compatibility + benefit for linear attention.

GLUE downstream (Table: RoFormer vs BERT-base)

+  Wins (3/6): MRPC 88.9—-89.5 (F1), ST5-B 85.8—87.0 (Spearman), QQP 71.2—86.4 (F1).
+ Drops: 55T-2 93.5—-90.7, QNLI 90.5—-88.0, MNLI m/mm 84.6/83.4—80.2/79.8.
+« Takeaway: RoPE gives clear gains on semantic similarity/paraphrase tasks and

improves optimization speed, but is not uniformly better across all GLUE tasks.



Performer with RoPE

Setup
. Dataset: Enwik8 (char LM)

. Model: 12-layer Performer, d=768, 12 heads

. Train: LR 1e-4, bs 128, max seq 1024 (same for
both)

Takeaway
RoPE is compatible with linear attention
and improves optimization on Enwik8.

Figure 3: Evaluation of RoPE in language modeling pre-training. Left: training loss for BERT and RoFormer. Right:



Chinese Long-Text Evaluation

Table 3: Cross-comparison between our RoFormer and other pre-trained models on Chinese data. "abs’ and ‘rel’
annotates absolute position embedding and relative position embedding, respectively.

Model BERTDevlin et al. [2019] WoBERTSu [2020] NEZHAWei et al. [2019] RoFormer
Tokenization level char word char word
Position embedding abs. abs. rel. RoPE

Table 5: Experiment results on CAIL2019-SCM task. Numbers in the first column denote the maximum cut-off
sequence length. The results are presented in terms of percent accuracy.

Model Validation Test

BERT-512 64.13% 67.77%
WoBERT-512 64.07% 68.10%
RoFormer-512  64.13% 68.29%
RoFormer-1024 66.07% 69.79%




Limitations

RoOPE often trains faster than additive PEs, but a full theoretical
reason is still open.

Long-term decay is proved, yet why RoPE outperforms peers on
long documents isn’t fully explained.

Still a Transformer—pre training requires significant hardware.

Conclusion

Encode absolute position as rotations of Q/K, making attention scores
depend only on relative offsets.

Sequence-length flexibility, natural long-range decay, and compatibility with
linear attention.

Faster MLM convergence, small but consistent MT gains, mixed-but-positive
GLUE results, improved Performer training, and better long-doc accuracy.
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RULER - 2024

Motivation

Current long-context evaluations are overly simplistic.

Most works rely on needle-in-a-haystack (NIAH) tests, which only measure retrieval ability —
whether the model can find a small piece of information from a long distractor text — but this
reflects only superficial context usage rather than true long-context understanding.

Inconsistent and incomplete evaluation practices.

Existing benchmarks are used inconsistently across studies (different setups, data, and lengths)
making it difficult to compare models fairly or systematically assess progress in long-context
learning.

Need for richer, more diagnostic tasks.

Long-context understanding involves more than retrieval — it includes reasoning across multiple
context spans, aggregating dispersed information, and following multi-hop dependencies.

A new benchmark should explicitly test these capabilities.

Empirical evidence of performance degradation.

Despite large claimed context windows (e.g., 32K-200K tokens), existing LMs degrade sharply
as context length or task complexity increases, showing that long-context scaling is far from
solved.
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Intro to RULER Benchmark

1 . Retl’leva| Diverse Min. Parametric Controllable
Benchmark & Task AvgLen Type Tasks Knowledge Context
ZeroSCROLLS ~10k realistic X X
- I L-Eval ~8k  realistic X X
2' M u ltl hop TraCIng BAMBOO ~16k realistic X
LongBench ~8k  hybrid X X
. LooGLE ~20k  hybrid X
3 .Ag g regatl on InfiniteBench ~200k  hybrid X
Needle-in-a-haystack (NIAH)| any synthetic X
Passkey / Line / KV Retrieval | any synthetic X

4.Question Answering RULER (Ours) | any synthetic|




Aggregation

In the common word extraction task (CWE), words are sampled from
discrete uniform distributions, with the number of common words fixed
while the number of uncommon words increases with the sequence
length. In the frequent words extraction task (FWE), words are sampled

from Zeta distribution.

CWE

o8
o 30 I| —— Common words o 5‘:\__\_\
g >0 I Uncommon words L6 __ g=15
- [ 2, — a=20
° : o4 —
s 10 : E — a=25
= ! 1 2 a=3.0
0 1 1 g‘
Word types — log (Word rank)

Figure 1: In aggregation tasks, we sample words from a vocabulary following the two distri-
butions above. The common words extraction (CWE) samples from uniform distributions.
In the frequent words extraction (FWE), the frequency of each word is determined by its
rank in the vocabulary and the parameter « of Zeta distribution.
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Experimental Setup

17 long-context LLMs, including 15 open-source models and two
closed-source model (Gemini-1.5-Pro and GPT-4 ), covering
diverse model sizes (7B to 8x22B with MoE architecture) and
claimed context lengths (32K to 1M).

Model Aligned Size Context Length Huggingface (Wolf et al., 2019) / API

GPT-4 (OpenAl Josh Achiam et al., 2023) v - 128K gpt-4-1106-preview

Gemini-1.5 (Reid et al., 2024) v - 1M gemini-1.5-pro

Llama3.1 (Meta.Al, 2024b) v 70B 128K meta-llama/Meta-Llama-3.1-70B-Instruct
Llama3.1 (Meta.Al, 2024b) v 8B 128K meta-llama /Meta-Llama-3.1-8B-Instruct
Command-R-plus (Cohere, 2024) v 104B 128K CohereForAl/ c4ai-command-r-plus

Qwen2 (Yang et al., 2024) v 72B 128K Qwen/Qwen2-72B-Instruct

Yi (Young et al., 2024) v 34B 200K 01-ai/Yi-34B-200K

Mixtral-8x22B (Jiang et al., 2024) v 39B/141B 32K mistralai/Mixtral-8x22B-Instruct-v0.1
Mistral-v0.2 (Mistral. Al, 2023) v 7B 32K mistralai /Mistral-7B-Instruct-v0.2

GLM4 (GLM et al., 2024) v 9B M THUDM/ glm-4-9b-chat-1m
GradientAl/Llama3 (Meta.Al, 2024a) v 70B 1M gradientai/Llama-3-70B-Instruct-Gradient-1048k
Phi3-medium (Abdin et al., 2024) v 14B 128K microsoft/Phi-3-medium-128k-instruct
LWM (Liu et al., 2024a) v 7B 1M LargeWorldModel /LWM-Text-Chat-1M
DBRX (Databricks, 2024) v 36B/132B 1M databricks/dbrx-instruct

Together (Together.AlI, 2023b) v 7B 32K togethercomputer /Llama-2-7B-32K-Instruct
LongChat (Li et al., 2023a) v 7B 32K Imsys/longchat-7b-v1.5-32k

LongAlpaca (Chen et al., 2024) v 13B 32K Yukang/LongAlpaca-13B

Mixtral-base (Jiang et al., 2024) X 8x7B 32K mistralai/Mixtral-8x7B-v0.1

Mistral-base (Mistral. Al, 2023) X 7B 32K alpindale /Mistral-7B-v0.2-hf

LWDM-base (Liu et al., 2024a) X 7B 1M LargeWorldModel /LWM-Text-1M
LongLoRA-base (Chen et al., 2024) X 7B 100K Yukang/Llama-2-7b-longlora-100k-ft
Yarn-base(Peng et al., 2024) X 7B 128K NousResearch/ Yarn-Llama-2-7b-128k
Together-base (Together.Al, 2023a) X 7B 32K togethercomputer /Llama-2-7B-32K
Jamba-base (Al21, 2024) X 52B 256K ai2llabs/Jamba-v0.1

Llama? (chat) (Touvron et al., 2023) v 7B 4K meta-llama /Llama-2-7b-chat-hf

Llama? (base) (Touvron et al., 2023) X 7B 4K meta-llama/Llama-2-7b-hf

Yi series (Young et al., 2024) v 6B,9B 200K 01-ai/ Yi-(6B,9B)-200K

LWM series (Liu et al., 2024a) v 7B 128K,256K,512K LargeWorldModel / LWM-Text-Chat-(128K,256K,512K)
LWDM-base series (Liu et al., 2024a) X 7B 32K,128K,256K,512K  LargeWorldModel /LWM-Text-(32K,128K,256K,512K)
Mamba (Gu & Dao, 2023) X 2.8B 2K state-spaces/mamba-2.8b-slimpj

RWKYV (Peng et al., 2023) X 7B 4K RWKYV /v5-Eagle-7B-HF

Table 4: Information of evaluated and analyzed models in RULER.
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Main Results

Models ?::;;d EEZ‘:;;"" 4K 8K 16K 32K 64K 128K | Avg. “('31‘3)5 ‘:’c‘;‘g
Llama2 (7B) 4K -~ | 856

Gemini-1.5-Pro M >128K | 967 958 960 959 959 944 | 958 | %55y 9%.1as
GPT-4 128K 64K | 966 963 952 932 870 812 | 916 | 89.0pna 9410ng)
Llama3.1 (70B) 128K 64K | 965 958 954 948 884 666 | 89.6 | 85504 937
Qwen?2 (72B) 128K 32K | 969 961 949 941 798 537 | 859 | 79.60m) 92.3un)
Command-R-plus (104B) | 128K 32K | 956 952 942 920 843 631 | 874 | 82704 9215w
GLM4 (9B) ™M 64K | 947 928 921 899 867 831 | 899 | 8805 917
Llama3.1 (8B) 128K 32K | 955 938 9l6 874 847 770 | 883 | 8545y 9130
GradientAl/Llama3 (70B) | 1M 16K | 951 944 908 854 809 721 | 865 | 82.6m 903sm)
Mixtral-8x22B (39B/141B) | 64K 32K | 956 949 934 909 847 317 | 819 | 735010 903
Yi (34B) 200K 32K | 933 922 913 875 832 773 | 87.5 | 8485w 90.100m
Phi3-medium (14B) 128K 32K | 933 932 911 868 786 461 | 815 | 74800m 8831
Mistral-v0.2 (7B) 32K 16K |936 912 872 754 490 138 | 684 | 55.605m 812
LWM (7B) M <4K | 823 784 737 691 681 650 | 728 | 69.900m) 75713
DBRX (36B/132B) 32K 8K | 951 938 836 631 24 00 | 563 | 3800 74714
Together (7B) 32K 4K 882 811 694 630 00 00 | 503 | 338(sm 66.705m
LongChat (7B) 32K <4K | 847 799 708 593 0.0 0.0 | 491 | 33.16m) 6526t
LongAlpaca (13B) 32K <4K 60.6 570 56.6 43.6 0.0 0.0 36.3 | 24.7a17tm) 479017t

Table 3: Long Context Performance (%) of selected models evaluated at length from 4K to
128K. Each score is computed by averaging accuracy of 13 tasks in RULER. The performance
exceeding the Llama2-7B performance at 4K (85.6%) is underlined. The effective context
length is the maximum length passing this threshold. Weighted average score (wWAvg.)
aggregates performance across all context sizes, with the weights linearly increasing (inc)
or decreasing (dec) to simulate length distribution of real-world usage. We put the rank of
each model in the subscript. More details about the selected models are in Appendix A.
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Task error analysis
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Figure 2: Performance of Yi-34B in the needle-in-a-haystack (NIAH) tasks. By default, we
use word-number as the key-value pair and Paul Graham essays as the haystack. Yi is not
robust to the change of needle types and degrades with the increasing amount of distractors.
(W: words; N: numbers; U: UUIDs; Full: entire haystack).
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Figure 3: Performance of Yi-34B in variable tracking (VT), frequent words extraction (FWE),
and QA tasks across different task complexities. Yi shows large degradation and distinct
trends with scaled context size in these non-retrieval tasks, demonstrating the need to
evaluate behavior beyond retrieval from context.

Non-robustness to “needle” types.
Failure to ignore distractors.
Return incomplete information.

Unreliable tracking within context.
Failure to accurately aggregate.
Frequent hallucination in long-context QA



Model analysis
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Figure 4: (Left & middle left): Comparison of LargeWorldModel (LWM) series trained up
to various context sizes with fixed parameter size of 7B. (Middle right): Comparison of
Yi suite models with different parameter sizes with controlled training context length of
200K. (Right): Performance of non-Transformer architectures lags behind the Transformer
baseline Llama2-7B by large margin. Length extrapolation is presented with dashed lines.



Limitation

e Lack of position controlling
e Lack of correlation with realistic long-context tasks
e Lack of evaluation on short context.

e Lack of verification of prompt robustness.



Conclusion — Three Takeaways

e RULER reveals the gap between reading and understanding.
Many models can technically process long inputs but fail to use
them effectively for reasoning or synthesis.

e “Readable length” # “Usable length.”
As context length grows, models often lose focus, suffer from
attention dilution, and forget critical information.

e Longer windows alone do not solve the problem.
Architectural and training innovations — such as memory
compression, recurrent reasoning, and retrieval-augmented
attention — are needed to truly use long contexts.
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The End
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