
Lost in the Middle: How 

Language Models Use Long 

Contexts
Nelson Liu et al . , 2023

Today I ’ l l  summarize “Lost  in the Middle, ”  which invest igates how large 

l anguage models (LLMs) actual l y  use long input  con texts.  The authors design 

cont r olled exper imen ts to test  whethe r models can f ind and use  relevant  

i nformat ion when i ts  posi t ion var ies wi thin the pr ompt .  Their  cent ral  f i nding:  

per formance i s  highest  when the answer i s  at  the  very beginning o r very end  of  

the context ,  and i t  drops when the  answer s i ts  in the midd le —hence “ lost  in  the 

midd le. ”

—— Tianzhuang

Xiong



Motivation

● LLMs can accept very long contexts (4K–100K tokens).

● But: Do they robustly use information anywhere in that context?

● Many real apps (RAG, chat history, long docs) depend on this.

We often assume “bigger window → better reasoning,” especial ly 

in retrieval-augmented generation or long document analysis. But if 

a model is sensitive to where information appears, then simply 

stuffing more text into the prompt can hurt rather than help. This 

paper probes that assumption with targeted tests.



Core Research Questions
● How does position of relevant info affect accuracy?

● Does context length change this sensitivi ty?

● How do architectures (decoder-only vs encoder-decoder) behave?

● Do query-aware prompt layouts help?

● What about instruction fine-tuning?

The authors measure not just raw accuracy but trends as they move relevant 

passages around and make contexts longer. They also compare architectural 

families, test prompt formatting tricks, and evaluate models with and without 

instruction tuning to see what’s fundamental versus what can be fixed by 

prompting



Experimental Tasks (Overview)
● Multi-Document QA: one relevant passage among distractors.

● Synthetic Key–Value Retrieval: JSON key–value pairs; return v for key k.

● Systematical ly vary:

● Context length (e.g., number of docs/pairs)

● Position of the relevant item (start / middle / end)

Two complementary tasks: a realistic multi -document QA setting where 

exactly one passage contains the answer, and a minimal, controlled key–

value lookup task. In both, they can cleanly move the relevant item across 

positions to observe performance curves.



Multi-Document QA: Setup
● Questions from NaturalQuestions-Open; passages from Wikipedia.

● Exactly one passage has the answer; others are distractors.

● Distractors are topically relevant (retrieved) but incorrect.

● Evaluate accuracy vs. position of the correct passage.

For each question, they place the answer passage at the beginning, middle, or 

end of the input, with high-quality distractors elsewhere. This simulates a 

retriever + LLM pipeline where the reader must use the provided evidence—

not its parametric memory—to answer.



Key Finding #1 (U-Shaped Curve)
● Accuracy is highest when evidence is at the start or end.

● Accuracy drops when evidence is in the middle (“lost in the middle”).

● Seen across several models (open & closed).

Results show a distinctive U-shaped curve: 

primacy bias at the beginning and recency 

bias at the end. In the middle, models often 

underperform even a closed-book baseline, 

meaning the long context can hurt performance 

if the crucial text sits mid-prompt. This happens 

across multiple model families.



Extended Context ≠ Robust Use
● “Long-context” variants don’t automatically fix the problem.

● Models with larger windows can still  struggle to use mid -

context info.

● Adding more documents saturates performance quickly.

Extending the context window is not a silver bullet. 

The authors observe that, for open-domain QA with 

retriever-reader pipelines, model performance 

saturates 

well before retriever recall does: going from 20 to 50 

retrieved docs yields only marginal gains, implying 

the reader fails to benefit from extra material.



Synthetic Key–Value Task

● Minimal test of exact retrieval (k→v).

● Some models still show U-shape: middle positions are hardest.

● However, query-aware formatting can help a lot here.

Even in a very structured setting—just matching a key to i ts value—

some models falter when the pair sits mid -context. This indicates the 

phenomenon isn’t only about natural language messiness; it can 

appear in clean, synthetic formats too.



Architecture Matter (But…)

●Encoder–decoder models are more position-robust within 

their training-time sequence length.

●When tested beyond that length, they also show U-shapes.

Encoder–decoder models, which encode the whole input

before decoding, are less sensitive to position—but only 

up to the context lengths they were trained on. Once you 

push them beyond those lengths, the same U-shaped 

degradation emerges, highlighting fundamental long-range 

limitations.



Query-Aware Contextualization

● Place the query both before and after the documents/pairs.

● Near-perfect on synthetic key–value retrieval.

● Minimal change to trends in multi -doc QA.

A practical prompting trick—repeat the question at both ends—

dramatically helps the key–value task but doesn’t fundamentally 

change the position-sensitivity 

trends in multi-document QA. In realistic reading scenarios, better 

formatting helps a bit, but it doesn’t solve the core problem.



Instruction Tuning is Not the Fix
● Even base models (no instruction tuning) show U-shapes.

● Suggests a fundamental limitation in attention/position 

generalization.

Because the U-shape appears even without 

instruction tuning, the issue seems rooted in 

how models represent and attend over long 

sequences, not simply their willingness to follow 

instructions. Tuning improves helpfulness; it 

doesn’t magically grant robust long-range retrieval.



Practical Implications
● RAG pipelines: Re-rank so the best evidence is first (or last).

● Prompt design: Put summaries/quotes near the query; 

optionally repeat the query at the end.

● Trim irrelevant text; avoid unnecessary length.

● Prefer chunking/sliding windows or hierarchical aggregation.

● Don’t assume longer window ⇒ better accuracy.

If you control the prompt, bias it so key evidence is early (or echoed late). Pre-summarize, 

highlight, or quote the most relevant spans. Keep contexts lean. For documents you don’t 

control, use retrieval + re-ranking to bring the best passages forward. Consider 

hierarchical or multi-step reading, rather than a single monolithic prompt.



Why “U-Shaped”? (Intuition)
● Attention di lution: more tokens = harder to focus on the right span.

● Positional encoding limits: extrapolation beyond training length is fragile.

● Boundary effects: starts/ends get disproport ionate attention.

● Cognitive analogy: primacy/recency effects in memory.

The paper discusses empirical trends rather than mechanistic proofs, but 

these factors are consistent with prior understanding: attention budgets 

di lute with length, and many position encoding schemes struggle when 

extrapolating. Start /end tokens also benefit from structural prominence 

during generat ion.



Limitations & Scope

● Benchmarks emphasize English, specific models, and tasks.

● Multi-doc QA uses one relevant passage by design.

● Results don’t claim impossibil ity—just current model behavior.

As with any controlled study, external validity has bounds. Stil l, the 

consistency of the U-shape across tasks and models suggests a 

robust phenomenon worth addressing in both research and 

practice.



Takeaways & Looking Forward
● Key message: Models are not position-robust over long contexts; they favor 

beginnings and ends.

● Engineering guidance: curate/re-rank, front-load evidence, repeat the query, and 

keep the prompt concise.

● Research direct ions: better long-range attention, posit ion encodings with 

reliable extrapolat ion, training curricula for long contexts, and 

aggregation/reading strategies.

To claim a model can truly use long contexts, we should test not only maximum 

window size but position robustness: minimal spread between best - and worst-

case evidence positions. Future work could combine improved architectures with 

training regimes and interface designs that emphasize robust retrieval across the 

entire prompt.
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Motivat ion / Problem

LongNet • 2023

Scaling sequence length is the last frontier in neural network scaling.

While depth and width have been successfully scaled (e.g., deep networks, MoE

models), sequence length remains fundamentally constrained by computational limits.

Existing long-sequence models face a trade-off between efficiency and 

expressivity.

RNNs and state-space models handle long sequences efficiently but lack the 

expressivity of Transformers, while standard Transformers are powerful but 

computationally infeasible for long contexts.

Quadratic attention cost severely limits Transformer scalability.

The O(N²) complexity of self-attention makes it impossible to train or infer with extremely 

long contexts, restricting the ability to model long-range dependencies.



Goal

LongNet • 2023

Greatly extend the Transformer’s context length (to extremely long sequences) in order to 

better model long-range dependencies and multi-sample or multi-segment prompts.

Break free from the O(N^2) bottleneck of standard attention by introducing sparse dilated 

attention, which reduces computation to near-linear complexity while preserving efficient 

information flow (logarithmic depth).

Enable practical training on ultra-long contexts by designing distributed training along the 

sequence dimension, making long-context learning feasible on hardware/communication 

budgets and compatible with optimizations such as FlashAttention.
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Proposed Method

Figure explanation:

LongNet introduces dilated attention to efficiently capture dependencies across 

different ranges.

Each segment has a different dilation rate, enabling both short-range and long-range 

interactions.

Combining these patterns forms a scalable attention mechanism that extends with 

sequence length.



LongNet • 2023

Di lated at tent ion wi th  mul t ip le  heads

The core of LongNet lies in combining multi-scale dilated attention with multi-head 

attention.

Across different scales (with varying dilation rates and segment lengths), the model 

captures dependencies ranging from local to global contexts.

Within each scale, multiple attention heads are applied. 

This hierarchical design allows LongNet to achieve both multi-scale perception and 

multi-view contextual modeling, while maintaining linear computational complexity 

for long-sequence processing.



LongNet • 2023

Computat ional  Complex i ty  and Token Dependency



LongNet • 2023

The outline of today’s presentation 

● Motivation

● Proposed Method

● Engineering Implementation

● Take away



Engineer ing Implementat ion

The figure shows distributed training of LongNet on two GPUs, where the 

sequence is partitioned across devices and only sparsified key–value pairs 

are communicated.

This approach easily scales to more GPUs with nearly constant computation 

and communication costs.
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In the experiments, torchscale was used as the base 

library. After replacing the attention layer, a 12-layer 

model with hidden size 768 was trained and examined.



In addition to the final perplexity 

results, the paper also compares 

the computation required by 

Transformer and LongNet when 

processing texts of different 

lengths.



● As the number of parameters 

increases, the model’s perplexity 

continuously decreases, showing 

that LongNet has strong 

scalability.

● As the context window grows 

larger, the model’s 

performance keeps improving, 

indicating that LongNet has 

better comprehension abili ty 

for long texts.



LongNet • 2023

The results directly demonstrate LongNet’s ability to handle long-

text processing. Compared with the rapid growth of vanilla 

Transformers, Dilated Attention shows almost no significant 

change.



Conclusion — Three Takeaways
● Scalable Context Expansion

LongNet extends Transformer context length to bill ions of tokens, enabling 

effect ive modeling of long-range dependencies and multi -segment prompts.

● Efficient Sparse Attention

Dilated Attention reduces the quadratic cost of standard attention to near -

linear while maintaining information flow, making ultra -long context training 

feasible.

● Strong Performance & Practicality

LongNet shows competit ive or improved perplexity across benchmarks, 

scales efficiently with model size and context window, and remains 

compatible with distributed training and optimizations like FlashAttention.
LongNet • 2023



RoFormer: Enhanced Transformer wi th Rotary 

Posit ion Embedding 

Sayee Sreenivas G B



Problem

Transformers are position-agnostic; we must inject position info.

Prior schemes: absolute (sinusoidal/learned) vs relative (bias terms).

Goal of RoPE: encode absolute index as rotations so that attention 

scores depend only on relative offsets (m−n).



Introduct ion

● A new positional encoding.

● Multiplicative, lightweight, and theory-backed.

● RoFormer (Transformer + RoPE).

● RoPE multiplies positions into Q/K as rotations.

RoFormer: Rotary Position Embedding (RoPE):



Implementation of RoPE



Proposed Approach

Formulation - (Goal of RoPE)



Absolute Posi t ion Encoding (Addit ive)



Relat ive Posi t ion Embedding



Propert ies of RoPE

Long-term decay:

With RoPE, the attention logit  is a sum of oscillators whose 

phases separate as ∣m−n∣ grows ⇒ destructive interference ⇒

the maximum of ∣ q_m^⊤ . decays with distance (see Fig. 2).

Compatibility with linear attention



Long-Term Decay of RoPE

RoPE turns positions into phases; as tokens get farther apart, 

cross-band phase mismatch causes destructive interference, 

naturally reducing long-range attention.



Long-Term Decay of RoPE - Figure

RoPE naturally down-weights distant tokens but its maximum 

influence declines with distance, which tends to stabilize 

training and improve long-context behavior.



Experiments & Evaluat ion Resul ts

Tasks (by category)

● Pretrain: BERT-base on BookCorpus+Wiki (MLM)

● Downstream: GLUE (MRPC, SST-2, QNLI, STS-B, QQP, MNLI)

● Linear Attn: Performer on Enwik8

On WMT14 En→De, RoFormer slightly outperforms 

Transformer-base—27.5 vs 27.3 BLEU under the same 

setup—showing a modest but consistent gain from RoPE.



Experiments — Pretraining & GLUE



Performer wi th RoPE

Setup

● Dataset: Enwik8 (char LM)

● Model: 12-layer Performer , d=768, 12 heads

● Train: LR 1e-4, bs 128, max seq 1024 (same for 
both)

Takeaway
RoPE is compatible with linear attention
and improves optimization on Enwik8.



Chinese Long-Text Evaluat ion



Limitations

Encode absolute position as rotations of Q/K, making attention scores 

depend only on relat ive offsets.

Sequence-length flexibility, natural long-range decay, and compatibility with 

l inear attention.

Faster MLM convergence, small but consistent MT gains, mixed -but-positive 

GLUE results, improved Performer training, and better long -doc accuracy.

RoPE often trains faster than additive PEs, but a full theoretical 

reason is still open.

Long-term decay is proved, yet why RoPE outperforms peers on 

long documents isn’t fully explained.

Still a Transformer—pre training requires significant hardware.

Conclusion
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Motivat ion

RULER • 2024

Current long-context evaluations are overly simplistic.

Most works rely on needle-in-a-haystack (NIAH) tests, which only measure retrieval ability —

whether the model can find a small piece of information from a long distractor text — but this 

reflects only superficial context usage rather than true long-context understanding.

Inconsistent and incomplete evaluation practices.

Existing benchmarks are used inconsistently across studies (different setups, data, and lengths), 

making it difficult to compare models fairly or systematically assess progress in long-context 

learning.

Need for richer, more diagnostic tasks.

Long-context understanding involves more than retrieval — it includes reasoning across multiple 

context spans, aggregating dispersed information, and following multi-hop dependencies.

A new benchmark should explicitly test these capabilities.

Empirical evidence of performance degradation.

Despite large claimed context windows (e.g., 32K–200K tokens), existing LMs degrade sharply

as context length or task complexity increases, showing that long-context scaling is far from 

solved.
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Intro to RULER Benchmark

1.Retrieval

2.Multi-hop Tracing

3.Aggregation

4.Question Answering



Aggregation

In the common word extraction task (CWE), words are sampled from 

discrete uniform distributions, with the number of common words fixed 

while the number of uncommon words increases with the sequence 

length. In the frequent words extraction task (FWE), words are sampled 

from Zeta distribution.
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Experimental Setup

17 long-context LLMs, including 15 open-source models and two 

closed-source model (Gemini-1.5-Pro and GPT-4 ), covering 

diverse model sizes (7B to 8x22B with MoE architecture) and 

claimed context lengths (32K to 1M).
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Main Results
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Task error analysis

Non-robustness to “needle” types.

Failure to ignore distractors.

Return incomplete information.

Unreliable tracking within context.

Failure to accurately aggregate.

Frequent hallucination in long-context QA.



Model analysis



Limitation

● Lack of position control ling

● Lack of correlation with realistic long-context tasks

● Lack of evaluation on short context. 

● Lack of verification of prompt robustness.



Conclusion — Three Takeaways

● RULER reveals the gap between reading and understanding .

Many models can technically process long inputs but fai l to use

them effectively for reasoning or synthesis.

● “Readable length” ≠ “Usable length.”

As context length grows, models often lose focus, suffer from 

attent ion di lution, and forget cri tical information.

● Longer windows alone do not solve the problem.

Architectural and training innovations — such as memory 

compression, recurrent reasoning, and retrieval -augmented 

at tent ion — are needed to truly use long contexts.

RULER • 2024



The End
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