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Motivation

• Models invariably make prediction errors in real-world application

• In ideal case, less confident predictions yield to human experts for evaluation

• Require the model's predicted score to reflect real-world probability 
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Motivation
• Calibration: 

• Confidence score reflect the actual likelihood that the answer is correct

https://medium.com/@sahilbansal480/understanding-model-calibration-in-machine-learning-6701814dbb3a
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Motivation

• Why Calibration Matters: 

oA well-calibrated model’s confidence score should reflect the true likelihood of 
correctness 

oCritical for trustworthy AI and human-AI collaboration

• Prior work:

oPre-trained models are often well-calibrated

o Finetuned/RLHF (Reinforcement Learning from Human Feedback) models, used 
widely in practice, have overconfident/poorly-calibrated performance

• Contribution of the paper

o Investigate how to extract calibrated confidence scores from finetuned/RLHF-
tuned models and propose methods that restore or even improve calibration
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Proposed solution

• How to extract confidence score from LLM? 

• Implicit model probability: 
oConditional probability estimated via sampling

• Explicit verbalized probability: 
o expresses its confidence in token-space

onumerical probabilities / another linguistic expression of uncertainty

• Further improvement:
• Considering alternative answers before responding
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Evaluation

• Models: 
o gpt-3.5-turbo(ChatGPT),

o gpt-4 (GPT-4)

o claude-1 (Claude 1)

o claude-2 (Claude 2)

o Llama-2-70b-chat (Llama-2-70B-Chat)
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Evaluation

• Dataset:
o TriviaQA: 650k question-answer pairs  by trivia enthusiasts
o SciQ: 14k crowdsourced science exam question-answer pairs
o TruthfulQA: 817 questions designed to test language models’ tendency to 

mimic human falsehoods.

• Metrics: 
o ECE (expected calibration error) 
o ECE-t (expected calibration error with temperature scaling)
oBS-t(brier score with temperature scaling)
oAUC (area under the curve of selective accuracy and coverage)
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Expected Calibration Error
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Experiment

• Evaluation Protocol: for each question
o generate a response and corresponding confidence 

• Challenge: 
oDataset ground truth only provides a single ground-truth answer 

oNot semantically equivalent rephrases

ouse GPT-4/GPT-3.5 to evaluate whether equivalent the ground truth answer
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Experiment

• Methods:

o Label prob: calculated with probability

▪ uses the conditional probability distribution p(y|x) of the model 

▪ N = 10

▪ [Yes, Yes, Yes, No, Yes, Yes, Yes, Yes, Yes, Yes]

▪ Probability = 9 / 10
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Experiment

• Methods:

oVerbalization (Numerical): model express uncertainty with prompt
• Verb. 1S top-k (1 stage)

• Model produce k guesses and probability for each all in a single response

• Take the highest-probability prediction as the model’s output and confidence
• Verb. 2S top-k (2 stage)

• Model produces k guesses first and then the associated ability for each
• Verb. 2S CoT

• Incorporate Chain-of-Thought in Verb. 2S top-k 
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Experiment

• Methods:

oVerbalization (Linguistic): model express uncertainty with prompt

• Ling. 1S-human

• linguistic likelihood: {Almost certain, Likely, . . . , Almost no chance} 

• mapped to a probability using responses from a human survey on 
social media

• Ling. 1S-opt: 

o a held out set of calibration questions and answers 

o compute the average accuracy using these ‘optimized’ values 
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Results
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RLHF models are often worse calibrated than pretrained models



Results
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Verbalized confidences are often better calibrated than raw conditional probabilities



Results
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More hypothesis -> better calibration
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Main summary of key results:
1. Verbalized (numeric and linguistic) often outperform inherent logits
2. More hypothesis -> better calibration



Limitation

• Scope:
o Focused on short factual QA tasks
o results may not generalize to long-form reasoning or creative tasks

• Closed-source constraints:
o Limited access to internal probabilities of GPT and Claude models

• Model dependency:
oCalibration varies substantially across model families
oGPT vs. Claude vs. Llama

• Prompt sensitivity:
oCalibration quality depends on wording and stage setup.
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Conclusion and Takeaway

• “Just ask for calibration” for RLHF-tuned models 

• Verbalized confidence yields surprisingly well-calibrated results

• Better without extra training:

• Models can verbalize calibrated uncertainty zero-shot, without fine-tuning.

• Human psychology analogy:

• Considering alternative answers reduces overconfidence 
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Motivation: truthful and honest AI

• LLM demonstrate superhuman behavior in many tasks

• However, hallucination exists in long-form texts and less trustworthy

• With calibration, users know how much to trust the model

• Prior work: 

• model log-probabilities or “logits” 

• Change when words a paraphrased and opposite to human behavior

• Proposed work: Verbalized probability
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Motivation: truthful and honest AI

• Truthfulness: model avoids saying (negligent) falsehoods

• Honesty: communicate everything it represents internally in 
natural language (and will not misrepresent any internal states).

• Verbalized uncertainty: model articulates its internal confidence in 
words
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Main Contribution

• A new test suite for calibration. CalibratedMath 

• GPT-3 can learn to express calibrated uncertainty using words 
(“verbalized probability”)

• Compare verbalized probability to finetuning the model logits
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CalibratedMath

• a suite of elementary mathematics problems with 21 tasks

• produce both a numerical answer and a confidence in its answer

• Vary in content and difficulty level
• Ex. Multiplication > addition, more digits, multiple correct answers

• Prior work: calibration helps generalize well 
• Train: addition & substract
• Evaluate: multiple correct answers; multiplication & division

• Distribution Shift:
• Shift in task difficulty
• Shift in content
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CalibratedMath
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Evaluation

• Goal: 
• calibration when expressing uncertainty in zero-shot answers

• Not accuracy improvement, just on calibration

• Metrics:
• Mean squared error (MSE)

• Mean absolute deviation calibration error (MAD)
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Experiments

• Model: 175-billion parameter GPT-3 model (“davinci”)

• Finetuned with supervised learning

• Cons: less principled and flexible compared to reinforcement

• Pros: easy to implement, test generalization

• Finetune setup:

• Input: a question followed by GPT-3’s answer

• Label: a (calibrated) confidence

• Use empirically accuracy: 

• questions likely to get wrong -> low confidence

26



Construct label from empirical accuracy

• Numerical setting label:

• verbalized words: lowest, low, medium, high, highest
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Three Kinds of Probability utilized
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Results
Consistent 

with Paper 1
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Verbalized probability generalizes well to both eval sets 



Results

Consistent 
with Paper 1
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Verbalized overfits to training 
Indirect logit generalizes 



Results: in Stochastic k-shot Setting
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Few shot improves calibration with larger k



Discussion: Question 1
• Does GPT-3 just learn to output the logits?

• Answer: Probably not

• Evidence 1: Verbalized generalizes better than logit on the Multi- 
answer evaluation as shown previously

• Evidence 2: Correlation between the two are modest
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Discussion: Question 2
• Does model just learn simple heuristic? 

• Ex. Low probability for questions involving large integers?

• Answer: With additional experiments probably not

• Evidence: Small integers can be difficult questions as well

• Additional experiment: 
• whether simple heuristics can generate calibrated probabilities?

• Logistic regression model trained with predictive of difficulty
• Ex. Number of integers, operator, type of format
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Discussion: Question 3
• What explain GPT-3’s ability to generalize calibration?

• A educated guess: “latent features”
• use features of inputs possessed before finetuning

• not “active” in pre-trained GPT-3 (which is poorly calibrated)

34



Limitation, Conclusion and Takeaway

• Only evaluate in one model (GPT3)

• Only evaluate in subject (Maths)

• Currently use supervised finetuning, may try reinforcement learning

• GPT-3 model can learn to express uncertainty via finetuning

• Verbalized uncertainty generalize well

• There are evidence GPT-3 is learning more than heuristics
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Taming overconfidence in LLMs: 
Reward calibration in RLHF

Presented by: Peiqi Gao

10.21.2025
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Background: Overconfidence in LLMs

• Large Language Models (LLMs) are often overconfident — they 
express high certainty even when wrong with verbalized expressions.
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Explorations

• Overconfidence after RLHF.
o Llama3-8B-SFT vs Llama3-8B-RLHF on CommonsenseQA.
oRLHF models show higher stated confidence but lower actual accuracy

• RLHF verbalize high confidence even when wrong.
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Explorations

• Reward Model Bias.

• The overconfidence in RLHF-LLMs originates from the reward model 
itself.
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Reward Calibration in RLHF

• Reward Modeling (Background).
oPairwise human preference data with binary ranking labels (chosen and 

rejected).

o LM head --> A linear layer. 

• Proximal Policy Optimization (PPO).
o The policy model is fine-tuned to maximize the reward model’s score while 

staying close to the original model.
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Reward Calibration in RLHF

• PPO-M: PPO with Calibrated Reward Modeling.
oDataset: Incorporating a confidence-query system prompt.

oCalibrated reward modeling loss:

oGoal: Correctly associate confidence with answer quality, preventing it from 
over-rewarding overly confident but incorrect responses.
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Reward Calibration in RLHF

• Prompt for PPO-M:
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Reward Calibration in RLHF

• PPO-C: PPO with Calibrated Reward Calculation.
oReplacing portion of prompts with the confidence query system prompt.
oCalibrated reward formula:

o Interpretation:
o High-confidence + correct --> Bonus.
o High-confidence + wrong -> penalty.
o Low-confidence + wrong -> mild penalty or neutral.

• PPO-C teaches models to be “calmly confident”—rewarding 
confidence when it aligns with truth, not when it fakes it.
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PPO-M and PPO-C

• PPO-M
oDuring reward model training.

oRetrain RM to correctly link confidence and correctness.

o Fix bias inside reward model.

• PPO-C
oDuring PPO optimization.

oAdjust rewards using model's self-reported confidence.

oCalibrate reward without retraining RM.

o Lightweight.
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Experiments

• Starting models (supervised fine-tuned versions):
o Llama3-8B and Mistral-7B.
oDirect Answers (DA) and Zero-Shot Chain-of-Thought (CoT).

• Compared methods:
o SFT model.
oPPO model.
oPPO† (includes confidence-query system prompts)

• 3 evaluation metrics:
o Expected Calibrated Error (ECE).
oArea Under the Receiver Operating Characteristic Curve (AUC).
oAccuracy.
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Experiments

• Results.
1. PPO shows a degradation in 

calibration.

2. PPO-M and PPO-C: lower ECE and 
higher AUC.

3. PPO-M and PPO-C: keeping 
comparable accuracy.
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Analysis

• Do PPO-M and PPO-C compromise the instruction-following abilities 
(from PPO)?
oMT-Bench: 80 high-quality, multi-turn questions.

oArena-Hard: 500 technical problem-solving queries.

• Answer: No!
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Analysis

• Extension to DPO.
oAdd a confidence calibration term to the DPO loss, penalizing overly 

confident incorrect responses.

oNo architecture or dataset change required — just modifies the loss.

• Evaluated on Mistral-7B and 
standard benchmarks:
o TruthfulQA: ECE ↓ by >50%.

oGSM8K / SciQ: accuracy maintained.
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Conclusions

• Reveals that reward models systematically over-reward confident 
answers.

• PPO-M: Retrains the reward model with Calibrated Reward Modeling 
(CRM loss).

• PPO-C: Dynamically adjusts rewards during PPO using confidence-
aware correction.

• CDPO Extension: Demonstrates calibration generalizes to DPO 
framework.
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Motivation

• Language models (LMs) are widely used in factual and decision-
making contexts.

• However, they often express uncertainty or confidence incorrectly.

• Understanding how linguistic markers like “I think” or “I’m sure”
influence LM reasoning is key.
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Linguistic Background

• Weakeners (hedges)
o approximators (e.g., somewhat, kind of, 

about, approximately)

o plausibility shields (e.g., I think, I 
believe)

• Strengtheners (boosters)
o intensifiers (e.g., "I am certain", 

"Undoubtedly")

o factive verb (e.g., "know", "realize", or 
"understand")

• Evidential markers
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Hypothesis

• H1: LMs are robust to epistemic markers — accuracy remains stable.

• H2: LMs interpret epistemic markers meaningfully — certainty should 
increase accuracy, uncertainty should decrease it.
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Method

• Constructed a typology of 50 
epistemic markers 
o weakeners , strengtheners, factive 

verbs, evidentials (e.g., 'I think', 'I’m 
sure', 'Wikipedia says'). 

• Injected these markers into 
question-answering prompts (e.g., 
'What is the capital of France? I 
think it’s…').

• Compared model accuracy across 
prompts with different epistemic 
expressions.
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Experiment Setup

• Models: GPT-3 (Ada, Babbage, Curie, Davinci, text-davinci-003) and 
GPT-4.

• Datasets: TriviaQA, Natural Questions, Jeopardy, and CountryQA.

• Evaluation: measured accuracy and probability-on-gold for 50 prompt 
templates.

• Also tested numerical uncertainty (e.g., 'I’m 0%, 10%, 30%, 50%, 70%,
90% and 100% sure').
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Results

• Models are highly sensitive to epistemic markers — accuracy varied 
by up to 80%.

• In CountryQA, "We realize it’s. . . " achieves 14% accuracy while some 
result in perfect accuracy

• In TriviaQA, "I’m certain it’s. . . " has an accuracy of 42%,  but "I would 
need to double check but maybe it’s. . . " increases accuracy to 56%.
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Results

• Evidential markers ('Wikipedia says') improved accuracy significantly.
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Results 
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• Weakeners (uncertainty) outperformed strengtheners (certainty)
across models.



Results

• Numerical expressions 
(100% certainty) also 
reduced accuracy.
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Analysis – Entropy 

• Weakeners increase entropy → model explores more answer options.

• Certainty reduces entropy → model commits too early to wrong 
answers.
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Analysis – Training Data Bias

• Query for expressions of uncertainty in the Pile, a popular pretraining 
dataset.

• Expressions of certainty occur less than half as often in answers (104 
instances per million words) as in questions (280 instances per million 
words).

• Expressions of uncertainty occur about twice as often in answers (436 
instances per million words) as in questions (222 instances per million 
words).

• Model learns language usage, not true epistemic understanding.
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Analysis – Numerical 

• 100% -> high confidence instead of 100% accurate

• Imbalance in the use of percentages in training datasets (Pile).
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Limitations

• Experiments limited to English and short QA tasks.

• Only tested single-shot prompting (no dialogue or multi-turn).

• No fine-tuning — results may differ for tuned models.

• Cultural and contextual variations in certainty expressions not 
covered.
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Conclusion & Takeaways

• LMs misinterpret linguistic certainty — high confidence often lowers 
accuracy; sourced uncertainty can enhance factual accuracy.

• LMs reflect learned language usage, not true epistemic understanding.

• Design safer interactions by encouraging uncertainty over false 
certainty.

• Teach models to express and interpret uncertainty appropriately.
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Thank you
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