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Presentation by Deyuan Yang

Teaching models to use tools, not just scale parameters.
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The fundamental Problem with LI.Ms
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Existing Solutions and Their Limitations
Human Supervision Approach Task-specific Approach

e High Cost: massive annotations e Not generalizable
e Human bias e requires retraining

e Limited scale

Gap: No general, self-supervised approach to tool learning
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Tooltformer’s Core Innovation

e No human annotations
} ——> | e Maintain generality
e |[earns when and how to use
tools

Self-supervised
Tool Learning

+ Key: Let the model decide what's useful using its own predictions and teaches itself
how to use external APls
« Self-Supervise: Use perplexity reduction as training signal

 General Approach: Works with any tool that has text-based API and Maintain core
language modeling ability
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Example

The New England Journal of Medicine is a registered
trademark of [QA(“Who is the publisher of The New
England Journal of Medicine?”) — Massachusetts
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400)
— 0.29] 29%) passed the test.

The name derives from "la tortuga”, the Spanish word for
[MT(“tortuga”) — turtle] turtle.

The Brown Act is California’'s law [WikiSearch(“Brown
Act”) — The Ralph M. Brown Act is an act of the
California State Legislature that guarantees the public's
right to attend and participate in meetings of local
legislative bodies.] that requires legislative bodies, like
city councils, to hold their meetings open to the public.
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The Three-Step Learning Process

IMDataset 1 2 3. L L.M Dataset
Sample API| Calls Execute API Calls Filter API Calls with API Calls
S Pittsburghis | €' = What other name is r;' = Steel City L(c;' — Steel City) X = Pittsburgh is
" also known ad Pittsburgh known by? < min(L(c* —€), L (€)) also known as
. [QA(What ...7
X,,, = the Steel City c = Which country is r2 = United States L,(c.2— United States) — Steel City)]
Pittsburgh in? min(L (c? — &), L (€)) the Steel City.

Step 1. Sampling: Generate potential API calls using in-context learning

Step 2. Execution: Actually call the APIs to get real results

Step 3. Filtering: Keep only calls that reduce future token prediction Model learns
loss :> when and how to
Output: Augmented dataset with helpful API calls use tools

Fine-tune the model on augmented dataset
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Technical Deep Dive: Sampling API Calls

Your task is to add calls to a Question Answering APl to a

piece of text. The guestions should help you get

information required to complete the text. You can call the 1}1 —_— pﬂf ( < EP I > ‘ _P { :{) . L ]_ " — ]_ )
API by writing "[QA(question)]" where "question” is the

question you want to ask. Here are some examples of API

calls: . .
« In-Context Learning: Provide few-shot
Input: Joe Biden was born in Scranton, Pennsylvania. eXamples Of API usage
Output: Joe Biden was born in [QA("Where was Joe
Biden born?")] Scranton, [QA("In which state is ° Position Sampling: Compute probability Of

Scranton?”)] Pennsylvania.

starting API call at each position

Input: Coca-Cola, or Coke, is a carbonated soft drink

manufactured by the Coca-Cola Company « Call Generation: Sample actual APU calls
Output: Coca-Cola, or [QA("What other name is given the context

Coca-Cola known by?")] Coke, is a carbonated soft drink

manufactured by [QA("Who manufactures Coca-Cola?")] . Example° The Nlle haS length <API> QA (‘Nlle

the Coca-Cola Company.
o length’) -> 6853km</API>6853 km

Input: x

Output:
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Technical Deep Dive: Smart Filtering

Li(z) = — Z wji—; - logpy(x; | 2, 21:5-1) Weighted cross entropy loss

+ W
Lt, — Li(E(Ef T 1)) Loss when model sees API call and result

Lt. — min (Li[f)ﬁ Lt-{:ﬂ{:ﬂt-? 5))) Minimum loss between no call or call without result

Ly — L: = Tf Decision criteria (filtering threshold): only keep calls that reduce loss
significantly

keep calls that provide genuinely useful information
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APIs and Tools

Tools Purpose

Calculator Arithmetic operations

QA System Factual Questions (Atlas model)
Wikipedia Search Information retrieval (BM25)
Machine Translation 200 languages (NLLB)
Calendar Temporal Context

e Each tool addresses specific LLM weaknesses
e Only requirement: Text-based inputs and outputs
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Experimental Setup

« Base model: GPT-J (6.7B parameters)

 Dataset: CCNet subset

« Baselines (Comparison models): GPT-J, GPT-3 (175B),
OPT (66B)

« Tasks: LAMA, Math, QA, Multilingual QA, Temporal
reasoning

« Evaluation: zero-shot across multiple benchmarks
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Key Result: Outperforming Giants

LAMA

- | 0olformer

-e= Toolformer (disabled)

=sas GPT3

2000 4000 6000
Model Parameters (M)

0

Math Benchmarks

2000 4000 6000
Model Parameters (M)

QA Benchmarks

0 2000 4000 6000

Model Parameters (M)

LAMA (factual):
Toolformer: 33.8
vs GPT-3: 26.8

Math(SVAMP):
Toolformer: 29.4
vs GPT-3: 10.0

Temporal
(Dataset):
Toolformer: 27.3
vs GPT-3: 0.8

Use appropriate
tools for each
task type
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Tools Usage Analysis
Math Tasks 97.9% calculator usage
Factual Tasks 98.1% QA system usage
Multilingual 60%-95% translation usage
Temporal 54.8% calendar usage

e Model learns appropriate tool selection automatically
e High usage rates indicate reliable tool invocation
e Different tools dominate different task types
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Critical Analysis and Ablations

Key Findings

e No Generality Loss: Perplexity unchanged (10.3 vs 10.3)
e Emergent Ability: Needs ~775M + parameters

e Decoding Strategy: k=10 works best for tool invocation

Summary

e Language modeling ability preserved

e Tool use emerges only at sufficient scale

e Inference strategy affects tool usage rates

e Performance gap remains between tool use vs no tool use
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Limitations and Future Work

No Tool Chains Cannot combine multiple tools

Not Interactive Single-shot API calls only

Sample Inefficient Many examples needed for rare tools
Prompt Sensitivity Affected by input wording

e Current limitations provide clear research directions
e Future work: Tool chains, interactive use, iterative training
e Integration with reasoning frameworks like Chain-of-Thought
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Conclusion and Impact

Old way sesle | { New capabilities
parameters | L
New way Augment with | I Diminishing
tools ) L returns

« Key Contribution: Self-supervised tool learning framework
« Impact: Small models can outperform much larger ones

« Enhances zero-shot performance without extra data
 Research Direction: Augmentation over scaling
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TOOLLLM: FACILITATING LARGE
LANGUAGE MODELS TO MASTER 16000+
REAL-WORLD APIS

Yujia Qin et al.(2023)

Presentation by Yancheng Jin



McKelvey School of Engineering at Washington University

Motivation

Goal: Why tool-use matters for LLMs
« Gap: open LLMs struggle with real API use vs. OpenAl closed models
« Real tasks need API selection, parameterization, sequencing
« Research question: How can we train open LLMs to master thousands of real APIs?

f Data Construction & Train & nference = b
- E© - omD-

'”‘t’"“"’" 50’"”0" Path API Retriever  Retrieved APIs
Collectlon Generation Annotation B - "
"
Instructions 8. relevant APIs ol m ('z)
i T (o) &

______

. — 4’ )

Rapid Ar @ ( '

i g= Q Rapidar BB
RapidAPI API Retriever ToollLLaMA LLaMA 8| ToolEval

N\




McKelvey School of Engineering at Washington University

Key Gaps (Past Paper)

« Limited APIs/Realism: Few or no real REST APIs;
small, low-diversity tool sets — weak generalization.

« Simplified Scenarios: Mostly single-tool, single-round;
often assume users pre-select the “right” APIs (not
scalable).

« Weak Planning/Reasoning: CoT/ReAct struggle on
complex, long-horizon tasks.

« No Real Execution: Some don’t run APIs, missing
response feedback critical for iterative planning.

0.8
GPT4-DFEDT
GPT4RescT 4k
@ AcChaGPT.DFSOT
0.6
o ChalGPT-ReACT TaclLLaMA-ODFSDT
o Clawdez-DFSOT L
v ° A DevinciDFsOT
= 0.4 Claudez-ReAcT ToolLLaha-RaAlT
g Dlasinci-HsAi: T
0.2
Vicuna & Alpaca
0.0~
0.0 0.2 0.4 0.6 0.8
Pass Rate
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Tool LLM

Def: A General Framework for Tool-Use in Open LLMs

Dataset (ToolBench):

API Collection: 16,464 real REST APIs from RapidAPI across 49 categories
Instruction Generation: ChatGPT creates single-tool + multi-tool instructions
Solution Path Annotation:

Evaluator (ToolEval):

Model (ToolLLaMA): LLaMA fine-tuned on ToolBench + Neural API Retriever

Resource ToolBench APIBench API-Bank ToolAlpaca ToolBench
’ (this work)  (Patil et al., 2023) (Lietal, 2023a) (Tangetal, 2023) (Xuetal, 2023b)

Real-world API? v X v X v

Real API Call&Response? v X v X v
Multi-tool Scenario? v X X X X

API Retrieval? v v X X v
Multi-step Reasoning? v X v v v

- Number of tools . 3451 3 K3 00 8

Number of APls 16464 1645 53 400 232
Number of Instances 126486 17002 274 3038 2746
Number of Real API Calls 469585 0 568 0 3926

Avg. Reasoning Traces 4.0 1.0 2.1 1.0 5.9
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Dataset-API Collection

RapidAPI Hub & Taxonomy
» Leading API marketplace, 49 coarse-grained categories. 500+ fine-grained collections

Hierarchy & Metadata Crawling

« Atool with API, name/desc, HTTP method, required/optional params, request body,
executable code snippets, example responses

Quality Filtering
 Initial: 10,853 tools / 53,190 APIs=> Rigorous filtering =>3,451 tools / 16,464 APIs
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Instruction Generation

Design Focus

« Diversity: Cover a wide range of API-use scenarios — better generalization & robustness
« Multi-tool Usage: Reflect real tasks requiring interleaved, multi-round tool execution

Generation Pipeline (Sample APIs — Generate Instructions)

» Define full API set S api; Sample a subset S(sub N)
* Prompt ChatGPT to understand APIs in S(sub N) and produce feasible instruction(Inst_*)
e Produce relevant API sets S*real € S(sub N) for each instruction

ChatGPT S¥. Insty],- - - . [Sx'. Insty ] HAPL,, - - - . APlLy. seed;. - - - , seeds).
1 M

{APLy, - ,APly } €S,py, {seedy , - ,seedg } €854

Prompt Composition

« High-level description of the instruction-generation task
« Comprehensive docs for each API (function, params, examples)
« Three in-context seed examples (separate seed pools for single-tool / multi-tool)
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AFI Dﬂtﬂrﬂfﬂ!‘ﬂﬂﬂﬂ -..;'t \-_‘_'JI "‘ - i F|EII| ulred Parameters: xxdx :
_____________________________________________________________ L - 1
i API Name: Search By Title APl Description: Search movies and series by title, ... i @ o ii';_ﬂ AP Name: oo i
! Required Parameters: (1) title (string, title to search for), (2) country (string, ...) : :._._._._._._._._._._._._:; ................................. !
! ODptional Parameters: (1) show_type (string, Type of shows to include in the results, | -~ ! Instruction We are planning a movie !
! either “movie”, “series”, or "all”. Default is “all"), (2) output_language (string, ...} : 2 {-_J; o night In the mountains. Can :
, Code Snippets: GET /v2/search/title title=sbatman&country=us&show... : Instructions & i YOU SUBEest .. :
| Example Response: type:"movie", title-"Batman”, overview:"lapanese._. : Relevant APls i Relevant APls APIL, API2, APIS... i

Figure 3: The hierarchy of RapidAPI (left) and the process of instruction generation (right).
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Sampling Strategies for Multi-tool Setting

Why Specialized?
 sparse interconnections — random combinations yield irrelevant tool sets
Leverage RapidAPI Hierarchy for Multi-Tool

e I2: Intra-Category

« I3: Intra-Collection

- Rationale: tools within the same category/collection share functionality/goals — more
coherent multi-tool workflows

Quality Control & Scale

 Filter hallucinated links: drop instructions whose “relevant APIs” are not in S(sub N)

« Final dataset: ~200k (instruction, relevant-API) pairs (I1: 87,413 12: 84,815 13: 25,251)
Diversity Evidence

« Human evaluation: high coverage & practicality
 Atlas visualization: supports diversity via clustering/coverage patterns
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Solution Path Annotation

-

CoT / ReACT

Reasoning Chains of Different Methods

([ tastrtion |

MNaormal

MNaormal

Error

,/r,.-.-....h
, .

e e et e e e R

APl Call with Error

TR T Y YTy

DFSDT (ours)
[ Instruction ] Selected Poth
I oo

Vo) Vi

e Y e e e e e e R e e e et e e st e e e e e e e e e R e e e e e e e e e e

T Y Y P P YRR R Y FY Y FYFY P YRR YRR R T

s 'w-\l

Uszer: | want to give my friend a birthday surprise. | know her

:r’_ favorite actress is Hailee Steinfeld. Help me please!
i b &

Thought: | will first get some information

]
]
'.'I
s L about Hailee Steinfeld. |
APl Name: get_extra_character_details o

Arguments: {“name”: “Hailee Steinfeld™}

| Dbservation: {"age": 28, “recent N '
.~ mavies”: [“Spider-Man: Across the
I _ Spider-Verse®, _]}

Observation: {“message”: “server .
is not available."}

APl Name: Finish with Final Answer
Arguments: {“Final Answer”: Hailea Steinfeld
recently voiced Spider-Woman in "Spider-
Man: Across the Spider-Verse". You could

\or buy a Spider-Woman maszk az a gift, and she
] would probably like it.}
"> APIMame: Finish by Giving Up
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Depth First Search-based Decision Tree

Observed Issues:

« Error Propagation: a wrong step loops (mis-calling APIs,
hallucinations).

« Limited Exploration: single trajectory — poor coverage of
action space.

Depth-First Search Decision Tree:
« Allow model to evaluate different reasoning path.
Proceeding along a promising path
abandon existing node and expand a new one

« Prefer DFS over BFS: annotation finishes once one valid path is found;

DFS is more cost-efficient than BFS
Result 126,486 pairs

0  Source Node



McKelvey School of Engineering at Washington University

Experiential: ToolEval

Why: APIs on RapidAPI change over time; an instruction can have many valid paths
— no fixed ground truth; need consistent API versions; human eval is costly.

What: ChatGPT-based evaluator (AlpacaEval-style) with two metrics:
« Pass Rate — % of instructions successfully completed within a call/step budget (executability

baseline).
« Win Rate — Given 1 instruction + 2 solution paths, ChatGPT prefers the better one using

predefined criteria.

How: Use prompted criteria, run multiple trials, report averages to improve reliability.

Validity: High human alignment — 87.1% (Pass), 80.3% (Win) — scalable, fast, and
model-agnostic evaluation without a single canonical solution path.
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Efficacy of the API Retriever

Goal: Given an instruction, retrieve the
most relevant APIs for downstream
planning.

Method: Sentence-BERT bi-encoder
dense retriever

11 12 13 Average
NDCG NDCG NDCG NDCG
@1 @5 @ @5 @ @5 @1 @5
BM25 184 19.7 120 11.0 252 204 185 17.0
Ada a7.0  H8.8 36.8 30.7 54.6 46.8 49.6 454

Ours 84.2 897 682 779 817 87.1 T78.0 849

Method

Table 2: Our API retriever v.s. two baselines for three types of
instructions (11, 12, I3). We report NDCG@1 and NDCG@5.

* Encode instruction and API document into embeddings; score by embedding similarity.
« Training: positives = relevant APIs; negatives = sampled other APIs — contrastive learning.

Baselines: BM25, OpenAl text-embedding-ada-002.
Metric: NDCG@1 / NDCG@5 on I1 (single-tool), I2 (intra-category multi-tool), I3 (intra-

collection multi-tool).
Result: Table

Conclusion: dense retrieval is feasible and effective. providing high-quality candidates
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. . Method Il 12 I3 Average
Superlorlty Of DFSDT Oover ReACT ReACT 37.8 406 276 35.3
. . ReACT@N 494 494 346 44.5
Metric: Pass Rate (ChatGPT judge) DFSDT 580 70.6 628 63.8
. : Table 3: Pass rate of different reasoning
ReACT@N: run ReACT repeatedly until strategies for three types of instructions (11,
total cost = DFSDT; count pass once a [2. 13) based on ChatGPT.
valid path is found.

Under the same budget, DFSDT annotates more valid trajectories — lower total
cost per accepted sample.

Gains are larger on harder instructions (I2/13) — expanding the search space solves
cases where vanilla ReACT fails.

Including these hard examples better elicits LLM tool-use capabilities for complex,
real-world tasks.
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Main Experiment

Model/Context:

Fine-tune LLaMA-2 7B; extend context from 4096 — 8192 via positional interpolation.
Generalization Levels:

Inst. (unseen instructions), Tool (unseen tools, seen category), Cat. (unseen categories).
Scenarios: I1 (single-tool), I2 (intra-category multi-tool), I3 (intra-collection multi-tool).
Setup:

« Default: Feed oracle APIs S(Nsub) to all models;

* Reasoning: compare ReACT vs. DFSDT.

«  Win Rate vs. ChatGPT-ReACT test retriever setting:
« feed Top-5 retrieved APIs instead of oracle

Baselines: Vicuna, Alpaca, ChatGPT, Text-Davinci-003, GPT-4, Claude-2.
Metrics (ToolEval)
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Main Result

11-Inst. I1-Tool 11-Cat. 12-Inst. 12-Cal. 13-1Inst. Average
Model Method Pass Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win
ChatGPT ReACT 41.5 - | 44.0 - | 44.5 - | 42.5 - | 46.5 - | 22,0 - | 4002 -
DFSDT 4.5 605 | 65.0 620 | 605 573 | 70 720 (715 648 | 620 69.0 | 648 64.3
Claude-2 ReACT a0 ol J.0 278 TRTI 5 L o) 315 | 140 47.5 s T O |
DFSDT 203 350 | 41.0 443 | 185 433 | 170 368 | 2.5 F3.5 | 25.0 650 | 226 435
Text-Davinci-(03 ReACT 12200 285 | 2000 353 | 20000 31.0 B 2085 | 145 298 | 240 450 | 165 332
DFSDT 44.5 403 | 44.0 438 | 460 4685 | 470 40.5 | 420 433 | 46.0  63.0 | 43,1 46.3
GPT4 ReACT ad.a 60U | 5000 58.8 | 535 645 | 670 6hs | T2.0 604 | 47.0 T80 [ 57.2 6d4d
DESDT 600 675 | 71.5 678 | 670 665 | 795 733 (775 633 | 7O 840 | TL1  To4
Yicuna ReACT & DFSDT (.0 0.0 (b0 0.0 (.0 0.0 0.0} 0.0 0.0} 0.0 ().} 0.0 (3.0} 0.0
Alpaca ReACT & DFSDT (.0 0.0 (b0 0.0 (.0 0.0 0.0} 0.0 0.0} 0.0 ().} 0.0 (3.0} 0.0
ReACT 20000 450 | 29.0 420 | 43.0 475 | dn 5.5 | 415 415 | 250 550 | 2940 4T7.0
ToolLLabA DFSDT ar.) 550y | 610 553 | 620 545 | V7.0 685 | T 580 | 66.0  69.0 | 66.7 6.0
DESDT-Retriever | 64.0 62.3 | 64.0 590 [ 60.5 55.0 | 81.5 68.5 | 685 608 | 65.0 73.0 | 67.3 63.1

* Vicuna/Alpaca = 0 (pass & win) — general dialog tuning + tool-use competence.

« DFSDT > ReACT across models; Chat GPT+DFSDT > GPT-4+ReACT (pass),
comparable win.

« ToolLLaMA+DFSDT > Text-Davinci-003 / Claude-2; near ChatGPT, pass 2nd to
GPT-4+DFSDT.

« With Top-5 retrieved APIs (vs. oracle set), ToolLLaMA improves further —
retriever expands solution space and finds better substitutes.
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Out-of-Distribution Generalization to APIBENCH

Set up

Domains: TorchHub, TensorHub, HuggingFace

Retrievers for ToolLLaMA: Our Retriever (dense) & Oracle Retriever

Baselines: Gorilla (LLaMA-7B) under ZS (zero-shot) and RS (retrieval-aware) settings

Metrics: AST accuracy (1) & Hallucination rate ()
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Out-of-Distribution Generalization to APIBENCH

Method HuggingFace TorchHub TensorHub
Hallu. (]) AST (1) Hallu. (J) AST (1) Hallu. (]) AST (1)
ToolLLaMA + Our Retriever 10.60 16.77 15.70  51.16 6.48 40.59
Gorilla-ZS + BM25 46.90 10.51 17.20 4462 20.58 3431
Gorilla-RS + BM25 6.42 15.71 5.91 50.00 2.77 41.90
ToolLLaMA + Oracle 8.66 88.80 14.12 85.88 7.44 88.62
Gorilla-ZS + Oracle 52.88 44 36 39.25 59.14 12.99 83.21
Gorilla-RS + Oracle 6.97 89.27 6.99 93.01 2.04 94.16

ToolLLaMA + Our Retriever — higher AST than Gorilla + BM25 (both ZS/RS) on
HuggingFace & TorchHub

With Oracle Retriever, ToolLLaMA consistently > Gorilla-ZS across domains

Dense retriever can reduce hallucinations and improve selection from a 16k+ API pool

Gorilla does not transfer to ToolBench (multi-tool, multi-step), highlighting Tool LLaMA’s
planning streng
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Related Work

Tool Learning:

« LLMs gain real-time knowledge, multimodality, and domain skills via tools;
* Open-source LLMs lag behind SOTA tool use; mechanisms remain unclear — ToolLLM bridges the

&ap-

Instruction Tuning vs. Tool Use:

« Self-instruct data boosts dialogue, but tool use is harder (vast APIs, multi-tool chains);
« Even GPT-4 often fails to find valid paths; prior tool datasets/pipelines don’t meet real needs —
ToolBench targets practical scenarios and improves data construction.

Prompting for Decision Making:

« ReAct integrates reasoning-+acting but lacks retraction, causing error cascades;

« Reflexion adds self-correction; DFSDT generalizes further via branching search & backtracking;

« Related to Tree-of-Thought, but DFSDT targets open-ended decision spaces, not brute-forceable
toy tasks.
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Conclusion

ToolBench: 16k+ real REST APIs; diverse single- & multi-tool scenarios; ChatGPT-driven
construction with minimal human effort.

DFSDT: Depth-first decision-tree reasoning (branching + backtracking) — stronger
planning, executable paths for complex tasks.

ToolEval: Automatic Pass / Win evaluation with strong human alignment.

ToolLLaMA: LLaMA fine-tuned on ToolBench — near-ChatGPT performance; robust
generalization to unseen APIs.

Neural API Retriever: Recommends relevant APIs; integrates with ToolLLaMA for a more
automated tool-use pipeline.

OOD Generalization: Pipeline transfers to external domains (APIBench).



McKelvey School of Engineering at Washington University

Reference List

Showed in Article
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ART: Automatic multi-step reasoning and tool-
use for
large language models

Bhargavi Paranjape et al.(2023)

Presentation by Mingrui Ye
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Motivation and Problem

LLMs demonstrate emergent reasoning abilities in few- and zero-shot setups.

However, they struggle with multi-step reasoning and tool use, such as arithmetic,
factual lookup, and programmatic reasoning.

Prior methods like Chain-of-Thought (CoT) or Toolformer:
e Rely on handcrafted prompts or fine-tuned models.
e Difficult to generalize to new tasks or tools.

Key Question:

How can we make LLMs automatically decompose complex problems and decide
when to use tools, without retraining?



McKelvey School of Engineering at Washington University

Compare with other methods

Chain-of-Thought (CoT) Prompting
e CoT and its variants (Least-to-Most, Self-Ask,
AutoCoT) encourage LLMs to reason step by step.

e AutoCoT automatically generates reasoning
chains, but remains free-form and lacks structured
tool use.

Tool-Use Models

e Toolformer and similar methods fine-tune LLMs to
call tools (search, calculator, translator).

e Require task-specific training and cannot easily
extend to new tasks or tools.

How ART Differs

Feature CoT Auto  Tool- ART
CoT former
Multi-step reasoning v v v
Limited supervision v v v
Tool use v v
Extendable libraries v
Cross-task transfer v v v
Human feedback v v

e Automatic multi-step program generation without finetuning.
e Task & Tool libraries enable cross-task transfer and plug-and-play tools.
e Human feedback loop for error correction and continuous extension.
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ART Architecture Overview

L Task: Translate into Pig Latin Input: albert goes home ‘J
[ Task Library %(- -------- z

A | Select Examples

Task: Anachronisms Task: Arithmetic

Input: George HW ... Gulf Input: Viola bought 167 books...
War Q1: [gen code] Write arithmetic as
Q1: [search] When was  python code
George H. W. #1: viola =167, nancy = 137
Bush, president? ans = viola - nancy
#1: From 1989-1993 ... Q2: [exec code] Execute code
Q2: [E0Q) Q3: [EOQ]
Ans: True Ans: 30
B ) Run Program Frozen LLM |
+ ]

Q1: [search] How to write english as pig latin?

#1: Add "yay" if it starts with a vowel ...

Q2: [gen code] Write code to translate "albert goes
driving" to pig latin.

#2: for win ["albert®, "goes", "home"]: if w{0] in "aeiou":
print(w + "yay”) ...

Q3: [exec] Execute snippet

#3: albertyay oesgay rivingday

Q4: [EOQ]

Ans: albertyay oesgay rivingday

C @ Fix Mistakes (optional)

Q1: [search] How to write english as pig latin?

#1: Add "yay" if it starts with a vowel ...

Q2: [gen code] Write code to translate "albert ...

#2. forwin ["albert”, "goes", "home"]: if w{0] in “aeiou": _
print(w + "yay”") ...consonent_cluster = find_clstr(w)

Q3: [exec code] Execute snippet

#3: albertyay oesgay ivingdray

Q4: [EOQ]

Ans: albertyay oesgay ivingdray

Task Library examples

Tool Output LLM Output

Human Feedback

Task Library:
e Contains multi-step reasoning examples from 15 BigBench
tasks.
e Each task = Input — multiple sub-steps (Q1/#1 ...) — Final
Answer.

Frozen LLM:
e Generates structured “programs” that integrate both text
reasoning and symbolic computation.

Tool Library:
e Tools: Search, Code Generation, Code Execution, Lookup,
Prolog Engine.
e Each tool corresponds to a symbolic tag [tool_namel].

Human Feedback (Optional):
e Users can edit reasoning chains, add new tools, or correct
errors.
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How ART Works
Step-by-Step Process:

1.

Task Retrieval: ART retrieves similar tasks from the library based on textual
similarity or small validation set.

Program Generation: LLM writes structured multi-step reasoning using Qn: [tool] ...
#n: ... format.

Tool Execution: ART pauses at tool symbols (e.g., [search], [exec code]), executes,
and inserts output.

Result Integration: LLM continues reasoning using results from tool calls.

Optional Feedback Loop: Users can modify a reasoning chain to correct logic or
add missing steps.
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Task Library Design

1. The Task Library build from 15 representative BigBench tasks, covering five
reasoning clusters:

Cluster Representative Capability

Arithmetic GSM8K, Aqua-Rat arithmetic and algebra problems

Code Auto Debugging Generating and executing python code

Search and question decomposition Anachronisms, Musique Single or multi-step questions that require
search

Free-form reasoning Hyperbation, Formal Fallacies Explaining step-by-step reasoning in

natural language

String Operations Language games, Date Understanding Reformatting/editing strings, checking
string entailment, etc

2. Uses a Parsing Expression Grammar (PEG) to define program structure.

3. Enables easy parsing, tool calling, and resumption of generation.
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Tool Library

Core Tools:
e Search — via SerpAPI (Google API)

e Code Generation — via Codex

e Code Execution — runs Python snippets in sandbox

e Lookup — dictionary/knowledge base queries

e Prolog Engine — logic reasoning in formal fallacy tasks

Key Benefit:
Easily extendable — add new tools or modify existing ones without retraining the LLM.
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Example: Physics QA

" New Task (-Physi'cs QA)' Answer this hiQh-sChool physrics question ‘
_Input: Hector yanks on the chain with a 72.0 N force at an angle of 35.0° above the horizontal. Determine the horizontal components of the tension force. |

cpomtions| reasoning (SoMCh | Arthetie | e (8 TooLLBRARY Google

¥
| ‘ |, TASK LIBRARY N

Input: Hector yanks on the chain with a 72.0 N force at an angle of 35.0° above the horizog,’ial.

Solve these anthmetic problems using python code Determine the horizontal components of the tension force. ..\/,57
Input: Viola had 167 breads. Nancy took 137from him. How Q1: [search] What is the formula for the horizontal component of the tension force?
many does Viola have now? - #1: The formula for the horizontal component of the tension force is Tcos8. The horizontal
Q1: [generate code] Write down arithmetic as python code ([j'*component (Fx) can be calculated as Ftens*cosine(8) where 8 is the angle which the force make
#1: viola_bought = 167, nancy_took = 137 '\ s with the horizontal in radians.
ans = viola_bought - nancy_took \ : Input: ... Q1: [search] ...
Q2: [code execute] Execute snippet #2: 30 Q3: [EOQ] Ans: No LLM #1: ... can be calculated as Ftens*cosine(8)where 8 is ...

: : - \“02: [generate code] Use the formula Fx = Ftens*cosine(8) to solve: Hank ...
Does the sentence contain an anachrornism? Yes/No. \ —n —
Input: President George H. W. Bush called his generals at the outset of the ) #Z'T =720, thetg =35.0 I ) AT Cod
Gulf War \| | radians= math.pi‘theta/180 <" pen oaex
Q1: [search] When was President George H. W. Bush, president? \ | Fx=T"math.cos(radians)
#1: George H. W. Bush's tenure started on January 20, 1989, ‘31;\ Input: ...Q1: [search] .. #1: ...
and ended on January 20, 1993. || Q2: [generate code] Use the formula Fx = Ftens*cosine() to solve: Hank ...
Q2: [search] When was the Gulf War fought? #2: The Gulf War was a 1990-1991 | 142  Fx = T*math.cos(radians)
Q3: [supquestion] Could these entities have co-existed? #3: Yes. Their time \.\/Q3; [code exe/gute] Execute the python code and get the value of “Fx"
periods intersect. #3:589789 (= g, pgthOﬂ
Q4: [generate output] Is this an anachronism? #4: No Q5: [EOQ] Ans: No Q4: [EOQ] Ans: 58.9789 =
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Human Feedback

ART is designed to naturally accept human feedback without any finetuning. Because
reasoning is expressed as interpretable multi-step programs, users can directly edit or
debug them.

Forms of Feedback

« Editing task or tool libraries — users can instantly modify stored examples or tool APIs.
« Program debugging — instead of rewriting from scratch, users fix parts of an existing

Users can modify the reasoning chain:

« Correct incorrect sub-step outputs.
« Add /remove sub-steps with proper inputs and answers.
* Introduce calls to new tools (e.g., [lookup], [add unit]).
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Human Feedback Examples

_ Human feedback | .

Q1. [search]...What is the formula for the horizontal component of
the tension force?
#1: ... calculated as Ftens*cosine(B)where & is ...

#2: Fx = T*math.cos(radians) ... print(Fx)

Q3: [code execute] Execute snippet get the value of "Fx"

#3: 58.9789

Q4: [arithmetic] Round the answer to the nearest integer

#4: 59

Q5: [add unit] Add the appropriate unit of measurement to the answer.
#5: 59 N

Q4: [EOQ]

Ans: 59 N

Q2: [generate code] Use formula Fx = Ftens*cosine(B) to solve: Hanks...

Q1: [string split] What are the letters in "nwist"

#1: %s

Q2: [string permutation] What are the possible permutations of 'nwisr'?
#2: ['nwist', 'nwits’, 'nwsit', 'nwsti’, 'nwtis’, 'nwtsi', 'niwst’, 'niwts’, 'niswt',...
Q3: [lookup] which word in the list is a common English word ?

#37 twin
Qa: [EGE]\
Ans: twins

(a) Correcting generated programs
by adding additional reasoning steps

TASK LIBRARY <—

def loockup (word list &

import enchant

d = gnchant Dict l.'.':__'.'Z.' X

valid list = [] TOOL LIBRARY <
for word Lo word list
if d check (word

valid list append (word

(b) Adding additional tool use examples and
new tool definitions
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Experimental Setup

Datasets:
e 15 BigBench training tasks (for library)
e 19 unseen BigBench test tasks
e 6 MMLU tasks (for cross-benchmark validation)
e Toolformer-style QA tasks (SQUAD, TriviaQA, SVAMP, MAWPS)

Baselines:
e Few-shot prompting
e AutoCoT (automatic chain-of-thought)
e ART without tool use
e Best GPT-3(175B)/Toolformer results

Models:
e LLM: InstructGPT (text-davinci-002)
e Code generator: Codex
e Temperature = 0.3
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Results on Task Library

Task Name (Cluster) Few Shot  AutoCot ART ART GPT-3
w/o Tool Use Best
Anachronisms (Search) 71.3° 31.48 T0.87 15.66 -
Musique (Search) 2.03% 12.88 10.04 19.19 15.2°
Hindu Knowledge (Search) 85.02° 73.03 83.42 87.98 -
Known Unknown (Search) 68.90 ° 56.09 80.43 80.43 -
A with ART (Search) +9.0 +17.44 +4.6 +4.0
Elementary Math QA (Arithmetic) 56.407 74.52 58.04 68.04 -
Aqua-rat (Arithmetic) 20.547 34.41 36.29 5420 | 54.14
GSMSK (Arithmetic) 7.79° 21.99 53.4 71.00 | 71.6*
Navigate (Arithmetic) 60.7 61.7 72.4 72.4 85.90"
A with ART (Arithmetic) +30.0 +18.25 +11.4 -4.7
K’th letter concatenation (String) 3.2° 0.64 8.19 40.00 [ 98.0°
Language games (String) 35.14° 18.58 11.19 23.08 -
Date Understanding (String) 37.53° 38.90 52.05 - 70.41°
Auto Debugging (Code) 62.94 38.24 55.29 62.94 -
Code Description (Code) 97.99° 88.67 84.67 88.00 -
Formal Fallacies (CoT) 44 84" 56.4 64.76 - 58.41
Hyperbation (CoT) 62.72° 55.4 80.80 - 72.41
A with ART (Misc) +9.6 +16.4 +13.7 -154
A with ART (Overall) +14.90 +17.17 +7.91 9.0

ART performs on par or
better than Auto-CoT and
Few-Shot baselines across
all clusters.

Especially strong on
Arithmetic.

From ART and ART w/o
Tool Use. Shows that ART
successfully learns
structured, interpretable
reasoning sequences within
known task types.




McKelvey School of Engineering at Washington University

Results on Test Tasks

Task Name (Cluster) Few Shot  AutoCot ART ART GPT-3

w/o Tool Use Best
Test Tasks

Sentence Ambiguity (Search) 70.67" 51.47 71.00 73.33

Strategy QA (Scarch) 5549”7 27.22 59.37 66.44

Physics (Search) 70.00” 61.83 59.13 67.55 J

A with ART (Secarch) +3.7 +22.27 +5.9

Physics Questions (Arithmetic) 7.02° 5.56 6.30 20.37

Operators (Arithmetic) 11.23° 75.52 71.80 92.00

Unit interpretation (Arithmetic) 58.2° 41.20 514 53.99

Repeat copy logic (Arithmetic) 50.01° 15.63 31.25 44.38 -

Object Counting (Arithmetic) 39.2° 26.80 42.2 87.00 | 81.20

Penguins in a table (Arithmetic) 58.23° 40.40 68.86 77.85 | 72.34}

Reasoning about objects (Arithmetic) 7100 33.33 45.35 64.34 | 5269

TracKing shuffled objects (Arithmetic) 22.39° 19.44 18.14 37.67 | 36.32

A with ART (Arithmetic) +19.0 +36.7 | +23.1 +6.1

Word Unscramble (String) \ 40.727 3244 23.03 42.7

Simple Text Editing (Code) | 35317 30.21 20.74 27.65

CS Algorithms (Code) 73.487 0.0 41.59 8811 -

Sports Understanding (CoT) 69.74° 5147 92.89 86.59

Snarks (CoT) 54.58" 57.24 57.13 65.2"

Disambiguation QA (Free-form) 55.03° 48.45 55.89 60.62'

Temporal sequences (CoT) 55.80° 19.70 495 81.8!

Ruin names (CoT) | 71017 55.28 60.22

A with ART (Misc) 24 22.5 24.37 9.4

A with ART (Overall) +6.9 +24.6 +16.7 1.7

MMLU \

College Computer Science (Search) 41.00 4399 63.40 67.80 ’ 63.6"

Astronomy (Scarch) 62.10 41.48 76.71 79.1 62.5°

Business Ethics (Search) 61.60 48.8 77.17 8116 | 72.7°

Virology (Search) 50.03 49.52 71.60 71.49 | 50.72°

Geography (Search) 77.67 57.07 70.30 7171 | 81.8°

Mathematics (Arithmetic) 36.67 33.77 39.50 45.66 | 34.5°

A with ART (MMLU) +14.6 +237 | 430 +8.5

BigBench test tasks:

« ART outperforms few-shot learning (6.9 %
points). In particular, ART has significant
improvements on arithmetic tasks (+19.0) and
IS comparable to the few-shot performance
on search tasks.

« ART is better than AutoCoT on almost all
tasks (24.6% points).

 Compare with GPT-3 Best, ART performs
favorably on average, especially on arithmetic
tasks (+6.1 % points).

Other benchmarks(MMLU):
« ART is more effective than all baselines
on 5/6 tasks
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Improve ART with Self-Consistency

Simple Text CS Strategy QA Physics Unit Reasoning about
Editing Algorithms Questions  Interpretation  colored objects
ART 27.65 88.11 66.44 20.37 53.99 64.34
+ Self Consistency | 30.67(+3.0)  90.99(+2.9) 70.76(+4.3) 24.07(+3.7) 57.20(+3.2) 69.11(+4.8)

In this table we can see: Self-consistency smooths stochastic reasoning errors, yielding
+3 ~ 5 percentage points improvement with no retraining.
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Improve ART with Human Feedback

Task CoT ART GPT-3 Human

+Human + Human Best Feedback
CS Algorithms 0.0 23.0 88.11 92.73 73.48 | C:longest common subsequence code
Reasong about obyjs. 33.33 67.75 64.34 98.90 71.00 | C: Define object, color, count data structure
Repeat Copy Logic* 15.63 45.22 44 .38 80.31 50.01 C: string edit operation
Sentence Ambiguity 51.47 72.33 73.33 83.67 70.67 | C: Constrain queries to extract relevant info.
Simple Text editing® 30.21 35.31 27.65 36.11 35.31 C: string edit operation
Strategy QA* 27.22 29.19 66.44 69.15 55.49 | C: Constrain queries to extract relevant info.
Physics™ 61.83 68.21 67.55 72.355 70.09 A: [search] Formula that connects mass, ...
Temporal Sequences 19.70 30.22 49.5 88.00 81.8 A: [subquestion] Is X free Yam to Zam?
Track Shuffled objs. 19.44 36.48 37.67 99.86 36.32 | C: Define object pair data struct, swap logic
Unit Interpretation™ 41.2 41.2 53.99 95.0 58.2 A: [add unit] Add the right unit to the answer
Word Unscrambling® | 32.44 33.40 42.70 62.11 40.72 | T: lookup permutations in dictionary
Average 30.2 43.8 56.0 79.85 58.5

In most of the task, human feedback can drastically boost performance — up to +38 points on

some tasks without any fine-tuning or model retraining.
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[Limitation and Future Work

Limitations

e Task Library Dependence: Performance tied to the quality of stored examples.
Error Propagation: Early-step mistakes cascade through reasoning chains.
Limited Tool Diversity: Current tools (search, code, lookup) restrict scope.
Execution Instability: External calls may fail; needs safer sandboxing.
Narrow Evaluation: Tested mainly on BigBench and MMLU.

Future Work
e Expand Tools & Tasks: Add vision, retrieval, and simulation APls.
e Self-Correction: Integrate reflection or verifier modules.
e Human Feedback Loop: Support real-time editing and improvement.
e Broader Testing: Validate on open-domain and multimodal reasoning.
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Conclusion

Summary of Findings :

« ART reframes reasoning as program synthesis — combining natural language and tool use.

« It learns structured, interpretable multi-step programs within its task library.

« It generalizes these reasoning programs to unseen BigBench and MMLU tasks without any
fine-tuning.

« External tools (search, code execution, lookup) further amplify reasoning accuracy.

Overall Insight :

ART demonstrates that “Prompt = Program = Reasoning” : large language models can plan,
execute, and improve reasoning pipelines automatically, paving the way toward autonomous
tool-using Al systems.
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A-Mem: Agentic Memory for LLM Agents

Wujiang Xu et al., Meta Al (2023)
Presentation by Mingrui Ye, Deyuan Yang, Yancheng Jin
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Introduction

W rlte W rlte
—
Interactlon Imeractlon
Re'\d Read —

Environment  LLM Agents Memory  Environment — LLM Agents Agentic Memory

(a) Traditional memory system. (b) Our proposed agentic memory.

« Traditional LLM memory systems rely on fixed read/write rules, making them rigid and hard
to adapt to new tasks.

«  A-MEM (Agentic Memory) introduces dynamic, self-organizing memory. It allows agents to
autonomously store, link, and evolve information instead of following preset workflows.

« A-MEM based on the Zettelkasten method — each interaction becomes a structured
“note” (content, keywords, tags, embedding). Enable long-term reasoning and
continuous learning through adaptive memory evolution.
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Related Work

Memory for LLM Agents

e Early works (MemGPT, MemoryBank, ReadAgent, SCM) — provide storage but rely on
predefined read/write rules.

e Limitations: rigid workflows, poor adaptability across new environments.

Retrieval-Augmented Generation (RAG)
e Enhances LLMs via retrieving external knowledge before generation.
e “Agentic RAG” adds autonomy in when and what to retrieve (e.g., Self-RAG, Active-RAG).

e A-MEM vs RAG:

o RAG = agency during retrieval only.
o A-MEM = agency in storage + evolution, forming a self-organizing memory graph.
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Method: How A-Mem Works

1. Note Construction: Turn interactions into rich, structured notes

2. Link Generation: Automatically find connections betweens notes

3. Memory Evolution: Update old memories with new insights

4. Memory Retrieval: retrieve relevant historical context for better
understanding

This creates a living, interconnected knowledge network.
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Step 1: Note Construction - Creating Rich Memories
m; = {c;.t:. Ki, G, Xi.e;, L;} ~ memory note (for every interaction)

K;,G;, X; « LLM(q; ||t; ||P,;) Use LLM generate Ki, Gi, Xi for deeper understanding
beyond raw text

e: = fenc| concat(c;, K;,G;, X;) ] text encoder that encapsulates all textual components of
note
C; -raw content (7, -LLM-generated Tags

t; -timestamp X, -LLM-generated Contextual Description

€; -Dense Vector Embedding (for similarity search)

K; -LLM-generated Keywords
Z 9 y L, -Links to other memories
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Step 2: Link Generation

Sn,j = - Similarity score
|€ﬂ| |Ej|

M:;?:ar = {TTle rank(sn,j) = kzw?’j € M}
Lz' A LLM(’H”LH ||M:;‘:ar ||P52)

e Use the embedding e_1 to find top k similar historical memories
« Use an LLM to decide which of these should be formally linked
based on shared context and attributes
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Step 3: Memory Evolution

m; < LLM(m,, |[Myee \ m; ||m; ||Ps3)  evolution process

* For each of the top-k similar memories, the LLM analyzes the new
memory

It can update the context, keywords and tags of the old memory to reflect
new understanding

Step 2 and Step 3 is the “Agent” part: The memory system actively reasons

about the restructures itself.
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Step 4: Retrieve Relative Memory

eq = fenc(q) dense vector for same encoder

Eq'ﬁi

- legllei]

Sq,i ,where ¢; € m;, Ym; € M Similarity score

Mierievea = {mi|rank(sy ;) < k,m; € M} Top k memory retrieved
« provide relevant historical context that improves agent understanding

and response
« Connect current interaction with past experience
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Experiment Setup

Datasets:

— LoCoMo (long conversations)
* Purpose: evaluate long-term conversational memory
« Key feature: very long conversations (avg. 9K tokens, up to 35 sessions)
* Question Types: Test different reasoning skills
— Single-Hop (one session)
— Multi-Hop (across sessions)
— Temporal Reasoning
— Open-Domain
Adversarial
— D1a181m (TV show dialogues)
* Purpose: Evaluate understanding of long-term, multi-party dialogues
* Source: Derived from TV shows
* Scale: ~350,000 tokens, over 1,000 questions
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Experiment Setup

Implementation Details:

« Fair Comparison
— All methods used identical system prompts to ensure fairness

* Model Deployment
— Local Models (Qwen, Llama): run locally using Ollama.
— Structured Outputs: Managed by LiteLLM framework
— GPT Models: used the official OpenAl API

* Key Parameters
— Retrieval (k-value): Primarily used k=10 for efficiency, with
adjustments for specific tasks
— Embedding Model: Used all-minilm-16-v2 for all text embeddings
across all experiments.
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Experimental Setup

Baseline and Matrics

« Baselines:
— LocoMo: uses the full conversation history as context (very expensive)
— MemGPT: A sophisticated memory system with a context hierarchy
— MemoryBank: Manages memory using a forgetting curve theory
— ReadAgent: uses a pagination and “gisting” strategy for long documents

« Evaluation Metrics:
— F1 score: measures answer accuracy (balance of precision and recall)
— BLEU-1: Measures word-overlap with the correct answer
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Performance Analysis

Across Models:

 Non-GPT models (Qwen, LLaMA): A-
MEM outperforms all baselines in
every category.

* GPT models: LoCoMo / MemGPT
strong in simple fact retrieval, but A-
MEM 2x better on Multi-Hop
reasoning.

Cross-Dataset Validation:

e On DialSim, A-MEM achieves F1 =
3.45 (+35% vs LoCoMo, +192% vs
MemGPT).

Table 1: Experimental results on LoCoMo dataset of QA tasks across five categories (Multi Hop, Temporal,
Open Domain, Single Hop, and Adversial) using different methods. Results are reported in Fl and BLEU-1
(%) scores. The best performance is marked in bold, and our proposed method A-MEM (highlighted in gray)

demonstrates competitive performance across six foundation language models.

Category Average
Model Method Multi Hop Tempuoral Open Domain Single Hop Adversial Ranking Token
F1 BLEU F1 BLELU F1 BLEU F1 BLEL F1 BLEU | F1 BLEU | Length
_ | LoCoMo 502 1995 [1sd41 1477 [ 1204 1016 [ 4038 2905 [ 69323 6RT75 [ 24 24 16,910
E READAGENT 915 648 | 1260 RRT7 531 5.12 967 TH6 481 902 |42 42 643
& | MEmoRYBaNK | 500 477 968 £ 5.56 594 | a6l 5.16 736 648 | 48 48 432
5 | MEMGPT 65 1792 | 2552 1944 | 915 T44 | 4104 3434 [ 4329 4273 [ 24 24 16,977
l; A-MEM 2702 20009 | 4585 667 | 1204 1200 | 4465 3T06 0 5003 4947 L2 1.2 2520
L CoCobo TNl IRAT | w9 500 647 1480 | 61.56 5409 | 5861 SIL.13 [ 20 ] 6,910
READAGENT 1461 995 4.16 AL £.54 8.37 1246 1029 | 6.8 613 [ 40 40 05
2 | MEMORYBANK | 649 469 247 243 6.43 5300 | 828 7.0 4.42 67 |50 50 568
MEMGPT 336 2283 17290 1308 | 1224 1187 | 606 5335 | 3498 3425 |24 24 16,987
A-Mgm 3286 2376 | 3041 3123 | 1700 1584 0 4R43 0 4297 3p35 3553 16 1.6 1216
Lol oMo L5 655 425 404 ga] =550 11.15 H67 4038 4023 | 34 14 16,910
= | BEADAGENT .61 493 155 251 i3 1224 | 10013 T7.54 542 2732 |48 44 752
Wi | MEmoRYBANK | 1114 B2S 446 287 £.05 .21 1342 1101 | 3676 3400 | 26 26 284
w MEMGPT 1044 761 4.21 389 | 1342 1164 | 956 0 T34 [ 3151 2890 | 34 0 34 16,953
'}:‘ A-Mgm 18.23 1194 | 2437 1974 | 1648 1431 0 2363 1923 4600 4328 10 1.0 1.300
5 LoCobo 46l 4.M) 111 271 455 507 T3 S.64 16495  14.K1 32 £ 16,910
READAGENT 247 1.78 EXi]| 301 557 512 325 251 1578 1401 | 42 42 776
2 | MEMorRYBANK | 3.60 339 1.72 1.97 .63 .58 4.11 332 1307 1030 | 42 42 208
MEMGPT 507 431 204 295 T4 710 | T2 552 1447 1239 | 24 24 16,961
A-MEM 1257 i1 IT.89 2507 7.12 7.28 1723 1312 2791 2515 L0 L0 1,137
LoCoMo 125 ©.1m T3 82 1190 1038 | 1286 1050 | 5189 4827 | 34 34 16,910
READAGENT 596 5.12 1.93 230 [ 1246 1117 | T35 603 | 4464 40,05 | 46 46 [iTi%]
= | MEmMorYBaNK | 1318 1003 | T8l 6.27 1578 1294 | 1730 1403 | 5261 4753 |20 20 274
E MEMGPT .19 696 402 479 | 1114 824 | 1006 768 [ 4975 4511 |40 40 16,950
E A-MEm 1906 1071 | 17.80 1028 | 17.55 1467 21851 2413 5881 5438 1.0 1.0 1576
LoCoMo GEF] 577 337 I3) | 165 939 | %37 693 | 3025 2846 | 28 1R 16,910
ﬂ READAGENT 247 1.78 EX1| 301 557 532 325 28] 1578 14001 | 42 42 461
£ | MEMoORYBANK | 6.19 447 149 313 4.07 457 7.61 603 1865 1705 | 32 32 203
MEMGPT 532 ERS] 268 272 564 554 | 432 as] 2145 1937 | 38 3R 16,956
A-MEM 1744  11.74 | 26.38 1950 | 1253 1183 2814 2387 4204 4060 LD L0 1,126

Table 2: Comparison of different memory mechanisms across multiple evaluation metrics on DialSim [16].
Higher scores indicate better performance, with A-MEM showing superior results across all metrics.

Method F1 BLEU-1 ROUGE-I. ROUGE-2 METEOR SBERT Similarity
LoCoMo | 2.55 i3 275 0.90 .64 1576
MemGPT | 1.18 1.07 (.96 042 0.95 B.54
A-MEM | 345 3.37 354 3.60 2.05 19.51
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Cost-Efficiency Analysis

Token Usage: ~1.2 K tokens per
operation (-85—93% vs baselines ~16.9
K).

API Cost: <$0.0003 per operation —
economical large-scale deployment.
Runtime: 5.4 s (GPT-40-mini), 1.1 s
(local LLaMA 3.2 1B).

Efficiency Balance: Despite
multiple LLM calls, A-MEM keeps low

cost while doubling multi-hop
performance.

Takeaway: Efficient and scalable for
real-world LLM agents.

Table 1: Experimental results on LoCoMo dataset of QA tasks across five categories (Multi Hop, Temporal,
Open Domain, Single Hop, and Adversial) using different methods. Results are reported in Fl and BLEU-1
(%) scores. The best performance is marked in bold, and our proposed method A-MEM (highlighted in gray)
demonstrates competitive performance across six foundation language models.

Category Average
Model Method Multi Hop Tempuoral Open Domain Single Hop Adversial Ranking Token
F1 BLEU F1 BLELU F1 BLEU F1 BLEL F1 BLEU | F1 BLEU | Length
_ | LoCoMo 502 1995 [1sd41 1477 [ 1204 1016 [ 4038 2905 [ 69323 6RT75 [ 24 24 16,910
E READAGENT 915 648 | 1260 RRT7 531 5.12 967 TH6 481 902 |42 42 643
& | MEmoRYBaNK | 500 477 968 £ 5.56 594 | a6l 5.16 736 648 | 48 48 432
5 | MEMGPT 65 1792 | 2552 1944 | 915 T44 | 4104 3434 [ 4329 4273 [ 24 24 16,977
i A-MEM 2702 20009 | 4585 667 | 1204 1200 | 4465 3T06 0 5003 4947 L2 1.2 2520
L CoCobo TNl IRAT | w9 500 647 1480 | 61.56 5409 | 5861 SIL.13 [ 20 ] 6,910
READAGENT 1461 995 4.16 AL £.54 8.37 1246 1029 | 6.8 613 [ 40 40 05
2 | MEMORYBANK | 649 469 247 243 6.43 5300 | 828 7.0 4.42 67 |50 50 568
MEMGPT 336 2283 17290 1308 | 1224 1187 | 606 5335 | 3498 3425 |24 24 16,987
A-Mgm 3286 2376 | 3041 3123 | 1700 1584 0 4R43 0 4297 3p35 3553 16 1.6 1216
Lol oMo L5 655 425 404 ga] =550 11.15 H67 4038 4023 | 34 14 16,910
= | BEADAGENT .61 493 155 251 i3 1224 | 10013 T7.54 542 2732 |48 44 752
Wi | MEmoRYBANK | 1114 B2S 446 287 £.05 .21 1342 1101 | 3676 3400 | 26 26 284
w MEMGPT 1044 761 4.21 389 | 1342 1164 | 956 0 T34 [ 3151 2890 | 34 0 34 16,953
'E A-Mgm 18.23 1194 | 2437 1974 | 1648 1431 0 2363 1923 4600 4328 10 1.0 1.300
5 LoCobo 46l 4.M) 111 271 455 507 T3 S.64 16495  14.K1 32 £ 16,910
READAGENT 247 1.78 EXi]| 301 557 512 325 251 1578 1401 | 42 42 776
2 | MEMorRYBANK | 3.60 339 1.72 1.97 .63 .58 4.11 332 1307 1030 | 42 42 208
MEMGPT 507 431 204 295 T4 710 | T2 552 1447 1239 | 24 24 16,961
A-MEM 1257 i1 IT.89 2507 7.12 7.28 1723 1312 2791 2515 L0 L0 1,137
LoCoMo 125 ©.1m T3 82 1190 1038 | 1286 1050 | 5189 4827 | 34 34 16,910
READAGENT 596 5.12 1.93 230 [ 1246 1117 | T35 603 | 4464 40,05 | 46 46 [iTi%]
= | MEmMorYBaNK | 1318 1003 | T8l 6.27 1578 1294 | 1730 1403 | 5261 4753 |20 20 274
E MEMGPT .19 696 402 479 | 1114 824 | 1006 768 [ 4975 4511 |40 40 16,950
E A-MEm 1906 1071 | 17.80 1028 | 17.55 1467 21851 2413 5881 5438 1.0 1.0 1576
LoCoMo GEF] 577 337 I3) | 165 939 | %37 693 | 3025 2846 | 28 1R 16,910
ﬂ READAGENT 247 1.78 EX1| 301 557 532 325 28] 1578 14001 | 42 42 461
£ | MEMoORYBANK | 6.19 447 149 313 4.07 457 7.61 603 1865 1705 | 32 32 203
MEMGPT 532 ERS] 268 272 564 554 | 432 as] 2145 1937 | 38 3R 16,956
A-MEM 1744  11.74 | 26.38 1950 | 1253 1183 2814 2387 4204 4060 LD L0 1,126

Table 2: Comparison of different memory mechanisms across multiple evaluation metrics on DialSim [16].
Higher scores indicate better performance, with A-MEM showing superior results across all metrics.

Method F1 BLEU-1 ROUGE-I. ROUGE-2 METEOR SBERT Similarity
LoCoMo | 2.55 i3 275 0.90 .64 1576
MemGPT | 1.18 1.07 (.96 042 0.95 B.54
A-MEM | 345 3.37 354 3.60 2.05 19.51
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Ablantion Study

Setup: Remove modules to test contribution
 No LG & ME — largest drop; memory lacks structure

 No ME (LG only) — intermediate performance
« Full A-MEM — best across all categories

Result (GPT-40-mini base):
e Multi-Hop F1: 9.65 (w/o LG&ME) — 21.35 (w/o ME) — 27.02 (Full)
 Open-Domain F1: 7.77 — 10.13 — 12.14
« Temporal F1: 24.55 — 31.24 — 45.85
e Adversarial F1: 15.32 — 44.16 — 50.03
Takeaways:

* LG = foundation (builds the memory graph; big gains already)
 ME =refinement (evolves/updates notes; pushes to SOTA)
« LG + ME are complementary — effective, scalable memory system

Category

Method Multi Hop Temporal Open Domain single Hop Adversial

Kl BLEL-1 Fl BLEL-1 | BLEU-1 Fl BLEL-1 K1

wio LG & ME | 9.65 709 2455 1945 1.77 6.70) 13.28 10,30 15.32
wio ME 21.35 15.13 3124 2731 10,13 10.85 3907 34.70 4416
A-MEM 27.02 20009 4585 36.67 12.14 12.00 44.65 37.06 50.03
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Hyperparameter Analysis

Goal: Examine impact of retrieval parameter k (10—50).
Setup: GPT-40-mini base; 5 task types (Multi-Hop, Temporal, Open-Domain, Single-Hop,
Adversarial).
Findings:
» Performance 1 as kincreases, then plateaus or drops.

* Most visible in Multi-Hop & Open-Domain tasks.
« Larger k = richer context but more noise / longer processing.

Conclusion:Moderate k (10—20) offers the best trade-off between context richness and
efficiency.
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Memory Size | Method

Memory Usage (MB)
¥ g

Retrieval Time (:5)

Scaling Analysis

Setup: Compare A-MEM with
MemoryBank & ReadAgent using
identical data.

Memory sizes: 1K — 10K —
100K — 1M entries (x10 each

step).

Findings:

A-MEM 1.46 031 £ 0.30
1.000 MemoryBank [39] | 1.46 0.24 £ 0.20
ReadAgent [17] 1.46 43.62 £ 847
A-MEM 14.65 038 £ 0.25
10,000 MemoryBank [39] | 14.65 026+ 0.13
ReadAgent [17] 14.65 484 45 + 93.86
A-MEM 146.48 1.40 £ 0.49
100,000 MemoryBank [39] | 14648 0,78 + 0.26
ReadAgent [17] 14648 6,682.22 + 111.63
A-MEM 1464 .84 370 +£0.74
1000, 000 MemoryBank [39] | 1464.84 1.91 £ 0.31
ReadAgent [17] 1464.84 120,069.68 £ 1.673.39

« Space Complexity: All = O(N); no extra storage overhead for A-MEM.
* Retrieval Time: A-MEM 0.31 — 3.70 us (1K — 1M memories).
« MemoryBank slightly faster but less expressive; A-MEM offers richer memory representation.

Conclusion:

« A-MEM is highly scalable and efficient, handling million-scale memories with minimal delay.
« Enables long-term and cost-effective memory for LLM Agents.
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Memory Analysis

Goal: Show memory organization via t-SNE

Setup: Two dialogues from LoCoMo; blue = A-MEM,
red = Base Memory (w/o LG & ME).

Findings:

A-MEM: clear, coherent clusters — structured and
organized memory.

Baseline: scattered and unorganized distribution.
Conclusion:

Confirms A-MEM’s dynamic linking + evolution create
well-organized, meaningful memory structures.
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[Limitation and Future Work

Limitations
e Dependent on base LLM quality (different models — different memory links).
e Currently text-only; lacks multimodal (image/audio) memory integration.
e Scalability tested up to 1M entries — but further real-world deployment yet to be explored.

Future Directions
e Extend to multimodal agentic memory.
e |Improve memory quality evaluation metrics.
e Integrate with agent operating systems (e.g., AIOS) for production use.
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Conclusion

Summary:
A-MEM introduces an agentic and evolving memory system that enables LLM agents to
autonomously organize, link, and refine their memories.

Core Advantage:
By combining structured note-taking with dynamic linking and memory evolution, A-MEM
supports long-term reasoning and adaptability.

Results:
Experiments across multiple foundation models show consistent performance gains,
especially on complex multi-hop reasoning tasks, with greatly reduced token usage.

Impact:
A-MEM moves LLM agents toward lifelong learning systems capable of continuously
improving their understanding over time.
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