
CSE561 Presentation:
Language Models as Agents

Presenters:
• Deyuan Yang
• Yancheng Jin
• Mingrui Ye

Toolformer: Language Models Can Teach
Themselves to Use Tools

Timo Schick et al., Meta AI (2023)

Presentation by Deyuan Yang

Teaching models to use tools, not just scale parameters.

The fundamental Problem with LLMs

Strength

● Creative

Writing

● Conversation

● Reasoning

patterns

Weakness

● Calculation

errors

● Outdated facts

● Temporal

confusion

Factual inaccuracy

and hallucinations

Poor Mathematical

reasoning

Limited multilingual

capability

Existing Solutions and Their Limitations

Human Supervision Approach Task-specific Approach

● High Cost: massive annotations

● Human bias

● Limited scale

● Not generalizable

● requires retraining

Gap: No general, self-supervised approach to tool learning

Toolformer’s Core Innovation

• Key: Let the model decide what's useful using its own predictions and teaches itself

how to use external APIs

• Self-Supervise: Use perplexity reduction as training signal

• General Approach: Works with any tool that has text-based API and Maintain core

language modeling ability

Self-supervised

Tool Learning

● No human annotations

● Maintain generality

● Learns when and how to use

tools

Example

The Three-Step Learning Process

Step 1. Sampling: Generate potential API calls using in-context learning

Step 2. Execution: Actually call the APIs to get real results

Step 3. Filtering: Keep only calls that reduce future token prediction

loss

Output: Augmented dataset with helpful API calls

Fine-tune the model on augmented dataset

Sample Execute Filter

Model learns

when and how to

use tools

Technical Deep Dive: Sampling API Calls

• In-Context Learning: Provide few-shot
examples of API usage

• Position Sampling: Compute probability of
starting API call at each position

• Call Generation: Sample actual APU calls
given the context

• Example: The Nile has length <API> QA (‘Nile
length’) -> 6853km</API>6853 km

Technical Deep Dive: Smart Filtering

Loss when model sees API call and result

Minimum loss between no call or call without result

Decision criteria (filtering threshold): only keep calls that reduce loss

significantly

keep calls that provide genuinely useful information

Weighted cross entropy loss

APIs and Tools

Tools Purpose

Calculator Arithmetic operations

QA System Factual Questions (Atlas model)

Wikipedia Search Information retrieval (BM25)

Machine Translation 200 languages (NLLB)

Calendar Temporal Context

● Each tool addresses specific LLM weaknesses

● Only requirement: Text-based inputs and outputs

Experimental Setup

• Base model: GPT-J (6.7B parameters)

• Dataset: CCNet subset

• Baselines (Comparison models): GPT-J, GPT-3 (175B),

OPT (66B)

• Tasks: LAMA, Math, QA, Multilingual QA, Temporal

reasoning

• Evaluation: zero-shot across multiple benchmarks

Key Result: Outperforming Giants
LAMA (factual):

Toolformer: 33.8

vs GPT-3: 26.8

Math(SVAMP):

Toolformer: 29.4

vs GPT-3: 10.0

Temporal

(Dataset):

Toolformer: 27.3

vs GPT-3: 0.8

Use appropriate

tools for each

task type

Tools Usage Analysis

● Model learns appropriate tool selection automatically

● High usage rates indicate reliable tool invocation

● Different tools dominate different task types

Math Tasks 97.9% calculator usage

Factual Tasks 98.1% QA system usage

Multilingual 60%-95% translation usage

Temporal 54.8% calendar usage

Critical Analysis and Ablations

Summary

● Language modeling ability preserved

● Tool use emerges only at sufficient scale

● Inference strategy affects tool usage rates

● Performance gap remains between tool use vs no tool use

Key Findings

● No Generality Loss: Perplexity unchanged (10.3 vs 10.3)

● Emergent Ability: Needs ~775M + parameters

● Decoding Strategy: k=10 works best for tool invocation

Limitations and Future Work

● Current limitations provide clear research directions

● Future work: Tool chains, interactive use, iterative training

● Integration with reasoning frameworks like Chain-of-Thought

No Tool Chains Cannot combine multiple tools

Not Interactive Single-shot API calls only

Sample Inefficient Many examples needed for rare tools

Prompt Sensitivity Affected by input wording

Conclusion and Impact

• Key Contribution: Self-supervised tool learning framework

• Impact: Small models can outperform much larger ones

• Enhances zero-shot performance without extra data

• Research Direction: Augmentation over scaling

Scale

parameters

Augment with

tools

New capabilities

Diminishing

returns

Old way

New way

References

Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N., & Scialom,

T. (2023). Toolformer: Language Models Can Teach Themselves to Use Tools. arXiv:2302.04761

Wang, B., & Komatsuzaki, A. (2021). *GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model*

Brown, T., et al. (2020). Language Models are Few-Shot Learners. NeurIPS

Wenzek, G., et al. (2020). CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data

Schick, T., & Schütze, H. (2021). Generating Datasets with Pretrained Language Models

TOOLLLM: FACILITATING LARGE
LANGUAGE MODELS TO MASTER 16000+

REAL-WORLD APIS

Yujia Qin et al.(2023)

Presentation by Yancheng Jin

Motivation

Goal: Why tool-use matters for LLMs

• Gap: open LLMs struggle with real API use vs. OpenAI closed models
• Real tasks need API selection, parameterization, sequencing

• Research question: How can we train open LLMs to master thousands of real APIs?

Key Gaps (Past Paper)

• Limited APIs/Realism: Few or no real REST APIs;
small, low-diversity tool sets → weak generalization.

• Simplified Scenarios: Mostly single-tool, single-round;
often assume users pre-select the “right” APIs (not
scalable).

• Weak Planning/Reasoning: CoT/ReAct struggle on

complex, long-horizon tasks.

• No Real Execution: Some don’t run APIs, missing
response feedback critical for iterative planning.

ToolLLM

Def: A General Framework for Tool-Use in Open LLMs

Dataset (ToolBench):

API Collection: 16,464 real REST APIs from RapidAPI across 49 categories

Instruction Generation: ChatGPT creates single-tool + multi-tool instructions

Solution Path Annotation:

Evaluator (ToolEval):

Model (ToolLLaMA): LLaMA fine-tuned on ToolBench + Neural API Retriever

Dataset-API Collection

RapidAPI Hub & Taxonomy

• Leading API marketplace, 49 coarse-grained categories. 500+ fine-grained collections

Hierarchy & Metadata Crawling

• A tool with API, name/desc, HTTP method, required/optional params, request body,
executable code snippets, example responses

Quality Filtering

• Initial: 10,853 tools / 53,190 APIs=> Rigorous filtering =>3,451 tools / 16,464 APIs

Instruction Generation

Design Focus

• Diversity: Cover a wide range of API-use scenarios → better generalization & robustness
• Multi-tool Usage: Reflect real tasks requiring interleaved, multi-round tool execution

Generation Pipeline (Sample APIs → Generate Instructions)

• Define full API set S api; Sample a subset S(sub N)
• Prompt ChatGPT to understand APIs in S(sub N) and produce feasible instruction(Inst_*)
• Produce relevant API sets S*real ⊆ S(sub N) for each instruction

Prompt Composition

• High-level description of the instruction-generation task
• Comprehensive docs for each API (function, params, examples)
• Three in-context seed examples (separate seed pools for single-tool / multi-tool)

Sampling Strategies for Single Tool

Sampling Strategies for Multi-tool Setting

Why Specialized?

• sparse interconnections → random combinations yield irrelevant tool sets

Leverage RapidAPI Hierarchy for Multi-Tool

• I2: Intra-Category
• I3: Intra-Collection
• Rationale: tools within the same category/collection share functionality/goals →more

coherent multi-tool workflows

Quality Control & Scale

• Filter hallucinated links: drop instructions whose “relevant APIs” are not in 𝑆(sub N)
• Final dataset: ~200k (instruction, relevant-API) pairs (I1: 87,413 I2: 84,815 I3: 25,251)

Diversity Evidence

• Human evaluation: high coverage & practicality
• Atlas visualization: supports diversity via clustering/coverage patterns

Solution Path Annotation

Depth First Search-based Decision Tree

Observed Issues:

• Error Propagation: a wrong step loops (mis-calling APIs,
hallucinations).

• Limited Exploration: single trajectory → poor coverage of
action space.

Depth-First Search Decision Tree:

• Allow model to evaluate different reasoning path.

Proceeding along a promising path

abandon existing node and expand a new one

• Prefer DFS over BFS: annotation finishes once one valid path is found;
DFS is more cost-efficient than BFS

Result 126,486 pairs

Experiential: ToolEval

Why: APIs on RapidAPI change over time; an instruction can have many valid paths
→ no fixed ground truth; need consistent API versions; human eval is costly.

What: ChatGPT-based evaluator (AlpacaEval-style) with two metrics:

• Pass Rate – % of instructions successfully completed within a call/step budget (executability
baseline).

• Win Rate – Given 1 instruction + 2 solution paths, ChatGPT prefers the better one using
predefined criteria.

How: Use prompted criteria, run multiple trials, report averages to improve reliability.

Validity: High human alignment — 87.1% (Pass), 80.3% (Win) → scalable, fast, and
model-agnostic evaluation without a single canonical solution path.

Efficacy of the API Retriever

Goal: Given an instruction, retrieve the
most relevant APIs for downstream
planning.

Method: Sentence-BERT bi-encoder
dense retriever

• Encode instruction and API document into embeddings; score by embedding similarity.
• Training: positives = relevant APIs; negatives = sampled other APIs → contrastive learning.

Baselines: BM25, OpenAI text-embedding-ada-002.

Metric: NDCG@1 / NDCG@5 on I1 (single-tool), I2 (intra-category multi-tool), I3 (intra-
collection multi-tool).

Result: Table

Conclusion: dense retrieval is feasible and effective. providing high-quality candidates

Superiority of DFSDT over ReACT

Metric: Pass Rate (ChatGPT judge)

ReACT@N: run ReACT repeatedly until
total cost ≈ DFSDT; count pass once a
valid path is found.

• Under the same budget, DFSDT annotates more valid trajectories → lower total
cost per accepted sample.

• Gains are larger on harder instructions (I2/I3) → expanding the search space solves

cases where vanilla ReACT fails.

• Including these hard examples better elicits LLM tool-use capabilities for complex,
real-world tasks.

Main Experiment

Model/Context:

Fine-tune LLaMA-2 7B; extend context from 4096 → 8192 via positional interpolation.

Generalization Levels:

Inst. (unseen instructions), Tool (unseen tools, seen category), Cat. (unseen categories).

Scenarios: I1 (single-tool), I2 (intra-category multi-tool), I3 (intra-collection multi-tool).

Setup:

• Default: Feed oracle APIs 𝑆(𝑁𝑠𝑢𝑏) to all models;
• Reasoning: compare ReACT vs. DFSDT.
• Win Rate vs. ChatGPT-ReACT.test retriever setting:
• feed Top-5 retrieved APIs instead of oracle

Baselines: Vicuna, Alpaca, ChatGPT, Text-Davinci-003, GPT-4, Claude-2.

Metrics (ToolEval)

Main Result

• Vicuna/Alpaca = 0 (pass & win) → general dialog tuning ≠ tool-use competence.
• DFSDT > ReACT across models; Chat GPT+DFSDT ≥ GPT-4+ReACT (pass),

comparable win.
• ToolLLaMA+DFSDT > Text-Davinci-003 / Claude-2; near ChatGPT, pass 2nd to

GPT-4+DFSDT.
• With Top-5 retrieved APIs (vs. oracle set), ToolLLaMA improves further →

retriever expands solution space and finds better substitutes.

Out-of-Distribution Generalization to APIBENCH

Set up

Domains: TorchHub, TensorHub, HuggingFace

Retrievers for ToolLLaMA: Our Retriever (dense) & Oracle Retriever

Baselines: Gorilla (LLaMA-7B) under ZS (zero-shot) and RS (retrieval-aware) settings

Metrics: AST accuracy (↑) & Hallucination rate (↓)

Out-of-Distribution Generalization to APIBENCH

• ToolLLaMA + Our Retriever → higher AST than Gorilla + BM25 (both ZS/RS) on
HuggingFace & TorchHub

• With Oracle Retriever, ToolLLaMA consistently > Gorilla-ZS across domains
• Dense retriever can reduce hallucinations and improve selection from a 16k+ API pool

• Gorilla does not transfer to ToolBench (multi-tool, multi-step), highlighting ToolLLaMA’s
planning streng

Related Work

Tool Learning:

• LLMs gain real-time knowledge, multimodality, and domain skills via tools;
• Open-source LLMs lag behind SOTA tool use; mechanisms remain unclear → ToolLLM bridges the

gap.

Instruction Tuning vs. Tool Use:

• Self-instruct data boosts dialogue, but tool use is harder (vast APIs, multi-tool chains);
• Even GPT-4 often fails to find valid paths; prior tool datasets/pipelines don’t meet real needs →

ToolBench targets practical scenarios and improves data construction.

Prompting for Decision Making:

• ReAct integrates reasoning+acting but lacks retraction, causing error cascades;
• Reflexion adds self-correction; DFSDT generalizes further via branching search & backtracking;
• Related to Tree-of-Thought, but DFSDT targets open-ended decision spaces, not brute-forceable

toy tasks.

Conclusion
ToolBench: 16k+ real REST APIs; diverse single- & multi-tool scenarios; ChatGPT-driven
construction with minimal human effort.

DFSDT: Depth-first decision-tree reasoning (branching + backtracking) → stronger
planning, executable paths for complex tasks.

ToolEval: Automatic Pass / Win evaluation with strong human alignment.

ToolLLaMA: LLaMA fine-tuned on ToolBench → near-ChatGPT performance; robust

generalization to unseen APIs.

Neural API Retriever: Recommends relevant APIs; integrates with ToolLLaMA for a more
automated tool-use pipeline.

OOD Generalization: Pipeline transfers to external domains (APIBench).

Reference List

Showed in Article

ART: Automatic multi-step reasoning and tool-
use for

large language models

Bhargavi Paranjape et al.(2023)

Presentation by Mingrui Ye

Motivation and Problem

LLMs demonstrate emergent reasoning abilities in few- and zero-shot setups.

However, they struggle with multi-step reasoning and tool use, such as arithmetic,

factual lookup, and programmatic reasoning.

Prior methods like Chain-of-Thought (CoT) or Toolformer:

● Rely on handcrafted prompts or fine-tuned models.

● Difficult to generalize to new tasks or tools.

Key Question:

How can we make LLMs automatically decompose complex problems and decide

when to use tools, without retraining?

Compare with other methods
Chain-of-Thought (CoT) Prompting

● CoT and its variants (Least-to-Most, Self-Ask,

AutoCoT) encourage LLMs to reason step by step.

● AutoCoT automatically generates reasoning

chains, but remains free-form and lacks structured

tool use.

Tool-Use Models

● Toolformer and similar methods fine-tune LLMs to

call tools (search, calculator, translator).

● Require task-specific training and cannot easily

extend to new tasks or tools.

How ART Differs

● Automatic multi-step program generation without finetuning.

● Task & Tool libraries enable cross-task transfer and plug-and-play tools.

● Human feedback loop for error correction and continuous extension.

Task Library:

● Contains multi-step reasoning examples from 15 BigBench

tasks.

● Each task = Input → multiple sub-steps (Q1/#1 …) → Final

Answer.

Frozen LLM:

● Generates structured “programs” that integrate both text

reasoning and symbolic computation.

Tool Library:

● Tools: Search, Code Generation, Code Execution, Lookup,

Prolog Engine.

● Each tool corresponds to a symbolic tag [tool_name].

Human Feedback (Optional):

● Users can edit reasoning chains, add new tools, or correct

errors.

ART Architecture Overview

How ART Works

Step-by-Step Process:

1. Task Retrieval: ART retrieves similar tasks from the library based on textual

similarity or small validation set.

2. Program Generation: LLM writes structured multi-step reasoning using Qn: [tool] ...

#n: ... format.

3. Tool Execution: ART pauses at tool symbols (e.g., [search], [exec code]), executes,

and inserts output.

4. Result Integration: LLM continues reasoning using results from tool calls.

5. Optional Feedback Loop: Users can modify a reasoning chain to correct logic or

add missing steps.

Task Library Design

1. The Task Library build from 15 representative BigBench tasks, covering five

reasoning clusters:

Cluster Representative Capability

Arithmetic GSM8K, Aqua-Rat arithmetic and algebra problems

Code Auto Debugging Generating and executing python code

Search and question decomposition Anachronisms, Musique Single or multi-step questions that require

search

Free-form reasoning Hyperbation, Formal Fallacies Explaining step-by-step reasoning in

natural language

String Operations Language games, Date Understanding Reformatting/editing strings, checking

string entailment, etc

2. Uses a Parsing Expression Grammar (PEG) to define program structure.

3. Enables easy parsing, tool calling, and resumption of generation.

Tool Library

Core Tools:

● Search – via SerpAPI (Google API)

● Code Generation – via Codex

● Code Execution – runs Python snippets in sandbox

● Lookup – dictionary/knowledge base queries

● Prolog Engine – logic reasoning in formal fallacy tasks

Key Benefit:

Easily extendable — add new tools or modify existing ones without retraining the LLM.

Example: Physics QA

Human Feedback

ART is designed to naturally accept human feedback without any finetuning. Because

reasoning is expressed as interpretable multi-step programs, users can directly edit or

debug them.

Forms of Feedback

• Editing task or tool libraries — users can instantly modify stored examples or tool APIs.

• Program debugging — instead of rewriting from scratch, users fix parts of an existing

Users can modify the reasoning chain:

• Correct incorrect sub-step outputs.

• Add / remove sub-steps with proper inputs and answers.

• Introduce calls to new tools (e.g., [lookup], [add unit]).

Human Feedback Examples

Experimental Setup
Datasets:

● 15 BigBench training tasks (for library)

● 19 unseen BigBench test tasks

● 6 MMLU tasks (for cross-benchmark validation)

● Toolformer-style QA tasks (SQuAD, TriviaQA, SVAMP, MAWPS)

Baselines:

● Few-shot prompting

● AutoCoT (automatic chain-of-thought)

● ART without tool use

● Best GPT-3(175B)/Toolformer results

Models:

● LLM: InstructGPT (text-davinci-002)

● Code generator: Codex

● Temperature = 0.3

Results on Task Library

● ART performs on par or

better than Auto-CoT and

Few-Shot baselines across

all clusters.

● Especially strong on

Arithmetic.

● From ART and ART w/o

Tool Use. Shows that ART

successfully learns

structured, interpretable

reasoning sequences within

known task types.

Results on Test Tasks

BigBench test tasks:

• ART outperforms few-shot learning (6.9 %

points). In particular, ART has significant

improvements on arithmetic tasks (+19.0) and

is comparable to the few-shot performance

on search tasks.

• ART is better than AutoCoT on almost all

tasks (24.6% points).

• Compare with GPT-3 Best, ART performs

favorably on average, especially on arithmetic

tasks (+6.1 % points).

Other benchmarks(MMLU):

• ART is more effective than all baselines

on 5/6 tasks

Improve ART with Self-Consistency

In this table we can see: Self-consistency smooths stochastic reasoning errors, yielding

+3 ~ 5 percentage points improvement with no retraining.

Improve ART with Human Feedback

In most of the task, human feedback can drastically boost performance — up to +38 points on

some tasks without any fine-tuning or model retraining.

Limitation and Future Work

Limitations

● Task Library Dependence: Performance tied to the quality of stored examples.

● Error Propagation: Early-step mistakes cascade through reasoning chains.

● Limited Tool Diversity: Current tools (search, code, lookup) restrict scope.

● Execution Instability: External calls may fail; needs safer sandboxing.

● Narrow Evaluation: Tested mainly on BigBench and MMLU.

Future Work

● Expand Tools & Tasks: Add vision, retrieval, and simulation APIs.

● Self-Correction: Integrate reflection or verifier modules.

● Human Feedback Loop: Support real-time editing and improvement.

● Broader Testing: Validate on open-domain and multimodal reasoning.

Conclusion

Summary of Findings：

• ART reframes reasoning as program synthesis — combining natural language and tool use.

• It learns structured, interpretable multi-step programs within its task library.

• It generalizes these reasoning programs to unseen BigBench and MMLU tasks without any

fine-tuning.

• External tools (search, code execution, lookup) further amplify reasoning accuracy.

Overall Insight：

ART demonstrates that “Prompt = Program = Reasoning”：large language models can plan,

execute, and improve reasoning pipelines automatically, paving the way toward autonomous

tool-using AI systems.

A-Mem: Agentic Memory for LLM Agents

Wujiang Xu et al., Meta AI (2023)

Presentation by Mingrui Ye, Deyuan Yang, Yancheng Jin

Introduction

• Traditional LLM memory systems rely on fixed read/write rules, making them rigid and hard

to adapt to new tasks.

• A-MEM (Agentic Memory) introduces dynamic, self-organizing memory. It allows agents to

autonomously store, link, and evolve information instead of following preset workflows.

• A-MEM based on the Zettelkasten method — each interaction becomes a structured

“note” (content, keywords, tags, embedding). Enable long-term reasoning and

continuous learning through adaptive memory evolution.

Related Work

Memory for LLM Agents

● Early works (MemGPT, MemoryBank, ReadAgent, SCM) → provide storage but rely on

predefined read/write rules.

● Limitations: rigid workflows, poor adaptability across new environments.

Retrieval-Augmented Generation (RAG)

● Enhances LLMs via retrieving external knowledge before generation.

● “Agentic RAG” adds autonomy in when and what to retrieve (e.g., Self-RAG, Active-RAG).

● A-MEM vs RAG:

○ RAG = agency during retrieval only.

○ A-MEM = agency in storage + evolution, forming a self-organizing memory graph.

Method: How A-Mem Works

1. Note Construction: Turn interactions into rich, structured notes

2. Link Generation: Automatically find connections betweens notes
3. Memory Evolution: Update old memories with new insights
4. Memory Retrieval: retrieve relevant historical context for better

understanding

This creates a living, interconnected knowledge network.

Step 1: Note Construction - Creating Rich Memories

memory note (for every interaction)

Use LLM generate Ki, Gi, Xi for deeper understanding
beyond raw text

text encoder that encapsulates all textual components of
note

-raw content

-timestamp

-LLM-generated Keywords

-LLM-generated Tags

-LLM-generated Contextual Description

-Dense Vector Embedding (for similarity search)

-Links to other memories

Step 2: Link Generation

• Use the embedding e_i to find top k similar historical memories
• Use an LLM to decide which of these should be formally linked

based on shared context and attributes

Similarity score

Step 3: Memory Evolution

• For each of the top-k similar memories, the LLM analyzes the new
memory

• It can update the context, keywords and tags of the old memory to reflect
new understanding

Step 2 and Step 3 is the “Agent” part: The memory system actively reasons
about the restructures itself.

evolution process

Step 4: Retrieve Relative Memory

• provide relevant historical context that improves agent understanding
and response

• Connect current interaction with past experience

dense vector for same encoder

Similarity score

Top k memory retrieved

Experiment Setup

Datasets:

– LoCoMo (long conversations)
• Purpose: evaluate long-term conversational memory

• Key feature: very long conversations (avg. 9K tokens, up to 35 sessions)

• Question Types: Test different reasoning skills

– Single-Hop (one session)

– Multi-Hop (across sessions)

– Temporal Reasoning

– Open-Domain

– Adversarial

– DialSim (TV show dialogues)
• Purpose: Evaluate understanding of long-term, multi-party dialogues

• Source: Derived from TV shows

• Scale: ~350,000 tokens, over 1,000 questions

Experiment Setup
Implementation Details:

• Fair Comparison
– All methods used identical system prompts to ensure fairness

• Model Deployment
– Local Models (Qwen, Llama): run locally using Ollama.
– Structured Outputs: Managed by LiteLLM framework
– GPT Models: used the official OpenAI API

• Key Parameters
– Retrieval (k-value): Primarily used k=10 for efficiency, with

adjustments for specific tasks

– Embedding Model: Used all-minilm-16-v2 for all text embeddings
across all experiments.

Experimental Setup

Baseline and Matrics

• Baselines:
– LocoMo: uses the full conversation history as context (very expensive)
– MemGPT: A sophisticated memory system with a context hierarchy
– MemoryBank: Manages memory using a forgetting curve theory
– ReadAgent: uses a pagination and “gisting” strategy for long documents

• Evaluation Metrics:
– F1 score: measures answer accuracy (balance of precision and recall)
– BLEU-1: Measures word-overlap with the correct answer

Performance Analysis

Across Models:

• Non-GPT models (Qwen, LLaMA): A-
MEM outperforms all baselines in
every category.

• GPT models: LoCoMo / MemGPT
strong in simple fact retrieval, but A-
MEM 2× better on Multi-Hop
reasoning.

Cross-Dataset Validation:

• On DialSim, A-MEM achieves F1 =
3.45 (+35% vs LoCoMo, +192% vs
MemGPT).

Cost-Efficiency Analysis

Token Usage: ~1.2 K tokens per
operation (-85–93% vs baselines ~16.9
K).

API Cost: <$0.0003 per operation →
economical large-scale deployment.

Runtime: 5.4 s (GPT-4o-mini), 1.1 s

(local LLaMA 3.2 1B).

Efficiency Balance: Despite
multiple LLM calls, A-MEM keeps low

cost while doubling multi-hop
performance.

Takeaway: Efficient and scalable for
real-world LLM agents.

Ablantion Study

Setup: Remove modules to test contribution

• No LG & ME → largest drop; memory lacks structure
• No ME (LG only) → intermediate performance
• Full A-MEM → best across all categories

Result (GPT-4o-mini base):

• Multi-Hop F1: 9.65 (w/o LG&ME) → 21.35 (w/o ME) → 27.02 (Full)
• Open-Domain F1: 7.77 → 10.13 → 12.14
• Temporal F1: 24.55 → 31.24 → 45.85
• Adversarial F1: 15.32 → 44.16 → 50.03

Takeaways:

• LG = foundation (builds the memory graph; big gains already)
• ME = refinement (evolves/updates notes; pushes to SOTA)
• LG + ME are complementary → effective, scalable memory system

Hyperparameter Analysis

Goal: Examine impact of retrieval parameter k (10–50).

Setup: GPT-4o-mini base; 5 task types (Multi-Hop, Temporal, Open-Domain, Single-Hop,
Adversarial).

Findings:

• Performance ↑ as k increases, then plateaus or drops.
• Most visible in Multi-Hop & Open-Domain tasks.
• Larger k = richer context but more noise / longer processing.

Conclusion:Moderate k (10–20) offers the best trade-off between context richness and
efficiency.

Scaling Analysis

Findings:

• Space Complexity: All ≈ O(N); no extra storage overhead for A-MEM.
• Retrieval Time: A-MEM 0.31 → 3.70 μs (1K → 1M memories).
• MemoryBank slightly faster but less expressive; A-MEM offers richer memory representation.

Conclusion:

• A-MEM is highly scalable and efficient, handling million-scale memories with minimal delay.
• Enables long-term and cost-effective memory for LLM Agents.

Setup: Compare A-MEM with
MemoryBank & ReadAgent using
identical data.

Memory sizes: 1K → 10K →
100K → 1M entries (×10 each
step).

Memory Analysis

Goal: Show memory organization via t-SNE

Setup: Two dialogues from LoCoMo; blue = A-MEM,
red = Base Memory (w/o LG & ME).

Findings:

A-MEM: clear, coherent clusters → structured and

organized memory.

Baseline: scattered and unorganized distribution.

Conclusion:

Confirms A-MEM’s dynamic linking + evolution create

well-organized, meaningful memory structures.

Limitation and Future Work

Limitations

● Dependent on base LLM quality (different models → different memory links).

● Currently text-only; lacks multimodal (image/audio) memory integration.

● Scalability tested up to 1M entries — but further real-world deployment yet to be explored.

Future Directions

● Extend to multimodal agentic memory.

● Improve memory quality evaluation metrics.

● Integrate with agent operating systems (e.g., AIOS) for production use.

Conclusion

• Summary:

A-MEM introduces an agentic and evolving memory system that enables LLM agents to

autonomously organize, link, and refine their memories.

• Core Advantage:

By combining structured note-taking with dynamic linking and memory evolution, A-MEM

supports long-term reasoning and adaptability.

• Results:

Experiments across multiple foundation models show consistent performance gains,

especially on complex multi-hop reasoning tasks, with greatly reduced token usage.

• Impact:

A-MEM moves LLM agents toward lifelong learning systems capable of continuously

improving their understanding over time.

References

A-Mem: Agentic Memory for LLM Agents. Xu, W., Liang, Z., Mei, K., Gao, H., Tan, J., & Zhang, Y. (2025). arXiv preprint

arXiv:2502.12110v11.

LoCoMo Dataset. Maharana, A., Lee, D.-H., Tulyakov, S., Bansal, M., Barbieri, F., & Fang, Y. (2024). Evaluating very long-term

conversational memory of llm agents. arXiv preprint arXiv:2402.17753.

DialSim Dataset. Kim, J., Chay, W., Hwang, H., Kyung, D., Chung, H., Cho, E., Jo, Y., & Choi, E. (2024). Dialsim: A real-time

simulator for evaluating long-term multi-party dialogue understanding of conversational agents. arXiv preprint arXiv:2406.13144.

MemGPT. Packer, C., Wooders, S., Lin, K., Fang, V., Patil, S. G., Stoica, I., & Gonzalez, J. E. (2023). Memgpt: Towards llms as

operating systems. arXiv preprint arXiv:2310.08560.

MemoryBank. Zhong, W., Guo, L., Gao, Q., Ye, H., & Wang, Y. (2024). Memorybank: Enhancing large language models with long-

term memory. In Proceedings of the AAAI Conference on Artificial Intelligence.

ReadAgent. Lee, K.-H., Chen, X., Furuta, H., Canny, J., & Fischer, I. (2024). A human-inspired reading agent with gist memory of

very long contexts. arXiv preprint arXiv:2402.09727.

Sentence-BERT (all-MiniLM-L6-v2). Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-

networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.

	Slide 1: CSE561 Presentation: Language Models as Agents
	Slide 2: Toolformer: Language Models Can Teach Themselves to Use Tools
	Slide 3: The fundamental Problem with LLMs
	Slide 4: Existing Solutions and Their Limitations
	Slide 5: Toolformer’s Core Innovation
	Slide 6: Example
	Slide 7: The Three-Step Learning Process
	Slide 8: Technical Deep Dive: Sampling API Calls
	Slide 9: Technical Deep Dive: Smart Filtering
	Slide 10: APIs and Tools
	Slide 11: Experimental Setup
	Slide 12: Key Result: Outperforming Giants
	Slide 13: Tools Usage Analysis
	Slide 14: Critical Analysis and Ablations
	Slide 15: Limitations and Future Work
	Slide 16: Conclusion and Impact
	Slide 17: References
	Slide 18: TOOLLLM: FACILITATING LARGE LANGUAGE MODELS TO MASTER 16000+ REAL-WORLD APIS
	Slide 19: Motivation
	Slide 20: Key Gaps (Past Paper)
	Slide 21: ToolLLM
	Slide 22: Dataset-API Collection
	Slide 23: Instruction Generation
	Slide 24: Sampling Strategies for Single Tool
	Slide 25: Sampling Strategies for Multi-tool Setting
	Slide 26: Solution Path Annotation
	Slide 27: Depth First Search-based Decision Tree
	Slide 28: Experiential: ToolEval
	Slide 29: Efficacy of the API Retriever
	Slide 30: Superiority of DFSDT over ReACT
	Slide 31: Main Experiment
	Slide 32: Main Result
	Slide 33: Out-of-Distribution Generalization to APIBENCH
	Slide 34: Out-of-Distribution Generalization to APIBENCH
	Slide 35: Related Work
	Slide 36: Conclusion
	Slide 37: Reference List
	Slide 38: ART: Automatic multi-step reasoning and tool-use for large language models
	Slide 39: Motivation and Problem
	Slide 40: Compare with other methods
	Slide 41
	Slide 42: How ART Works
	Slide 43: Task Library Design
	Slide 44: Tool Library
	Slide 45: Example: Physics QA
	Slide 46: Human Feedback
	Slide 47: Human Feedback Examples
	Slide 48: Experimental Setup
	Slide 49: Results on Task Library
	Slide 50: Results on Test Tasks
	Slide 51: Improve ART with Self-Consistency
	Slide 52: Improve ART with Human Feedback
	Slide 53: Limitation and Future Work
	Slide 54: Conclusion
	Slide 55: A-Mem: Agentic Memory for LLM Agents
	Slide 56: Introduction
	Slide 57: Related Work
	Slide 58: Method: How A-Mem Works
	Slide 59: Step 1: Note Construction - Creating Rich Memories
	Slide 60: Step 2: Link Generation
	Slide 61: Step 3: Memory Evolution
	Slide 62: Step 4: Retrieve Relative Memory
	Slide 63: Experiment Setup
	Slide 64: Experiment Setup
	Slide 65: Experimental Setup
	Slide 66: Performance Analysis
	Slide 67: Cost-Efficiency Analysis
	Slide 68: Ablantion Study
	Slide 69: Hyperparameter Analysis
	Slide 70: Scaling Analysis
	Slide 71: Memory Analysis
	Slide 72: Limitation and Future Work
	Slide 73: Conclusion
	Slide 74: References

