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Toolformer: Language Models Can Teach 
Themselves to Use Tools

Timo Schick et al., Meta AI (2023)

Presentation by Deyuan Yang

Teaching models to use tools, not just scale parameters.



The fundamental Problem with LLMs

Strength

● Creative 

Writing

● Conversation

● Reasoning 

patterns

Weakness

● Calculation 

errors

● Outdated facts

● Temporal 

confusion

Factual inaccuracy 

and hallucinations

Poor Mathematical 

reasoning

Limited multilingual 

capability



Existing Solutions and Their Limitations

Human Supervision Approach Task-specific Approach

● High Cost: massive annotations

● Human bias

● Limited scale

● Not generalizable

● requires retraining

Gap: No general, self-supervised approach to tool learning



Toolformer’s Core Innovation

• Key: Let the model decide what's useful using its own predictions and teaches itself 

how to use external APIs

• Self-Supervise: Use perplexity reduction as training signal

• General Approach: Works with any tool that has text-based API and Maintain core 

language modeling ability

Self-supervised 

Tool Learning

● No human annotations

● Maintain generality 

● Learns when and how to use 

tools



Example



The Three-Step Learning Process

Step 1. Sampling: Generate potential API calls using in-context learning

Step 2. Execution: Actually call the APIs to get real results

Step 3. Filtering:  Keep only calls that reduce future token prediction 

loss

Output: Augmented dataset with helpful API calls

Fine-tune the model on augmented dataset

Sample Execute Filter

Model learns 

when and how to 

use tools



Technical Deep Dive: Sampling API Calls

• In-Context Learning: Provide few-shot 
examples of API usage 

• Position Sampling: Compute probability of 
starting API call at each position

• Call Generation: Sample actual APU calls 
given the context

• Example: The Nile has length <API> QA (‘Nile 
length’) -> 6853km</API>6853 km



Technical Deep Dive: Smart Filtering

Loss when model sees API call and result

Minimum loss between no call or call without result

Decision criteria (filtering threshold): only keep calls that reduce loss 

significantly

keep calls that provide genuinely useful information

Weighted cross entropy loss



APIs and Tools

Tools Purpose

Calculator Arithmetic operations

QA System Factual Questions (Atlas model)

Wikipedia Search Information retrieval (BM25)

Machine Translation 200 languages (NLLB)

Calendar Temporal Context

● Each tool addresses specific LLM weaknesses

● Only requirement: Text-based inputs and outputs



Experimental Setup

• Base model: GPT-J (6.7B parameters)

• Dataset: CCNet subset

• Baselines (Comparison models): GPT-J, GPT-3 (175B), 

OPT (66B)

• Tasks: LAMA, Math, QA, Multilingual QA, Temporal 

reasoning

• Evaluation: zero-shot across multiple benchmarks



Key Result: Outperforming Giants
LAMA (factual): 

Toolformer: 33.8 

vs GPT-3: 26.8

Math(SVAMP): 

Toolformer: 29.4 

vs GPT-3: 10.0

Temporal 

(Dataset): 

Toolformer: 27.3 

vs GPT-3: 0.8

Use appropriate 

tools for each 

task type



Tools Usage Analysis

● Model learns appropriate tool selection automatically

● High usage rates indicate reliable tool invocation

● Different tools dominate different task types

Math Tasks 97.9% calculator usage

Factual Tasks 98.1% QA system usage

Multilingual 60%-95% translation usage

Temporal 54.8% calendar usage



Critical Analysis and Ablations

Summary

● Language modeling ability preserved

● Tool use emerges only at sufficient scale

● Inference strategy affects tool usage rates

● Performance gap remains between tool use vs no tool use

Key Findings

● No Generality Loss: Perplexity unchanged (10.3 vs 10.3)

● Emergent Ability: Needs ~775M + parameters

● Decoding Strategy: k=10 works best for tool invocation



Limitations and Future Work

● Current limitations provide clear research directions

● Future work: Tool chains, interactive use, iterative training

● Integration with reasoning frameworks like Chain-of-Thought

No Tool Chains Cannot combine multiple tools

Not Interactive Single-shot API calls only

Sample Inefficient Many examples needed for rare tools

Prompt Sensitivity Affected by input wording



Conclusion and Impact

• Key Contribution: Self-supervised tool learning framework

• Impact: Small models can outperform much larger ones

• Enhances zero-shot performance without extra data

• Research Direction: Augmentation over scaling

Scale 

parameters

Augment with 

tools

New capabilities

Diminishing 

returns

Old way

New way
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TOOLLLM: FACILITATING LARGE 
LANGUAGE MODELS TO MASTER 16000+ 

REAL-WORLD APIS

Yujia Qin  et al.(2023)

Presentation by Yancheng Jin



Motivation

Goal: Why tool-use matters for LLMs

• Gap: open LLMs struggle with real API use vs. OpenAI closed models
• Real tasks need API selection, parameterization, sequencing

• Research question: How can we train open LLMs to master thousands of real APIs?



Key Gaps (Past Paper)

• Limited APIs/Realism: Few or no real REST APIs; 
small, low-diversity tool sets → weak generalization.

• Simplified Scenarios: Mostly single-tool, single-round; 
often assume users pre-select the “right” APIs (not 
scalable).

• Weak Planning/Reasoning: CoT/ReAct struggle on 

complex, long-horizon tasks.

• No Real Execution: Some don’t run APIs, missing 
response feedback critical for iterative planning.



ToolLLM

Def: A General Framework for Tool-Use in Open LLMs

Dataset (ToolBench):

API Collection: 16,464 real REST APIs from RapidAPI across 49 categories

Instruction Generation: ChatGPT creates single-tool + multi-tool instructions 

Solution Path Annotation: 

Evaluator (ToolEval):

Model (ToolLLaMA): LLaMA fine-tuned on ToolBench + Neural API Retriever 



Dataset-API Collection

RapidAPI Hub & Taxonomy

• Leading API marketplace, 49 coarse-grained categories. 500+ fine-grained collections

Hierarchy & Metadata Crawling

• A tool with API, name/desc, HTTP method, required/optional params, request body, 
executable code snippets, example responses

Quality Filtering

• Initial: 10,853 tools / 53,190 APIs=> Rigorous filtering =>3,451 tools / 16,464 APIs



Instruction Generation

Design Focus

• Diversity: Cover a wide range of API-use scenarios → better generalization & robustness
• Multi-tool Usage: Reflect real tasks requiring interleaved, multi-round tool execution

Generation Pipeline (Sample APIs → Generate Instructions)

• Define full API set S api; Sample a subset S(sub N)
• Prompt ChatGPT to understand APIs in S(sub N) and produce feasible instruction(Inst_*)
• Produce relevant API sets S*real ⊆ S(sub N) for each instruction

Prompt Composition

• High-level description of the instruction-generation task
• Comprehensive docs for each API (function, params, examples)
• Three in-context seed examples (separate seed pools for single-tool / multi-tool)



Sampling Strategies for Single Tool



Sampling Strategies for Multi-tool Setting

Why Specialized? 

• sparse interconnections → random combinations yield irrelevant tool sets

Leverage RapidAPI Hierarchy for Multi-Tool

• I2: Intra-Category
• I3: Intra-Collection
• Rationale: tools within the same category/collection share functionality/goals →more 

coherent multi-tool workflows

Quality Control & Scale

• Filter hallucinated links: drop instructions whose “relevant APIs” are not in 𝑆(sub N)
• Final dataset: ~200k (instruction, relevant-API) pairs (I1: 87,413 I2: 84,815 I3: 25,251)

Diversity Evidence

• Human evaluation: high coverage & practicality
• Atlas visualization: supports diversity via clustering/coverage patterns



Solution Path Annotation



Depth First Search-based Decision Tree

Observed Issues:

• Error Propagation: a wrong step loops (mis-calling APIs, 
hallucinations).

• Limited Exploration: single trajectory → poor coverage of 
action space.

Depth-First Search Decision Tree:

• Allow model to evaluate different reasoning path.  

Proceeding along a promising path

abandon existing node and expand a new one

• Prefer DFS over BFS: annotation finishes once one valid path is found; 
DFS is more cost-efficient than BFS

Result  126,486 pairs



Experiential:  ToolEval

Why: APIs on RapidAPI change over time; an instruction can have many valid paths 
→ no fixed ground truth; need consistent API versions; human eval is costly.

What: ChatGPT-based evaluator (AlpacaEval-style) with two metrics:

• Pass Rate – % of instructions successfully completed within a call/step budget (executability 
baseline).

• Win Rate – Given 1 instruction + 2 solution paths, ChatGPT prefers the better one using 
predefined criteria.

How: Use prompted criteria, run multiple trials, report averages to improve reliability.

Validity: High human alignment — 87.1% (Pass), 80.3% (Win) → scalable, fast, and 
model-agnostic evaluation without a single canonical solution path.



Efficacy of the API Retriever

Goal: Given an instruction, retrieve the 
most relevant APIs for downstream 
planning.

Method: Sentence-BERT bi-encoder 
dense retriever

• Encode instruction and API document into embeddings; score by embedding similarity.
• Training: positives = relevant APIs; negatives = sampled other APIs → contrastive learning.

Baselines: BM25, OpenAI text-embedding-ada-002.

Metric: NDCG@1 / NDCG@5 on I1 (single-tool), I2 (intra-category multi-tool), I3 (intra-
collection multi-tool).

Result: Table 

Conclusion: dense retrieval is feasible and effective. providing high-quality candidates



Superiority of DFSDT over ReACT

Metric: Pass Rate (ChatGPT judge)

ReACT@N: run ReACT repeatedly until 
total cost ≈ DFSDT; count pass once a 
valid path is found.

• Under the same budget, DFSDT annotates more valid trajectories → lower total 
cost per accepted sample.

• Gains are larger on harder instructions (I2/I3) → expanding the search space solves 

cases where vanilla ReACT fails.

• Including these hard examples better elicits LLM tool-use capabilities for complex, 
real-world tasks.



Main Experiment

Model/Context: 

Fine-tune LLaMA-2 7B; extend context from 4096 → 8192 via positional interpolation.

Generalization Levels:

Inst. (unseen instructions), Tool (unseen tools, seen category), Cat. (unseen categories).

Scenarios: I1 (single-tool), I2 (intra-category multi-tool), I3 (intra-collection multi-tool).

Setup: 

• Default: Feed oracle APIs 𝑆(𝑁𝑠𝑢𝑏)  to all models; 
• Reasoning: compare ReACT vs. DFSDT.
• Win Rate vs. ChatGPT-ReACT.test retriever setting:
• feed Top-5 retrieved APIs instead of oracle

Baselines: Vicuna, Alpaca, ChatGPT, Text-Davinci-003, GPT-4, Claude-2.

Metrics (ToolEval)



Main Result

• Vicuna/Alpaca = 0 (pass & win) → general dialog tuning ≠ tool-use competence.
• DFSDT > ReACT across models; Chat GPT+DFSDT ≥ GPT-4+ReACT (pass), 

comparable win.
• ToolLLaMA+DFSDT > Text-Davinci-003 / Claude-2; near ChatGPT, pass 2nd to 

GPT-4+DFSDT.
• With Top-5 retrieved APIs (vs. oracle set), ToolLLaMA improves further →

retriever expands solution space and finds better substitutes.



Out-of-Distribution Generalization to APIBENCH 

Set up

Domains: TorchHub, TensorHub, HuggingFace

Retrievers for ToolLLaMA: Our Retriever (dense) & Oracle Retriever

Baselines: Gorilla (LLaMA-7B) under ZS (zero-shot) and RS (retrieval-aware) settings

Metrics: AST accuracy (↑) & Hallucination rate (↓)



Out-of-Distribution Generalization to APIBENCH 

• ToolLLaMA + Our Retriever → higher AST than Gorilla + BM25 (both ZS/RS) on 
HuggingFace & TorchHub

• With Oracle Retriever, ToolLLaMA consistently > Gorilla-ZS across domains
• Dense retriever can reduce hallucinations and improve selection from a 16k+ API pool

• Gorilla does not transfer to ToolBench (multi-tool, multi-step), highlighting ToolLLaMA’s 
planning streng



Related Work

Tool Learning:

• LLMs gain real-time knowledge, multimodality, and domain skills via tools;
• Open-source LLMs lag behind SOTA tool use; mechanisms remain unclear → ToolLLM bridges the 

gap.

Instruction Tuning vs. Tool Use:

• Self-instruct data boosts dialogue, but tool use is harder (vast APIs, multi-tool chains);
• Even GPT-4 often fails to find valid paths; prior tool datasets/pipelines don’t meet real needs →

ToolBench targets practical scenarios and improves data construction.

Prompting for Decision Making:

• ReAct integrates reasoning+acting but lacks retraction, causing error cascades;
• Reflexion adds self-correction; DFSDT generalizes further via branching search & backtracking;
• Related to Tree-of-Thought, but DFSDT targets open-ended decision spaces, not brute-forceable 

toy tasks.



Conclusion
ToolBench: 16k+ real REST APIs; diverse single- & multi-tool scenarios; ChatGPT-driven 
construction with minimal human effort.

DFSDT: Depth-first decision-tree reasoning (branching + backtracking) → stronger 
planning, executable paths for complex tasks.

ToolEval: Automatic Pass / Win evaluation with strong human alignment.

ToolLLaMA: LLaMA fine-tuned on ToolBench → near-ChatGPT performance; robust 

generalization to unseen APIs.

Neural API Retriever: Recommends relevant APIs; integrates with ToolLLaMA for a more 
automated tool-use pipeline.

OOD Generalization: Pipeline transfers to external domains (APIBench).



Reference List

Showed in Article



ART: Automatic multi-step reasoning and tool-
use for

large language models

Bhargavi Paranjape et al.(2023)

Presentation by Mingrui Ye



Motivation and Problem

LLMs demonstrate emergent reasoning abilities in few- and zero-shot setups.

However, they struggle with multi-step reasoning and tool use, such as arithmetic, 

factual lookup, and programmatic reasoning.

Prior methods like Chain-of-Thought (CoT) or Toolformer:

● Rely on handcrafted prompts or fine-tuned models.

● Difficult to generalize to new tasks or tools.

Key Question:

How can we make LLMs automatically decompose complex problems and decide 

when to use tools, without retraining?



Compare with other methods
Chain-of-Thought (CoT) Prompting

● CoT and its variants (Least-to-Most, Self-Ask, 

AutoCoT) encourage LLMs to reason step by step.

● AutoCoT automatically generates reasoning 

chains, but remains free-form and lacks structured 

tool use.

Tool-Use Models

● Toolformer and similar methods fine-tune LLMs to 

call tools (search, calculator, translator).

● Require task-specific training and cannot easily 

extend to new tasks or tools.

How ART Differs

● Automatic multi-step program generation without finetuning.

● Task & Tool libraries enable cross-task transfer and plug-and-play tools.

● Human feedback loop for error correction and continuous extension.



Task Library:

● Contains multi-step reasoning examples from 15 BigBench 

tasks.

● Each task = Input → multiple sub-steps (Q1/#1 …) → Final 

Answer.

Frozen LLM:

● Generates structured “programs” that integrate both text 

reasoning and symbolic computation.

Tool Library:

● Tools: Search, Code Generation, Code Execution, Lookup, 

Prolog Engine.

● Each tool corresponds to a symbolic tag [tool_name].

Human Feedback (Optional):

● Users can edit reasoning chains, add new tools, or correct 

errors.

ART Architecture Overview



How ART Works

Step-by-Step Process:

1. Task Retrieval: ART retrieves similar tasks from the library based on textual 

similarity or small validation set.

2. Program Generation: LLM writes structured multi-step reasoning using Qn: [tool] ... 

#n: ... format.

3. Tool Execution: ART pauses at tool symbols (e.g., [search], [exec code]), executes, 

and inserts output.

4. Result Integration: LLM continues reasoning using results from tool calls.

5. Optional Feedback Loop: Users can modify a reasoning chain to correct logic or 

add missing steps.



Task Library Design

1. The Task Library build from 15 representative BigBench tasks, covering five 

reasoning clusters: 

Cluster Representative Capability

Arithmetic GSM8K, Aqua-Rat arithmetic and algebra problems

Code Auto Debugging Generating and executing python code

Search and question decomposition Anachronisms, Musique Single or multi-step questions that require 

search

Free-form reasoning Hyperbation, Formal Fallacies Explaining step-by-step reasoning in 

natural language

String Operations Language games, Date Understanding Reformatting/editing strings, checking 

string entailment, etc

2. Uses a Parsing Expression Grammar (PEG) to define program structure.

3. Enables easy parsing, tool calling, and resumption of generation.



Tool Library

Core Tools:

● Search – via SerpAPI (Google API)

● Code Generation – via Codex

● Code Execution – runs Python snippets in sandbox

● Lookup – dictionary/knowledge base queries

● Prolog Engine – logic reasoning in formal fallacy tasks

Key Benefit:

Easily extendable — add new tools or modify existing ones without retraining the LLM.



Example: Physics QA



Human Feedback

ART is designed to naturally accept human feedback without any finetuning. Because 

reasoning is expressed as interpretable multi-step programs, users can directly edit or 

debug them.

Forms of Feedback

• Editing task or tool libraries — users can instantly modify stored examples or tool APIs.

• Program debugging — instead of rewriting from scratch, users fix parts of an existing 

Users can modify the reasoning chain:

• Correct incorrect sub-step outputs.

• Add / remove sub-steps with proper inputs and answers.

• Introduce calls to new tools (e.g., [lookup], [add unit]).



Human Feedback Examples



Experimental Setup
Datasets:

● 15 BigBench training tasks (for library)

● 19 unseen BigBench test tasks

● 6 MMLU tasks (for cross-benchmark validation)

● Toolformer-style QA tasks (SQuAD, TriviaQA, SVAMP, MAWPS)

Baselines:

● Few-shot prompting

● AutoCoT (automatic chain-of-thought)

● ART without tool use

● Best GPT-3(175B)/Toolformer results

Models:

● LLM: InstructGPT (text-davinci-002)

● Code generator: Codex

● Temperature = 0.3



Results on Task Library

● ART performs on par or 

better than Auto-CoT and 

Few-Shot baselines across 

all clusters.

● Especially strong on 

Arithmetic.

● From ART and ART w/o 

Tool Use. Shows that ART 

successfully learns 

structured, interpretable 

reasoning sequences within 

known task types.



Results on Test Tasks

BigBench test tasks:

• ART outperforms few-shot learning (6.9 % 

points). In particular, ART has significant 

improvements on arithmetic tasks (+19.0) and 

is comparable to the few-shot performance 

on search tasks.

• ART is better than AutoCoT on almost all 

tasks (24.6% points).

• Compare with GPT-3 Best, ART performs 

favorably on average, especially on arithmetic 

tasks (+6.1 % points).

Other benchmarks(MMLU): 

• ART is more effective than all baselines

on 5/6 tasks



Improve ART with Self-Consistency

In this table we can see: Self-consistency smooths stochastic reasoning errors, yielding 

+3 ~ 5 percentage points improvement with no retraining.



Improve ART with Human Feedback

In most of the task, human feedback can drastically boost performance — up to +38 points on 

some tasks without any fine-tuning or model retraining. 



Limitation and Future Work

Limitations

● Task Library Dependence: Performance tied to the quality of stored examples.

● Error Propagation: Early-step mistakes cascade through reasoning chains.

● Limited Tool Diversity: Current tools (search, code, lookup) restrict scope.

● Execution Instability: External calls may fail; needs safer sandboxing.

● Narrow Evaluation: Tested mainly on BigBench and MMLU.

Future Work

● Expand Tools & Tasks: Add vision, retrieval, and simulation APIs.

● Self-Correction: Integrate reflection or verifier modules.

● Human Feedback Loop: Support real-time editing and improvement.

● Broader Testing: Validate on open-domain and multimodal reasoning.



Conclusion

Summary of Findings：

• ART reframes reasoning as program synthesis — combining natural language and tool use.

• It learns structured, interpretable multi-step programs within its task library.

• It generalizes these reasoning programs to unseen BigBench and MMLU tasks without any 

fine-tuning.

• External tools (search, code execution, lookup) further amplify reasoning accuracy.

Overall Insight：

ART demonstrates that “Prompt = Program = Reasoning”：large language models can plan, 

execute, and improve reasoning pipelines automatically, paving the way toward autonomous 

tool-using AI systems.



A-Mem: Agentic Memory for LLM Agents

Wujiang Xu et al., Meta AI (2023)

Presentation by Mingrui Ye, Deyuan Yang, Yancheng Jin



Introduction

• Traditional LLM memory systems rely on fixed read/write rules, making them rigid and hard 

to adapt to new tasks.

• A-MEM (Agentic Memory) introduces dynamic, self-organizing memory. It allows agents to 

autonomously store, link, and evolve information instead of following preset workflows.

• A-MEM based on the Zettelkasten method — each interaction becomes a structured 

“note” (content, keywords, tags, embedding). Enable long-term reasoning and 

continuous learning through adaptive memory evolution.



Related Work

Memory for LLM Agents

● Early works (MemGPT, MemoryBank, ReadAgent, SCM) → provide storage but rely on 

predefined read/write rules.

● Limitations: rigid workflows, poor adaptability across new environments.

Retrieval-Augmented Generation (RAG)

● Enhances LLMs via retrieving external knowledge before generation.

● “Agentic RAG” adds autonomy in when and what to retrieve (e.g., Self-RAG, Active-RAG).

● A-MEM vs RAG:

○ RAG = agency during retrieval only.

○ A-MEM = agency in storage + evolution, forming a self-organizing memory graph.



Method: How A-Mem Works

1. Note Construction: Turn interactions into rich, structured notes

2. Link Generation: Automatically find connections betweens notes
3. Memory Evolution: Update old memories with new insights
4. Memory Retrieval: retrieve relevant historical context for better 

understanding

This creates a living, interconnected knowledge network.



Step 1: Note Construction - Creating Rich Memories

memory note (for every interaction)

Use LLM generate Ki, Gi, Xi for deeper understanding 
beyond raw text

text encoder that encapsulates all textual components of 
note

-raw content

-timestamp

-LLM-generated Keywords

-LLM-generated Tags

-LLM-generated Contextual Description

-Dense Vector Embedding (for similarity search)

-Links to other memories



Step 2: Link Generation 

• Use the embedding e_i to find top k similar historical memories
• Use an LLM to decide which of these should be formally linked 

based on shared context and attributes

Similarity score



Step 3: Memory Evolution

• For each of the top-k similar memories, the LLM analyzes the new 
memory

• It can update the context, keywords and tags of the old memory to reflect 
new understanding

Step 2 and Step 3 is the “Agent” part: The memory system actively reasons 
about the restructures itself.

evolution process



Step 4: Retrieve Relative Memory

• provide relevant historical context that improves agent understanding 
and response

• Connect current interaction with past experience

dense vector for same encoder

Similarity score

Top k memory retrieved



Experiment Setup

Datasets: 

– LoCoMo (long conversations)
• Purpose: evaluate long-term conversational memory

• Key feature: very long conversations (avg. 9K tokens, up to 35 sessions)

• Question Types: Test different reasoning skills

– Single-Hop (one session)

– Multi-Hop (across sessions)

– Temporal Reasoning

– Open-Domain

– Adversarial

– DialSim (TV show dialogues)
• Purpose: Evaluate understanding of long-term, multi-party dialogues

• Source: Derived from TV shows 

• Scale: ~350,000 tokens, over 1,000 questions



Experiment Setup
Implementation Details: 

• Fair Comparison
– All methods used identical system prompts to ensure fairness

• Model Deployment
– Local Models (Qwen, Llama): run locally using Ollama.
– Structured Outputs: Managed by LiteLLM framework
– GPT Models: used the official OpenAI API

• Key Parameters
– Retrieval (k-value): Primarily used k=10 for efficiency, with 

adjustments for specific tasks

– Embedding Model: Used all-minilm-16-v2 for all text embeddings 
across all experiments.



Experimental Setup

Baseline and Matrics

• Baselines:
– LocoMo: uses the full conversation history as context (very expensive)
– MemGPT: A sophisticated memory system with a context hierarchy
– MemoryBank: Manages memory using a forgetting curve theory
– ReadAgent: uses a pagination and “gisting” strategy for long documents

• Evaluation Metrics:
– F1 score: measures answer accuracy (balance of precision and recall)
– BLEU-1: Measures word-overlap with the correct answer



Performance Analysis

Across Models:

• Non-GPT models (Qwen, LLaMA): A-
MEM outperforms all baselines in 
every category.

• GPT models: LoCoMo / MemGPT 
strong in simple fact retrieval, but A-
MEM 2× better on Multi-Hop 
reasoning.

Cross-Dataset Validation:

• On DialSim, A-MEM achieves F1 = 
3.45 (+35% vs LoCoMo, +192% vs 
MemGPT).



Cost-Efficiency Analysis

Token Usage: ~1.2 K tokens per 
operation (-85–93% vs baselines ~16.9 
K).

API Cost: <$0.0003 per operation →
economical large-scale deployment.

Runtime: 5.4 s (GPT-4o-mini), 1.1 s 

(local LLaMA 3.2 1B).

Efficiency Balance: Despite 
multiple LLM calls, A-MEM keeps low 

cost while doubling multi-hop 
performance.

Takeaway: Efficient and scalable for 
real-world LLM agents.



Ablantion Study

Setup: Remove modules to test contribution

• No LG & ME → largest drop; memory lacks structure
• No ME (LG only) → intermediate performance
• Full A-MEM → best across all categories

Result (GPT-4o-mini base):

• Multi-Hop F1: 9.65 (w/o LG&ME) → 21.35 (w/o ME) → 27.02 (Full)
• Open-Domain F1: 7.77 → 10.13 → 12.14
• Temporal F1: 24.55 → 31.24 → 45.85
• Adversarial F1: 15.32 → 44.16 → 50.03

Takeaways:

• LG = foundation (builds the memory graph; big gains already)
• ME = refinement (evolves/updates notes; pushes to SOTA)
• LG + ME are complementary → effective, scalable memory system



Hyperparameter Analysis

Goal: Examine impact of retrieval parameter k (10–50).

Setup: GPT-4o-mini base; 5 task types (Multi-Hop, Temporal, Open-Domain, Single-Hop, 
Adversarial).

Findings:

• Performance ↑ as k increases, then plateaus or drops.
• Most visible in Multi-Hop & Open-Domain tasks.
• Larger k = richer context but more noise / longer processing.

Conclusion:Moderate k (10–20) offers the best trade-off between context richness and 
efficiency.



Scaling Analysis

Findings:

• Space Complexity: All ≈ O(N); no extra storage overhead for A-MEM.
• Retrieval Time: A-MEM 0.31 → 3.70 μs (1K → 1M memories).
• MemoryBank slightly faster but less expressive; A-MEM offers richer memory representation.

Conclusion:

• A-MEM is highly scalable and efficient, handling million-scale memories with minimal delay.
• Enables long-term and cost-effective memory for LLM Agents.

Setup: Compare A-MEM with 
MemoryBank & ReadAgent using 
identical data.

Memory sizes: 1K → 10K →
100K → 1M entries (×10 each 
step).



Memory Analysis  

Goal: Show memory organization via t-SNE

Setup: Two dialogues from LoCoMo; blue = A-MEM, 
red = Base Memory (w/o LG & ME).

Findings:

A-MEM: clear, coherent clusters → structured and 

organized memory.

Baseline: scattered and unorganized distribution.

Conclusion:

Confirms A-MEM’s dynamic linking + evolution create 

well-organized, meaningful memory structures.



Limitation and Future Work

Limitations

● Dependent on base LLM quality (different models → different memory links).

● Currently text-only; lacks multimodal (image/audio) memory integration.

● Scalability tested up to 1M entries — but further real-world deployment yet to be explored.

Future Directions

● Extend to multimodal agentic memory.

● Improve memory quality evaluation metrics.

● Integrate with agent operating systems (e.g., AIOS) for production use.



Conclusion

• Summary:

A-MEM introduces an agentic and evolving memory system that enables LLM agents to 

autonomously organize, link, and refine their memories.

• Core Advantage:

By combining structured note-taking with dynamic linking and memory evolution, A-MEM 

supports long-term reasoning and adaptability.

• Results:

Experiments across multiple foundation models show consistent performance gains, 

especially on complex multi-hop reasoning tasks, with greatly reduced token usage.

• Impact:

A-MEM moves LLM agents toward lifelong learning systems capable of continuously 

improving their understanding over time.
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