
Topic:

Agentic Retrieval-Augmented

Generation (RAG)

Presenters: Alexis Liao, Xuanzhen Lao, Feng Qiao

Adaptive-RAG:

Learning to Adapt Retrieval-Augmented

Large Language Models through Question Complexity

Presenter: Alexis Liao

Date: October 30, 2025

The Big Picture: RAG is Great, But...

● Retrieval-Augmented Generation (RAG) improves LLM accuracy by providing external

knowledge, which is crucial for Question-Answering (QA) tasks

● However, a "one-size-fits-all" strategy is inefficient

● The Problem: Not all questions are created equal. Some are simple, while others are

complex

● The Challenge: How can we be both accurate for complex questions and efficient for

simple ones?

3

Current Approaches and Their Limits

Approach How It Works Weakness

(A)Single-Step Retrieves documents once, then

generates an answer.

Inaccurate for complex queries

that need multiple pieces of

information.

(B)Multi-Step Iteratively retrieves documents and

refines the answer.

Inefficient and slow for simple

queries, wasting time and

resources.

4

The Solution: Adaptive-RAG

● This paper proposes a new framework: Adaptive Retrieval-Augmented Generation

(Adaptive-RAG)

● The Core Idea: Don't use one strategy for all queries

Instead, dynamically select the best strategy based on the question's complexity

● This creates a balanced system that is both accurate and efficient

5

How It Works: The Query Complexity Classifier

● Adaptive-RAG first sends every question to a Classifier

● This is a smaller, faster language model (T5-Large) trained to do one thing: judge the

complexity of the question

● It sorts each question into one of three categories:

○ A: Straightforward -> Answerable by the LLM alone (No Retrieval)

○ B: Simple -> Needs one retrieval step (Single-step)

○ C: Complex -> Needs a multi-step, iterative approach

6

The Adaptive-RAG Workflow

7

● This diagram shows the complete workflow

● (A) and (B) are the inefficient, one-size-fits-all approaches

● (C) is our solution. The Classifier acts as a router, sending queries down the most

efficient path based on their complexity

A Clever Training Strategy

● Problem: There's no dataset labeled with "query complexity"

● Solution: The authors created one automatically

● How:

1. Analyze Model Performance: They ran thousands of questions through all three

strategies (No, Single, and Multi-step). If the simplest model got it right, the question

was labeled as simple.

2. Use Dataset Bias: They used existing QA datasets. Questions from datasets known to

have multi-step answers (like HotpotQA) were automatically labeled "Complex"

8

Overall Performance

● Finding: This chart shows Adaptive-RAG (the star) in the ideal top-left corner. It achieves the

highest performance (F1 score), even beating the complex "Multi-step Approach," while being

more than twice as fast

9

Main Results

● Finding: This table shows the main results across all models. Adaptive-RAG consistently

achieves the best balance of accuracy (F1/EM) and efficiency (Time), proving it's not just a

"one-time" success but a robust method

10

Classifier Performance

● Finding: These charts show our classifier is more accurate than other adaptive methods,

which leads to better QA performance. The confusion matrix on the right shows us exactly

where the classifier makes mistakes, like confusing "No" retrieval with "One" retrieval.

11

Case Study

12

Finding: This case study perfectly shows why the classifier is so important

● For the simple question (top), the baseline fails, but Adaptive-RAG correctly skips retrieval and gets the answer ("Google")

● For the complex question (bottom), the baseline fails again, but Adaptive-RAG correctly identifies it as complex and

activates the multi-step process to find the correct answer ("Sebastian Cabot")

Conclusion & Key Takeaways

1. The Problem is Real: A single RAG strategy is not optimal for real-world use where query

complexity varies.

2. Adaptation is the Solution: Adaptive-RAG successfully balances the trade-off between

accuracy and efficiency.

3. The Classifier is Key: By quickly assessing a query's complexity, the system can route it to

the most appropriate and cost-effective pathway.

4. The Future is Efficient: This approach points toward building smarter, more resource-aware

AI systems.

13

Thank You
Questions?

14

Auto-rag: Autonomous Retrieval-
augmented

Generation For Large Language Models
Tian Yu1,3, Shaolei Zhang1,3, Yang Feng1,2,3 *∗

Presenter: Xuanzhen Lao

Motivation

• LLMs are knowledge-limited they forget or can’t access
recent data.

• RAG enhances them by retrieving external knowledge.

• But traditional RAG often uses fixed, rule-based
retrieval.

• Question : Can the model decide when and what to
retrieve by itself?

16

Background

• Auto-RAG enables LLMs to
plan, refine, and stop retrieval
autonomously — achieving
efficient, adaptive information
gathering.

17

Key Features

• Autonomous decision-making : LLM decides when and
what to retrieve.

• Multi-turn refinement: Iteratively improves query and
retrieval quality.

• Adaptive iteration: Adjusts rounds by task complexity.

• Interpretability: Explains retrieval steps in natural
language.

18

Core Mechanism: Autonomous Decision Loop

Three main decisions:

• When to Retrieve — trigger new retrieval if current knowledge
insufficient.

• What to Retrieve — generate refined queries based on gaps.

• When to Stop — stop when the model believes the information
is adequate.

These decisions are made by the LLM itself via instruction-
based reasoning.

19

Method: Reasoning Based Planning And Query
Refinement

Auto-RAG multiple autonomous steps:

1. Retrieval Planning: Analyze the user query and plan
what to search.

2. Query Execution: Retrieve relevant documents from the
knowledge base.

3. Information Extraction: After retrieval, the model
extracts key info and decides if more queries are needed.

4. Answer Generation: Generate the final response based
on all retrieved info.

20

Method- Data Construction for Training

The data synthesis involves:

1. Providing the LLM with initial user input to predict what
knowledge is necessary (R0).

2. Generating a sequence of queries (Qgen) based on
the input and previously retrieved documents (Rt-1).

3. Retrieving documents based on these queries and
determining if they contain a sub-answer.

4. Refining queries based on the retrieved documents
until the model can generate a final answer (A).

21

Training Procedure

• The model is fine-tuned with supervised learning using
cross-entropy loss.

• Training data come from the synthetic reasoning–retrieval
dataset.

• This helps the model learn when to retrieve, how to refine
queries, and when to stop during inference.

22

Main Results
● Auto-RAG achieves the highest average score , surpassing

Self-RAG and FLARE.

Analysis 1: Strong Adaptability To Questions And Retrievers

•Auto-RAG adapts iteration count to task complexity.

•Single-hop QA (NQ, TriviaQA): more one-round stops.

•Multi-hop QA (HotpotQA): more retrieval rounds.

•Auto-RAG can adjusts the retrieval depth based on inference

difficulty.

24

Analysis 2: Strong Adaptability To Questions And Retrievers

•More docs lead to earlier termination.

•Optimal at about 3 docs per iteration.

•Better than Standard RAG and Naive Gen.

25

Ablation Study

The impact of training, reasoning, and zero-shot refinement on
performance was verified.

•w/o training: big drop → fine-tuning essential.

•w/o reasoning: largest drop → reasoning core factor.

•w/o zero-shot: slight drop → diverse queries help.

26

Case Study
•Self-RAG: only selects among fixed results using reflection tokens

•Auto-RAG：autonomously decides when and what to retrieve, continuing

the search until relevant information is found.

27

Limitations

• Extra computation cost (multi-round retrieval)

• Depends on retriever & knowledge base quality

• Tested only on text tasks (no multimodal extension yet)

Discussion
• Auto-RAG makes LLMs autonomous in query refinement &

retrieval

• Uses reasoning to decide what and when to retrieve

• Dynamically optimizes retrieval for efficiency

• Enhances interpretability with transparent retrieval steps
28

Search-o1: Agentic Search-

Enhanced Large Reasoning

Models

EMNLP 2025

Presenter: Feng Qiao

Background

• Adaptive-RAG established that retrieval strategy should

adapt to query complexity (simple vs complex).

• Auto-RAG empowered LLMs to autonomously control

iterative retrieval (when and what to retrieve).

• Search-o1, which embeds agentic search into reasoning

chains of LRMs.

30

Background

31

Aspect LLM (Large Language Model) LRM (Large Reasoning Model)

Definition Trained on massive text data to

understand and generate natural

language through next-token

prediction.

Built on LLMs but optimized for

logical reasoning, multi-step

problem solving, and tool/search

integration.

Advantages /

Disadvantages

Fluent, fast, creative, broad

knowledge.

May hallucinate, struggles

with multi-step reasoning.

Strong reasoning, math, and

coding ability; can verify answers.

Slower, more expensive,

sometimes overthinks.

Examples GPT-4, Claude 3, Gemini 1.5,

LLaMA 3

o1 (OpenAI Reasoning), Claude

3.5 Sonnet (Pro Reasoning mode),

Gemini 1.5 Pro (Reasoning Mode),

DeepSeek-R1, Qwen-QwQ

Motivation
Large reasoning models (LRMs) can handle long reasoning chains in science/math/coding. But
they suffer from knowledge insufficiency: when hitting uncertain knowledge points, the chain
breaks or becomes unreliable.

32

Left: Examples of uncertain words identified during the reasoning process.

Right: Average occurrence of high-frequency uncertain words per output in the GPQA diamond set.

Tested on QwQ-32B-Preview.

Challenges

But integrating retrieved knowledge into the LRM’s reasoning
process is not easy:

(1) Redundant Information in Retrieved Documents.

Retrieved documents are often lengthy and contain redundant information, directly
inputting them into LRMs may disrupt the original coherence of reasoning and even
introduce noise.

(2) Limited Ability to Understand Long Documents.

Most LRMs have been specifically aligned for complex reasoning tasks during the
pre-training and fine-tuning stages. This focus has resulted in a degree of
catastrophic forgetting in their general capabilities, ultimately limiting their long-
context understanding of retrieved documents.

33

Problem Formulation

Reasoning chain — the full sequence of
reasoning tokens representing the model’s
thought process.

Final answer

Task instruction — describes what kind of
reasoning task or output format to follow.

Question

Retrieved documents
34

Length of reasoning chain

Length of answer

Current reasoning token

Previous reasoning tokens

Retrieved docs up to current step

Current answer token

Previous answer tokens

Overview of the Search-o1 Framework

35

Agentic RAG Mechanism

36

Formula 1: Search Query Generation

Formula 2: Knowledge Retrieval

1. Reasoning Stage

The LRM generates reasoning

tokens. When it encounters

uncertainty, it decides to generate a

search query.

1. Query Generation

The model creates a query (e.g.,

“structure of trans-Cinnamaldehyde”)

between <begin_search_query>
and <end_search_query>.

1. Retrieval

The search system retrieves

documents, then inserted between

<begin_search_result> and

<end_search_result>.

1. Reasoning Resumes

Search() is the retrieval function

Overview of the Search-o1 Framework

37

Knowledge Refinement via Reason-in-
Documents

Purpose: retrieved documents tend to be long and noisy;
injecting raw docs risks disrupting reasoning or adding
irrelevant context.

Steps:

1. Generates an intermediate reasoning sequence
summarizing key info from retrieved docs.

1. Produces refined knowledge aligned with the
model’s current reasoning needs.

1. Inserts the refined knowledge back into reasoning for
coherent and informed steps.

38

Experimental Setup

39

Aspect Setting

Backbone model QwQ-32B-Preview

Retriever & corpus Bing Web Search API (region US-EN), top-k=10

Datasets (reasoning) GPQA (Diamond & Extended), MATH500, AMC2023, AIME2024,

LiveCodeBench (Aug–Nov 2024, 112 problems)

Datasets (open-

domain QA)

NQ, TriviaQA, HotpotQA, 2WIKI, MuSiQue, Bamboogle

Metrics Pass@1/Accuracy: how often the model’s first generated answer is correct;

EM: Exact Match.

F1: partial overlap between the model’s answer and the ground truth.

Experimental Setup - Evaluation datasets

40

Challenging

Reasoning

Tasks

GPQA PhD-level science multiple-choice QA

MATH500 Math problem

AMC2023 Middle school math

AIME2024 Advanced math

LiveCodeBench Programming and code

Open-

Domain QA

NQ (Natural Questions) Single-hop QA on real Google queries

TriviaQA Single-hop QA from trivia sources

HotpotQA Multi-hop QA across paragraphs

2WikiMultiHopQA (2WIKI) Multi-hop QA across two Wikipedia pages

MuSiQue Multi-hop QA with 2–4 hops

Bamboogle Multi-hop QA on hard real-world queries

Key Results

41

Key Results-open-diamin datasets

42

Other results

43

Discussion & Implications

● Implications for future large reasoning models:

a. Instead of “just bigger models”, integrate retrieval/search as part of the reasoning loop.

b. LMs becoming more agentic: deciding when to ask for help (search) rather than trying to
answer from internal memory only.

c. Could reduce hallucinations by providing grounded retrieval when needed.

• Limitations: retrieval latency, dependency on quality of document corpora, potential
for retrieving misleading docs.

• Open questions: how to choose retrieval trigger thresholds; how to handle
contradictory retrieved info; cost of real-time search at inference scale.

44

Search-R1: Training LLMs to

Reason and Leverage

Search Engines with

Reinforcement Learning

COLM 2025

co-presenters: Alexis Liao, Xuanzhen Lao, Feng Qiao

The Core Problem & The Goal

● The Problem: Prompting an LLM to use a search engine (like in ReAct or RAG) is a

good start, but it's suboptimal. The LLM doesn't learn how to get better at searching or

reasoning from its mistakes.

● The Goal: Move from prompting to training

● Our Method (Search-R1): Use Reinforcement Learning (RL) to train the LLM.

○ The LLM learns when to search, what to search for, and how to use the results to

reason, all by trial and error

○ It learns to maximize a "reward" signal

46

The Framework: RL + Search Engine

We formulate this as an RL problem. The main components are:

● Policy LLM: This is the "agent" or the "brain" we are training. It generates the text,

including its thoughts and search queries

● Search Engine: This is treated as part of the "environment." The LLM can't change it,

but it can interact with it

● Reward: This is the simple "score" the LLM gets at the end. Did it get the right answer?

47

The Interaction Loop (The "Rollout")

How does the LLM actually interact with the search engine? It uses special tokens to structure its thinking

and actions.

1. <think>...</think>: The LLM first reasons about the problem

2. <search>...</search>: If it needs information, it generates a query inside these tags

3. System Pauses: The system detects the </search> tag, pauses the LLM, and runs the query

4. <information>...</information>: The search results are inserted back into the context, wrapped

in these tags

5. Loop: The LLM sees the new info and goes back to step 1 (<think>...)

6. <answer>...</answer>: When it's confident, it provides the final answer

This is all part of one continuous generation sequence.

48

The Training Template (How We Start)

To get the LLM started, we use a very simple template. It only enforces the structure, not

the content of the reasoning.

This lets the RL process discover the best reasoning and search strategies on its own,

rather than us telling it how to think.

49

Key Innovation: Retrieved Token Masking

This is the most important technical detail for making the training stable.

● Problem: The text the LLM sees is a mix of its own generated tokens (thoughts, queries) and

tokens from the search engine (retrieved information)

● Why is this bad? We only want to train the LLM on its own decisions. We shouldn't reward or

penalize it for the content of the search results, which it didn't write

● Solution: Loss Masking:

○ During the RL update, we set the loss to zero for all tokens inside

<information>...</information>
○ The model is only trained on the tokens it generates: its thoughts, its search queries, and its

final answer

○ This prevents the model from being trained on "noise" and makes the training process much

more stable

50

The Reward Model: Simple is Better

How do we "score" the LLM's final answer? The paper makes a very important and simple choice.

● No complex, step-by-step reward. We don't try to judge if each thought or search query was

"good."

● No trained reward model. We don't use another LLM to grade the answer.

● Just a Simple, Rule-Based, Outcome Reward:

○ Reward = 1 if the text inside <answer>...</answer> is an Exact Match (EM) with the

ground truth.

○ Reward = 0 if it is not.

This is powerful. It means the model can learn a complex, multi-step reasoning and search behavior

from a simple "You got it right" or "You got it wrong" signal.

51

Summary of Method & Hand-off

So, to summarize the Search-R1 method:

1. Framework: We use Reinforcement Learning (PPO or GRPO) to train an LLM to treat a

search engine as part of its environment

2. Interaction: The LLM learns to generate special tokens—<think>, <search>, and

<answer>—to build a reasoning and action loop

3. Key Technique: We use Retrieved Token Masking to ensure the LLM only learns

from its own generated tokens, which stabilizes training

4. Feedback: The entire process is guided by a simple, outcome-based Exact Match

reward, proving that a complex behavior can be learned from a simple signal

52

Experimental setups

53

Training Data NQ + HotpotQA (merge their training sets)

Models Used Qwen-2.5-3B (Base/Instruct),

Qwen-2.5-7B (Base/Instruct) (Yang et al., 2024)

Retriever & Corpus 2018 Wikipedia dump (Karpukhin et al., 2020)

E5 (Wang et al., 2022)

RL Settings PPO (default)

Evaluation metric Exact Match (EM)

Experimental setups

54

Type Dataset Features

General QA NQ (Natural Questions) Answer real Google search queries using Wikipedia

TriviaQA Answer factoid trivia questions

PopQA Evaluate factual and pop-culture knowledge

Multi-Hop QA HotpotQA Multi-hop reasoning with supporting facts

2WikiMultiHopQA Multi-hop reasoning across two Wikipedia pages

MuSiQue Decompose complex questions into sub-questions

Bamboogle Real-time web search required

Evaluation Dataset: In domain

Results-main results- Qwen2.5-7b-Base

55

Results-main results-Qwen2.5-3b-Base

56

Results-compare different RLs

57

Analysis-Different RL methods: PPO vs. GRPO

• GRPO converges faster than PPO across all cases.

• PPO is more stable

• Both reach similar final rewards

• Performance comparison: GRPO slightly outperforms

PPO on most datasets (+3–5 points avg).

58

Base vs Instruct Models

• Instruct models start better and learn faster

• Base models catch up after RL training — reinforcement

learning bridges the gap.

• Final performances are similar, showing Search-R1 is

effective for both types.

59

Response Length Study

• Early stage (0-100 steps):

Responses as model learns to

use search engine.

• Late stage (>130 steps):

Length stabilizes ≈ 500 tokens

→ converged behavior.

• Training reward increases

steadily, matching the

response length curve.

60

Loss Masking Effect

• Without masking, the model

overfits to retrieved text and

becomes unstable.

• With masking, it focuses on

LLM-generated tokens, leading

to stable and better results.

• Average performance improves

from 0.147 to 0.305.

61

Conclusion

• Search-R1enables LLMs to combine reasoning with

real-time search, overcoming the limitations of RAG

and Tool-Use methods.

• Proven Results: Search-R1 enhanced the LLM's

ability to solve complex reasoning tasks that require

external knowledge.

62

	Slide 1: Topic: Agentic Retrieval-Augmented Generation (RAG)
	Slide 2: Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity
	Slide 3: The Big Picture: RAG is Great, But...
	Slide 4: Current Approaches and Their Limits
	Slide 5: The Solution: Adaptive-RAG
	Slide 6: How It Works: The Query Complexity Classifier
	Slide 7: The Adaptive-RAG Workflow
	Slide 8: A Clever Training Strategy
	Slide 9: Overall Performance
	Slide 10: Main Results
	Slide 11: Classifier Performance
	Slide 12: Case Study
	Slide 13: Conclusion & Key Takeaways
	Slide 14: Thank You
	Slide 15: Auto-rag: Autonomous Retrieval-augmented Generation For Large Language Models
	Slide 16: Motivation
	Slide 17: Background
	Slide 18: Key Features
	Slide 19: Core Mechanism: Autonomous Decision Loop
	Slide 20: Method: Reasoning Based Planning And Query Refinement
	Slide 21: Method- Data Construction for Training
	Slide 22: Training Procedure
	Slide 23
	Slide 24: Analysis 1: Strong Adaptability To Questions And Retrievers
	Slide 25: Analysis 2: Strong Adaptability To Questions And Retrievers
	Slide 26: Ablation Study
	Slide 27: Case Study
	Slide 28
	Slide 29: Search-o1: Agentic Search-Enhanced Large Reasoning Models
	Slide 30: Background
	Slide 31: Background
	Slide 32: Motivation
	Slide 33: Challenges
	Slide 34: Problem Formulation
	Slide 35: Overview of the Search-o1 Framework
	Slide 36: Agentic RAG Mechanism
	Slide 37: Overview of the Search-o1 Framework
	Slide 38: Knowledge Refinement via Reason-in-Documents
	Slide 39: Experimental Setup
	Slide 40: Experimental Setup - Evaluation datasets
	Slide 41: Key Results
	Slide 42: Key Results-open-diamin datasets
	Slide 43: Other results
	Slide 44: Discussion & Implications
	Slide 45: Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
	Slide 46: The Core Problem & The Goal
	Slide 47: The Framework: RL + Search Engine
	Slide 48: The Interaction Loop (The "Rollout")
	Slide 49: The Training Template (How We Start)
	Slide 50: Key Innovation: Retrieved Token Masking
	Slide 51: The Reward Model: Simple is Better
	Slide 52: Summary of Method & Hand-off
	Slide 53: Experimental setups
	Slide 54: Experimental setups
	Slide 55: Results-main results- Qwen2.5-7b-Base
	Slide 56: Results-main results-Qwen2.5-3b-Base
	Slide 57: Results-compare different RLs
	Slide 58: Analysis-Different RL methods: PPO vs. GRPO
	Slide 59: Base vs Instruct Models
	Slide 60: Response Length Study
	Slide 61: Loss Masking Effect
	Slide 62: Conclusion

