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The Big Picture: RAG is Great, But...

e Retrieval-Augmented Generation (RAG) improves LLM accuracy by providing external
knowledge, which is crucial for Question-Answering (QA) tasks

e However, a "one-size-fits-all" strategy is inefficient

e The Problem: Not all questions are created equal. Some are simple, while others are

complex

e The Challenge: How can we be both accurate for complex questions and efficient for

simple ones?



Current Approaches and Their Limits

Approach How It Works Weakness
(A)Single-Step Retrieves documents once, then Inaccurate for complex queries
generates an answer. that need multiple pieces of
information.
(B)Multi-Step lteratively retrieves documents and | Inefficient and slow for simple
refines the answer. queries, wasting time and

resources.



The Solution: Adaptive-RAG

e This paper proposes a new framework: Adaptive Retrieval-Augmented Generation
(Adaptive-RAG)

e The Core Idea: Don't use one strategy for all queries
Instead, dynamically select the best strategy based on the question's complexity

e This creates a balanced system that is both accurate and efficient



How It Works: The Query Complexity Classifier

e Adaptive-RAG first sends every question to a Classifier

e This is a smaller, faster language model (T5-Large) trained to do one thing: judge the

complexity of the question
e It sorts each question into one of three categories:
o A: Straightforward -> Answerable by the LLM alone (No Retrieval)
o B: Simple -> Needs one retrieval step (Single-step)

o C: Complex -> Needs a multi-step, iterative approach



The Adaptive-RAG Workflow

e This diagram shows the complete workflow

e (A) and (B) are the inefficient, one-size-fits-all approaches

e (C) is our solution. The Classifier acts as a router, sending queries down the most
efficient path based on their complexity

(A) Single-Step Approach (B) Multi-Step Approach (C) Our Adaptive Approach
| r-uix times
Simple Query: % Simple Query: ),/ Documants Straightforward QUEW’-? - Answer
When is the birthday Tr Documents When is the birthday Paris is the capital of what?
of Michael F. Phelps? slieva ) of Michael F. Phelps? (Intermediate) E
-
Answer SIEWSE 4&) Simple Query: MO0 = ] Documents
Inefficient £ When is the birthday /r Retnevd )
of Michael F. Phelps? Answer
Complex Query: e |I
What currency is in —=——* Documents e Classifier [ K times
Billy Giles' birthplace? Retrioval ) omplax Query: ) QT Complex Query: J,fl —=AA L ments
/ CUrrency 1S in Remeval Bty Retrieval
Answer Billy Giles' birthplace? (Intermediate) ek C N

Billy Giles' birthplace? ntermediate)
Inaccurate % Answers 4 - Answers



A Clever Training Strategy

Prob

lem: There's no dataset labeled with "query complexity"

Solution: The authors created one automatically

How:
1.

Analyze Model Performance: They ran thousands of questions through all three
strategies (No, Single, and Multi-step). If the simplest model got it right, the question
was labeled as simple.

Use Dataset Bias: They used existing QA datasets. Questions from datasets known to

have multi-step answers (like HotpotQA) were automatically labeled "Complex”



Overall Performance

e Finding: This chart shows Adaptive-RAG (the star) in the ideal top-left corner. It achieves the
highest performance (F1 score), even beating the complex "Multi-step Approach," while being
more than twice as fast

Performance vs Time with GPT-3.5
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Main Results

e Finding: This table shows the main results across all models. Adaptive-RAG consistently
achieves the best balance of accuracy (F1/EM) and efficiency (Time), proving it's not just a
"one-time" success but a robust method

Table 1: Averaged results on a collection of benchmark datasets for open-domain question answering including the single-hop
and multi-hop queries, with different LLMs. Self-RAG” is trained with a different base LLM, namely LLaMA2 (Touvron et al.,
2023); therefore, we compare the results of FLAN-T5-XL (3B) with the results from Self-RAG with LLaMAZ2 (7B) and the
results of others with the results from Self-RAG with LLaMA?2 (13B). We emphasize our results in bold, for easy comparisons.

FLAN-T5-XL (3B) FLAN-T5-XXL (11B) GPT-3.5 (Turbo)

Types Methods EM Fi Acc Step Time EM Fl Acc Step Time EM Fl Acc  Step Time
Simple No Retrieval 14.87 2112 1597 000 011 1783 2514 1933 000 008 3577 4856 4427 000 071
Single-step Approach 3483 4431 3887 100 100 3787 4763 4190 100 100 3473 4699 4527 100 1.00

Adaptive Retrieval 2387 3224 2673 050 056 2693 3567 2973 050 054 3590 4820 4530 050 086

Adaptive Self-RAG" 990 2079 3157 072 043 1087 2298 3413 074 023 1087 2298 3413 074 1.50
- ~ Adaptive-RAG (Ours)  37.17 4694 42.10 2.17 3.60 3890 4862 4377 135 200 3797 5091 4897 103 146
Complex Multi-step Approach 39.00 4885 4370 469 BBl 4013 5009 4520 213 380 38,13 5087 4970 281 3.33

Oracle Adaptive-RAG w/ Oracle 4500 5628 4990 128 211 47.17 5860 5220 084 110 4770 6280 5857 050  1.03




Classifier Performance

e Finding: These charts show our classifier is more accurate than other adaptive methods,
which leads to better QA performance. The confusion matrix on the right shows us exactly
where the classifier makes mistakes, like confusing "No" retrieval with "One" retrieval.

FLAN-T5-XL FLAN-T5-XXL Confusion Matrix
60 I Adaptive Retrieval 25 60 I JAdaptive Betrieval 55
[ 1Self-RAG | 1Self-RAG o 0.31 0.6
50 =Adaplive-RAG (Ours) 50 ¥=Adaplive-RAG (Ours) T '
50 50 ~
40 1 40 1 a 0.4
45 1 45 1 S - 0.1
30 1 30 1
40 1 —— 40 - = =0.2
201 20 7 2 0.03 0.31
10 T 35 . 10 - 35 - i i
F1 Classifier Acc. F1 Classifier Acc. No One Multi

Figure 3: Performance on QA and query-complexity assessment of different adaptive approaches for retrieval-augmented LLMs

with FLAN-TS XL (Left) and XXL (Center). For labeling the complexity of queries, we use the silver data annotated from the
prediction outcomes of models (described in Section 3.2). We also provide the confusion matrix across three labels (Right).
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Case Stud

Finding: This ca

e For the simple question (top), the baseline fails, but Adaptive-RAG correctly skips retrieval and gets the answer ("Google")

ye study perfectly shows why the classifier is so important

e For the complex question (bottom), the baseline fails again, but Adaptive-RAG correctly identifies it as complex and
activates the multi-step process to find the correct answer ("Sebastian Cabot")

Table 5: Case study with GPT-3.5 (Turbo), where we represent the factual error in red and the accurate information in blue.

Dataset

Question

Adaptive Retrieval

Adaptive-RAG (Ours)

NQ
(Single-hop)

Which famous corpo-
rate logo changed to a
flat colour/color sans
serif font in its first ma-
jor change since 19997

Query Type: B (Single-step Approach)
Reasoning: The famous corporate logo that
changed to a flat color sans-serif font in its first
major change since 1999 is Microsoft. Microsoft
changed its logo in 2012, replacing the italicized,
multi-colored font with a simple, flat, grey font. So
the answer is: Microsoft.

Query Type: A (Non Retrieval)

Reasoning: The famous corporate logo that
changed to a flat color sans serif font in its first ma-
jor change since 1999 is Google. Google changed
its logo in 2015. So the answer 1s: Google.

MuSiQue
(Multi-hop)

Who is the child of the
Italian navigator who
explored the eastern
coast of the continent
César Gaytan was born
in for the English?

Query Type: A (Non Retrieval)

Reasoning: César Gaytan was born in the conti-
nent of North America. The Italian navigator who
explored the eastern coast of North America for the
English was Giovanni Caboto, also known as John
Cabot. So the answer is: Giovanni Caboto/John
Cabot.

Query Type: C (Multi-step Approach)
Reasoning: Césarr Gaytan was born in Guadalajara,
Jalisco, Mexico. The Italian navigator who explored
the eastern coast of the continent for the English is
John Cabot. John Cabot’s son is Sebastian Cabot.
So the answer is: Sebastian Cabol.
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Conclusion & Key Takeaways

1.

The Problem is Real: A single RAG strategy is not optimal for real-world use where query
complexity varies.

Adaptation is the Solution: Adaptive-RAG successfully balances the trade-off between
accuracy and efficiency.

The Classifier is Key: By quickly assessing a query's complexity, the system can route it to
the most appropriate and cost-effective pathway.

The Future is Efficient: This approach points toward building smarter, more resource-aware

Al systems.
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Thank You

Questions?
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Tian Yu1,3, Shaolei Zhang1,3, Yang Feng1,2,3 *«
Presenter: Xuanzhen Lao



Motivation

* LLMs are knowledge-limited they forget or can’t access
recent data.

 RAG enhances them by retrieving external knowledge.

* But traditional RAG often uses fixed, rule-based
retrieval.

@ Question@: Can the model decide when and what to
retrieve by itself?

16



Background

* Auto-RAG enables LLMs to
plan, refine, and stop retrieval
autonomously — achieving
efficient, adaptive information
gathering.

User @

Question: Where was the place of death of Anastasia OF Serbia’s husband?

7 Auto-RAG
Reasoning: To answer this question, | would need to know the name of Anastasia Of Serbia’s husband and his place of death.
Query: Who is Anastasia OF Serbia’s husband and where did he die?

Dense Passage Retrieval gj

Input Query: Who is Anastasia OF Serbia’s husband and where did he die?

Retrieved Documents_1: Anastasia of Serbia Ana () 1196-d. June 22, 1200) was the princess consort of the Serbian Principality
as the wife of Stefan Nemanja (r. 1166—-1196). She was of noble descent. Ana ook monastic vows in 1196 and was bapiized

" Anastasia”, after Anastasia of Sirmium. ...

":' Auto-RAG

Reasoning: Based on the Retrieved Document_ |, Anastasia Of Serbia’s husband is Stefan Nemanja. However, there is no
information about the place of death of Stefan Nemanja in this document. To answer the question, we need 1o find the place of
death of Stefan Nemanja.

Refined Query: Where did Stefan Nemanja die?

Dense Passage Retrieval Gi

Input Query: Where did Stefan Nemanja die?

Retrieved Documents_2: Stefan Nemanja Stefan Nemanja (Serbian Cyvnillic: Credan Hemaiwa, : 1113 - 13 February 1199) was
the Grand Prince (" Veliki Zupan”) of the Serbian Grand Principality (also known as "Rascia”) from 1166 1o 1196, A member of the
Vukanovié dynasty, Memanja founded ......

" Auto-RAG

Reasoning: Based on the Retrieved Document_2, Stefan Memanja died on 13 February 1199, There is no information about the
lace of death in this document. To answer the question, we need to refine our query and search again.

Refined Query: Stefan Nemanja passed away in which location?

Input Query: Where did Stefan Nemanja pass away?

Retrieved Documents_5: ruined Eastern Orthodox Monastery of Hilandar which the Byzantine Emperor had given to the Serbian
people and which became the heart of Serbian spirituality. ...... He died in front of his son Sava and other monks, on 13 February
1200, He was buned in the grounds of Hilandar monastery, ......

" Auto-RAG

R'ﬂwning: Based on the Retrieved Document_5, Stefan Memanja died on 13 February 1199 in Hilandar monastery. Therefore, the
place of death of Anastasia OF Serbia’s husband is Hilandar monastery.

Final Answer: Hilandar monastery,

Figure 1: A concrete example of how Auto-RAG addresses complex multi-hop questions. Auto-
RAG engages in iterative reasoning, strategically plans retrievals, extracts relevant knowledge,
precisely identifies information needs, and refines query for the next retrieval, ultimately con-
verging on the final answer. In this example, Auto-RAG terminates after five interactions with the
retriever, successfully yielding the correct answer.



Key Features

* Autonomous decision-making : LLM decides when and
what to retrieve.

* Multi-turn refinement: Iteratively improves query and
retrieval quality.

» Adaptive iteration: Adjusts rounds by task complexity.

* Interpretability: Explains retrieval steps in natural
language.

18



Core Mechanism: Autonomous Decision Loop

Three main decisions:

* When to Retrieve — trigger new retrieval if current knowledge
insufficient.

» What to Retrieve — generate refined queries based on gaps.

* When to Stop — stop when the model believes the information
IS adequate.

These decisions are made by the LLM itself via instruction-
based reasoning.

19



Method: Reasoning Based Planning And Query
Refinement

Auto-RAG multiple autonomous steps:

1.

2.

Retrieval Planning: Analyze the user query and plan
what to search.

Query Execution: Retrieve relevant documents from the
knowledge base.

. Information Extraction: After retrieval, the model

extracts key info and decides if more queries are needed.

. Answer Generation: Generate the final response based

on all retrieved info.

20



Method- Data Construction for Training

The data synthesis involves:

1. Providing the LLM with initial user input to predict what
knowledge is necessary (RO).

2. Generating a sequence of queries (Qgen) based on
the input and previously retrieved documents (Rt-1).

3. Retrieving documents based on these queries and
determining if they contain a sub-answer.

4. Refining queries based on the retrieved documents
until the model can generate a final answer (A).

21



Training Procedure

* The model is fine-tuned with supervised learning using
cross-entropy loss.

 Training data come from the synthetic reasoning—retrieval
dataset.

* This helps the model learn when to retrieve, how to refine
queries, and when to stop during inference.

L= — z log Pr(ys|z<t, y<t),
0<t<T
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Main Results

e Auto-RAG achieves the highest average score , surpassing
Self-RAG and FLARE.

Methods NQ 2Wiki TQA PQA HQA WQ 4y
EM F1 EM F1 F1 EM
No Retrieval
Naive Gen 226 339 557 217 284 18.8  30.2
Single-time Retrieval
Standard RAG 35.1 21.0 58.8 36.7 35.3 15.7 33.8
IRCoT 33.3 324 569 456 415 20.7 384
REPLUG 289  21.1 577 278 31.2 202 31.2
RECOMP-abstractive 33.1 324 564 399 375 202 36.6
Selective-Context 30.5 185 556 335 344 17.3  31.6
Iterative Retrieval
FLARE 225 339 558 207 280 202 30.2
Self-RAG 36.4 25.1 382 327 296 219 30.7
Iter-RetGen 36.8 21.6 60.1 37.9  38.3 18.2 355

Ours (Autonomous Retrieval)
Auto-RAG 379 489 609 478 449 251 |443




100

o0
=

Proportion (%)
5 2

-2
=

Analysis 1: Strong Adaptability To Questions And Retrievers

*Auto-RAG adapts iteration count to task complexity.
*Single-hop QA (NQ, TriviaQA): more one-round stops.
*Multi-hop QA (HotpotQA): more retrieval rounds.

*Auto-RAG can adjusts the retrieval depth based on inference
difficulty.
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Analysis 2: Strong Adaptability To Questions And Retrievers

More docs lead to earlier termination.
*Optimal at about 3 docs per iteration.
Better than Standard RAG and Naive Gen.

==== Maive Gen B AutoRAG 0 Standard RAG -=== Naive Gen B AutoRAG [0 Standard RAG ==== MNaive Gen [ AuoRAG T Sandard RAG
40 2 -
2 6,500 .50 L o
3 35 S 60 | §
77 9 o 73]
230, £l S
3 ] =
> ) = 3 =
= 2 54 '3
N # e
i 20 w52 |
i3 3 5 20 1 2 3 4 5
Document Count per Iteration Document Count per Iteration Document Count per Iteration
(a) NQ (b) TriviaQA (c) HotpotQA

Figure 4: QA performance of Auto-RAG with varying document counts provided per iteration.



Ablation Study

The impact of training, reasoning, and zero-shot refinement on
performance was verified.

*w/0 training: big drop — fine-tuning essential.
*w/0 reasoning: largest drop — reasoning core factor.
*w/0 zero-shot: slight drop — diverse queries help.

NQ 2Wiki TQA PQA HQA WQ
Methods EM Fl EM FlI Fi_EM AVG
AutoRAG 379 489 609 47.8 449 25.1 443
w/o training 327 395 564 427 403 19.1 38.5
w/o reasoning 319 266 556 442 360 17.6 353

w/o zero-shot refinement 36.8 44.0 60.2 45.1 429 222 419

26



Case Study

*Self-RAG: only selects among fixed results using reflection tokens
Auto-RAG : autonomously decides when and what to retrieve, continuing
the search until relevant information is found.

User ﬁ 5

[()ucslion: When was the first ford 1 150 mndc?T .

Self-RAG

Step 1: Retrieve 5 documents.

Dense Passage Retrieval @
Input Query: When was the first ford f 150 made? <
Docl: Introduced in early 1996 as a 1997 model...
Doc2: Introduced in late 1947, the F-Series ...

Doc5: Designed by Tyler Blake between 1999 and ...
Self-RAG
gtep 2: Directly generate answer and assign refletion
score for each retrieved document individually.

[lnpul: Promp + Docl }—)[.-\n.\wcr: 1997 ]—-)[ Score: 3.93 ]
[lnpul: Promp + Doc2 }—){Answcr: 1947 ]—)[ Score: 3.91 ]

[lnpul: Promp + Doc3 ]—-)[a\lis\\'cr: 1999 }—)[ Score: 3.76 ]
&

Self-RAG

Step 3: Select the answer with the highest score:

1997

(a) Self-RAG

)

User
[Qucstion: When was the first ford 150 made?

“: Auto-RAG

Reasoning: To answer this question, I would need to know the year when the first Ford F-150 was made.
Query: When was the first Ford F-150 produced?

Dense Passage Retrieval

Input Query: When was the first Ford F-150 produced?

Retrieved Documents_1: Ford F-Series (first generation) The first-generation Ford F-Series is a
series of pickup trucks and commercial vehicles produced by Ford. Introduced in late 1947, the F-
Series was the first post-war truck design from Ford......

%7 Auto-RAG
Reasoning: Based on the Retrieved Document 1, there is no information about the year when the first

Ford F-150 was made. To answer the question, we need to refine our query and search again.
Refined Query: When was the first Ford F-150 model introduced?

—X

Dense Passage Retrieval @
Input Query: When was the first Ford F-150 model introduced?
Retrieved Documents_2: ... In 1975, the F-150 was introduced in between the F-100 and the F-250
in order to avoid certain emission control restrictions ......

':' Auto-RAG

Reasoning: Based on the Retrieved Document_2, the first Ford F-150 model was introduced in 1975.
Final Answer: 1975,

(b) Auto-RAG



Limitations

« Extra computation cost (multi-round retrieval)

* Depends on retriever & knowledge base quality

» Tested only on text tasks (no multimodal extension yet)

Discussion

* Auto-RAG makes LLMs autonomous in query refinement &
retrieval

* Uses reasoning to decide what and when to retrieve
* Dynamically optimizes retrieval for efficiency
 Enhances interpretability with transparent retrieval steps
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Background

. Adaptive-RAG established that retrieval strategy should
adapt to query complexity (simple vs complex).

. Auto-RAG empowered LLMs to autonomously control
iterative retrieval (when and what to retrieve).

.- Search-o01, which embeds agentic search into reasoning
chains of LRMs.
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Background

Aspect

Definition

Advantages /
Disadvantages

Examples

LLM (Large Language Model)

Trained on massive text data to
understand and generate natural
language through next-token
prediction.

Fluent, fast, creative, broad
knowledge.

X May hallucinate, struggles
with multi-step reasoning.

GPT-4, Claude 3, Gemini 1.5,
LLaMA 3

LRM (Large Reasoning Model)

Built on LLMs but optimized for
logical reasoning, multi-step
problem solving, and tool/search
integration.

Strong reasoning, math, and
coding ability; can verify answers.
X Slower, more expensive,
sometimes overthinks.

o1 (OpenAl Reasoning), Claude
3.5 Sonnet (Pro Reasoning mode),
Gemini 1.5 Pro (Reasoning Mode),
DeepSeek-R1, Qwen-QwQ
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Motivation

Large reasoning models (LRMs) can handle long reasoning chains in science/math/coding. But

they suffer from knowledge insufficiency: when hitting uncertain knowledge points, the chain
hreaks or hecomes 1inreliabhle
Cases of Model-Expressed Uncertainty

35
Wait, perhaps it’s referring to dimethyl sulfone, but that 30.4 #%  Direct Reasoning
doesn’t seem right. 301 9% 27 1 Standard RAG
26.4 " .
g .| / S8 Search-o1 (Ours)
Alternatively, perhaps there’s a mistake in my under- E 23 216
standing of epistasis. Let me look up epistasis quickly. 52{1' _ :
Epistasis is ... S 15.8 :
8 15 Q 1
Alternatively, HBr could also abstract a hydrogen atom E \ '/ Q 93
. 2 101 \ ; \ 78 82
from the alkene, leading to a ... < § : § - §
51 NN \ 283206
As I recall, Quinuclidine is a seven-membered ring with a ni- § | § § 7 | “
trogen atom, likely not having the required symmetr 0 — = & i & ~
g . y & <4 y Y. perhaps  alternatively wait likely
Uncertain Words

Left: Examples of uncertain words identified during the reasoning process.
Right: Average occurrence of high-frequency uncertain words per output in the GPQA diamond set.
Tested on QwQ-32B-Preview. 52



Challenges

But integrating retrieved knowledge into the LRM'’s reasoning
process is not easy:

(1) Redundant Information in Retrieved Documents.

Retrieved documents are often lengthy and contain redundant information, directly
inputting them into LRMs may disrupt the original coherence of reasoning and even
introduce noise.

(2) Limited Ability to Understand Long Documents.

Most LRMs have been specifically aligned for complex reasoning tasks during the
pre-training and fine-tuning stages. This focus has resulted in a degree of
catastrophic forgetting in their general capabilities, ultimately limiting their long-
context understanding of retrieved documents.
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Overview of the Search-o1 Framework

(a) Vanilla Reasoning Pattern

Original Question:

Step 1: trans-Cinnamaldehyde +
Methylmagnesium Bromide — Product 1

Step 2: Product 1 + ... — Product 2

Step 3: Product 2 + (Dimethyl{oxo)-16-
sulfaneylidene)methane ... — Product 3
Question: carbon atoms count of Product 3

¥

Large Reasoning

Start thinking. 6] Model (e.g. o1)

Step n ‘
._Eerfc;?:iTiz.r | need the structure of
trans-Cinnamaldehyde.
knowledge. hy

Step n+1 {

Make a guess  Perhaps the structure of

and continue trans-Cinnamaldehyde is
reasoning. CgHsCH=CH-CO-CH,. (X
Step n+2 *
Final Step +
Provide final Product 3 contains 10
answer. carbon atoms. (X))

(b) Reason with Agentic RAG (Ours)

Search Instruction:

When you encounter unfamiliar knowledge,
you can perform web searches to help you ...

Original Question:
Step1:... Step 2: ... Step 3: ...
Question: carbon atoms count of Product 3

v

Large Reasoning
Model (e.g. o1)

Start thinking. @

arch for
helpful info
n-demand.

Structure of trans-
Cinnamaldehyde

Step n+1 'S,

Return long . .

(E)-cinnamaldehyde is the
and redundant | g0y stereoisomer of ...
documents,
which disrupt
reasoning. Stepn+2 §

Final Step

Provide final Product 3 contains 14
answer. carbon atoms. (X))

(c) The Search-01 Framework (Ours)

Search Instruction:

When you encounter unfamiliar knowledge,
you can perform web searches to help you ...

Driginal Question:
Step 1: ... Step 2: ... Step 3: ...
Question: carbon atoms count of Product 3

'

Start thinking. é] L;rug:allt{a::nl:'lr;g
Step n *
Search for
helpful info f;n“m“‘“n:';;‘;*;;;gg‘
on-demand.
Stepn+1 § iterable {_

Get concise Trans-Cinnamaldehyde
information has the structure
and continue CyH.CH=CHCHO. (v
coherent
reasoning. Step n+2 §

Final Step {
Provide final Product 3 contains 11
answer. carbon atoms. (v')

-~

(.

Domains:
B Physics
<}i Chemistry
Biology
I\ Math
Code

(7)) ODQA

Retrieved
Documents

e

Reason-in-
Documents

Integrate helpful
information into
the previous

reasoning chain.
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Agentic RAG Mechanism

. (b) Reason with Agentic RAG (Ours)
1. Reasoning Stage

The LRM generates reasoning
tokens. When it encounters
uncertainty, it decides to generate aoriginal Question:
SeaI’Ch query Step 1:... Step 2: ... Step 3: ...

Search Instruction:

When you encounter unfamiliar knowledge,
you can perform web searches to help you ...

Question: carbon atoms count of Product 3
1. Query Generation }
The model creates a query (e.g., [ 'arge Roasoning
thinking. EEI Model (e.g. o1)

“structure of trans-Cinnamaldehyde’ a)
between <begin_search_query>
and <end_search_query>.
1. Retrieval
The search system retrieves Return long
and redundant
documents, then inserted betweeniocuments,
which disrupt
<begin_search_result> and reasoning.
<end_search_result>.

1. Reasoning Resumes

arch for
helpful info
n-demand.

Structure of trans-
Cinnamaldehyde

Step n+1

(E)-cinnamaldehyde is the
E(trans) sterecisomer of ...

Step n+2 +

Final Step +

Provide final
answer.

Product 3 contains 14
carbon atoms. (X))

D) = gt a, ...

Formula 1: Search Query Generation
T{t]'

i—1
H P (qsea:ch t | qa‘em’ch R4t I q, R{ })

(QSearch | I '-L {1-1

T( V) is the length of the :-th search query,

q;;mh . denotes the token generated at step_t of the

1-th search query

R(i~1) represents all the reasoning steps prior to the i-th search step

Formula 2: Knowledge Retrieval
ﬁfz) = SearC:h(qiﬁ:;}rch)

Search() is the retrieval function

, df represents the set of top-k; relevant documents
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Overview of the Search-o1 Framework

(a) Vanilla Reasoning Pattern

Original Question:

Step 1: trans-Cinnamaldehyde +
Methylmagnesium Bromide — Product 1

Step 2: Product 1 + ... — Product 2

Step 3: Product 2 + (Dimethyl{oxo)-16-
sulfaneylidene)methane ... — Product 3
Question: carbon atoms count of Product 3

¥

Large Reasoning

Start thinking. 6] Model (e.g. o1)

Step n ‘
._Eerfc;?:iTiz.r | need the structure of
trans-Cinnamaldehyde.
knowledge. hy

Step n+1 {

Make a guess  Perhaps the structure of

and continue trans-Cinnamaldehyde is
reasoning. CgHsCH=CH-CO-CH,. (X
Step n+2 *
Final Step +
Provide final Product 3 contains 10
answer. carbon atoms. (X))

(b) Reason with Agentic RAG (Ours)

Search Instruction:

When you encounter unfamiliar knowledge,
you can perform web searches to help you ...

Original Question:
Step1:... Step 2: ... Step 3: ...
Question: carbon atoms count of Product 3

v

Large Reasoning
Model (e.g. o1)

Start thinking. @

arch for
helpful info
n-demand.

Structure of trans-
Cinnamaldehyde

Step n+1 'S,

Return long . .

(E)-cinnamaldehyde is the
and redundant | g0y stereoisomer of ...
documents,
which disrupt
reasoning. Stepn+2 §

Final Step

Provide final Product 3 contains 14
answer. carbon atoms. (X))

(c) The Search-01 Framework (Ours)

Search Instruction:

When you encounter unfamiliar knowledge,
you can perform web searches to help you ...

Driginal Question:
Step 1: ... Step 2: ... Step 3: ...
Question: carbon atoms count of Product 3

'

Start thinking. é] L;rug:allt{a::nl:'lr;g
Step n *
Search for
helpful info f;n“m“‘“n:';;‘;*;;;gg‘
on-demand.
Stepn+1 § iterable {_

Get concise Trans-Cinnamaldehyde
information has the structure
and continue CyH.CH=CHCHO. (v
coherent
reasoning. Step n+2 §

Final Step {
Provide final Product 3 contains 11
answer. carbon atoms. (v')

-~

(.

Domains:
B Physics
<}i Chemistry
Biology
I\ Math
Code

(7)) ODQA

Retrieved
Documents

e

Reason-in-
Documents

Integrate helpful
information into
the previous

reasoning chain.
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Knowledge Refinement via Reason-in-
Documents

Purpose: retrieved documents tend to be long and noisy;

injecting raw docs risks disrupting reasoning or adding

irrelevant context.
Steps:
1. Generates an interr

crimMmarizi

R{{E)’ qSLaI‘Ch" DEE

1. Inserts the refined knowledge back into reasoning for

T, Ta
P(R,a|I,q)=]]P (Rt | Ret,1,q, {Téii.}jgm) J1P(a | ace, R, 1,q)

t=1

(i)
H P (Tﬁzalt

idte reasoning sequence

‘g =\Y} |n'Fn 'Frnm ratrioviaAd AAnre

H P (rd@c-; i -!:icjcs <t ’R{{mh ica}rchaﬂ{t})

P Py

t=1

(<1)
rnal <t Tdﬂcﬂ R ’ qf-:earf:h

(c) The Search-0o1 Framework (Ours)

Search Instruction:
When you encounter unfamiliar knowledge,

you can perform web searches to help you ...

Original Question:
Step 1. ... Step 2: ... Step 3: ...
Question: carbon atoms count of Product 3

}

Start thinking. é] L;?:e?(e: ;o::n)g
Step n ‘
Search for
: Structure of trans-
helpful info Cinnamaldehyde
on-demand.
Step n+1 * iterable { *
Get concise Trans-Cinnamaldehyde
information has the structure
and continue C¢Hs;CH=CHCHO. (v)
coherent
reasoning. Stepn+2 §
Final Step
Provide final Product 3 contains 11
answer. carbon atoms. (v')

(

Domains:
&5 Physics
< Chemistry
% Biology
A Math
Code

() ODQA

Retrieved
Documents

b

Reason-in-
Documents

Integrate helpful
information into

the previous

reasoning chain.
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Experimental Setup

Aspect Setting
Backbone model QwQ-32B-Preview

Retriever & corpus Bing Web Search API (region US-EN), top-k=10

Datasets (reasoning) GPQA (Diamond & Extended), MATH500, AMC2023, AIME2024,
LiveCodeBench (Aug—Nov 2024, 112 problems)

Datasets (open- NQ, TriviaQA, HotpotQA, 2WIKI, MuSiQue, Bamboogle
domain QA)
Metrics Pass@1/Accuracy: how often the model’s first generated answer is correct;

EM: Exact Match.
F1: partial overlap between the model's answer and the ground truth.
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Experimental Setup - Evaluation datasets

Challenging GPQA

Reasoning
Tasks

Open-
Domain QA

MATH500

AMC2023

AIME2024
LiveCodeBench

NQ (Natural Questions)
TriviaQA

HotpotQA
2WikiMultiHopQA (2WIKI)
MuSiQue

Bamboogle

PhD-level science multiple-choice QA
Math problem

Middle school math

Advanced math

Programming and code

Single-hop QA on real Google queries
Single-hop QA from trivia sources
Multi-hop QA across paragraphs
Multi-hop QA across two Wikipedia pages
Multi-nop QA with 2—4 hops

Multi-hop QA on hard real-world queries 40



Key Results

Table 1: Main results on challenging reasoning tasks, including PhD-level science QA, math, and
code benchmarks. We report Pass @ 1 metric for all tasks. For models with 32B parameters, the best
results are in bold and the second-best are underlined. Results from larger or non-proprietary models
are in gray color for reference. Symbol “!” indicates results from their official releases.

GPQA (PhD-Level Science QA) Math Benchmarks LiveCodeBench

Method
Physics Chemistry Biology Overall MATHS500 AMC23 AIME24 Easy Medium Hard Overall

Direct Reasoning (w/o Retrieval)

Qwen2.5-32B 570 333 526 455 758 575 233 423 189 143 223
Qwen2.5-Coder-32B 372 258 579 338 712 675 200 6L5 162 122 250
QwQ-32B 756 398 684 581 832 825 533 615 297
Qwen2.5-72B 570 376 684 490 794 615 200 538 297 245 33.0
Llama3.3-70B 547 312 526 434 708 475 367 577 324 245 348
DeepSeek-R1-Lite' - . - 585 916 . 525 - . - 516
GPT-4o! 595 402 616 506 603 - 93 - - - 334
ol-preview! 89.4 599 659 733 855 . a6 - . - 536

Retrieval-augmented Reasoning
RAG-Qwen2.5-32B 57.0 37.6 526 475 82.6 72.5 300 615 243 82 259

RAG-QwQ-32B 767 387 737 586  84.8 825 500 577 162 122 24.1
RAgent-Qwen2.5-32B  58.1 333 632 470  74.8 650 200 577 243 6.1 24.1
RAgent-QwQ-32B 76.7 462 684 61.6  85.0 850 567 654 189 122 268

Retrieval-augmented Reasoning with Reason-in-Documents

Search-o1 (Ours) 77.9 47.3 789  63.6 86.4 85.0 56.7 577 324 204 33.0
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Key Results-open-diamin datasets

Table 3: Performance comparison on open-domain QA tasks, including single-hop QA and multi-hop
QA datasets. For models with 32B parameters, the best results are in bold and the second-best are
underlined. Results from larger models are in gray color for reference.

Single-hop QA Multi-hop QA
Method NQ TriviaQA HotpotQA 2ZWIKI MuSiQue Bamboogle
EM F1 EM Fl EM F1 EM Fl EM Fl EM Fl1

Direct Reasoning (w/o Retrieval)

Qwen2.5-32B 228 339 520 603 254 347 298 363 84 180 496 632
QwQ-32B 230 331 538 607 254 333 344 409 90 189 384 537
Qwen2.5-72B 276 412 568 658 292 388 344 427 114 204 472 617
Llama3.3-70B 6.0 487 o688 768 378 491 460 542 148 236 544 67.38
Retrieval-augmented Reasoning

RAG-Qwen2.5-32B 334 493 658 792 386 504 316 406 104 198 520 66.0
RAG-QwQ-32B 206 444 656 776 342 464 356 462 106 202 552 674
RAgent-Qwen2.5-32B 324 478 630 726 446 568 554 697 13.0 254 544 664
RAgent-QwQ-32B 336 484 620 740 430 552 584 712 13.6 255 520 647

Retrieval-augmented Reasoning with Reason-in-Documents
Search-ol (Ours) 340 497 634 741 452 573 580 714 166 282 56.0 678




Other results

—&— Search-o1 (Ours) ===+ Direct Reasoning —+—  Standard RAG (k=10)
Physics Chemistr Biolo Overall
80 . 51 i 85 £y
48 807 .
7197 62+
- \/\/‘
70 -
60
42 1
65 1 R Pl P ISy e S P S
e o L I Sy A e 60 - SUi e i) e s SR o
) T L) T T 36 Al 1 I 1 1 55 ) T L 1 L 56 L 1 ) L )
1 23 5 10 1 23 5 10 1 2 3 5 10 1 2 3 5 10
Top-k Docs Top-k Docs Top-k Docs Top-k Docs

Figure 3: Scaling analysis of top-k retrieved documents utilized in reasoning. All results are based on
QwQ-32B-Preview model.
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Discussion & Implications

e |Implications for future large reasoning models:

a. Instead of “just bigger models”, integrate retrieval/search as part of the reasoning loop.

b. LMs becoming more agentic: deciding when to ask for help (search) rather than trying to
answer from internal memory only.

c. Could reduce hallucinations by providing grounded retrieval when needed.

« Limitations: retrieval latency, dependency on quality of document corpora, potential
for retrieving misleading docs.

« Open questions: how to choose retrieval trigger thresholds; how to handle
contradictory retrieved info; cost of real-time search at inference scale.

44



Search-R1: Training LLMs to
Reason and Leverage
Search Engines with
Reinforcement Learning

Bowen Jin!, Hansi Zengz, Zhenrui Yue!, Jinsung Yoon?, Sercan O. Arik?, Dong ‘I/\.T.angl,r

Hamed Zamani?, Jiawei Han!
1 Department of Computer Science, University of Illinois at Urbana-Champaign
2 Center for Intelligent Information Retrieval, University of Massachusetts Amherst

3 Google Cloud Al Research
COLM 2025

co-presenters: Alexis Liao, Xuanzhen Lao, Feng Qiao



The Core Problem & The Goal

e The Problem: Prompting an LLM to use a search engine (like in ReAct or RAG) is a
good start, but it's suboptimal. The LLM doesn't learn how to get better at searching or
reasoning from its mistakes.

e The Goal: Move from prompting to training

e Our Method (Search-R1): Use Reinforcement Learning (RL) to train the LLM.

o The LLM learns when to search, what to search for, and how to use the results to
reason, all by trial and error

o It learns to maximize a "reward" signal
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The Framework: RL + Search Engine

We formulate this as an RL problem. The main components are:

e Policy LLM: This is the "agent" or the "brain" we are training. It generates the text,
Including its thoughts and search queries

e Search Engine: This is treated as part of the "environment." The LLM can't change it,
but it can interact with it

e Reward: This is the simple "score" the LLM gets at the end. Did it get the right answer?

maxEy p (. xR) 7¢(x,y)| — BDkw [mo(y | % R) || mret(y | ;R)],

Ty
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The Interaction Loop (The "Rollout")

How does the LLM actually interact with the search engine? It uses special tokens to structure its thinking
and actions.

. <think>...</think>: The LLM first reasons about the problem

. <search>...</search>: If it needs information, it generates a query inside these tags
System Pauses: The system detects the </search> tag, pauses the LLM, and runs the query

. <information>...</information>: The search results are inserted back into the context, wrapped
in these tags
Loop: The LLM sees the new info and goes back to step 1 (<think>...)

6. <answer>...</answer>: When it's confident, it provides the final answer

o

This is all part of one continuous generation sequence.
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The Training Template (How We Start)

To get the LLM started, we use a very simple template. It only enforces the structure, not
the content of the reasoning.

Answer the given question. You must conduct reasoning inside <think>and </think>
first every time you get new information. After reasoning, if you find you lack some
knowledge, you can call a search engine by <search> query </search>, and it will
return the top searched results between <information> and </information>. You
can search as many times as you want. If you find no further external knowledge
needed, you can directly provide the answer inside <answer> and </answer> without
detailed illustrations. For example, <answer> xxx </answer>. Question: question.

Table 1: Template for SEARCH-R1. question will be replaced with the specific question
during training and inference.

This lets the RL process discover the best reasoning and search strategies on its own,
rather than us telling it how to think.
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Key Innovation: Retrieved Token Masking

This is the most important technical detail for making the training stable.

Problem: The text the LLM sees is a mix of its own generated tokens (thoughts, queries) and

tokens from the search engine (retrieved information)
Why is this bad? We only want to train the LLM on its own decisions. We shouldn't reward or

penalize it for the content of the search results, which it didn't write

Solution: Loss Masking:
o During the RL update, we set the loss to zero for all tokens inside

<information>...</information>
o The model is only trained on the tokens it generates: its thoughts, its search queries, and its

final answer
o This prevents the model from being trained on "noise" and makes the training process much

more stable
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The Reward Model: Simple is Better

How do we "score" the LLM's final answer? The paper makes a very important and simple choice.

e No complex, step-by-step reward. We don't try to judge if each thought or search query was

"gOOd_"
No trained reward model. We don't use another LLM to grade the answer.
Just a Simple, Rule-Based, Outcome Reward:
o Reward = 1 if the textinside <answer>...</answer> is an Exact Match (EM) with the

ground truth.
o Reward = 0Qifitis not.

This is powerful. It means the model can learn a complex, multi-step reasoning and search behavior
from a simple "You got it right" or "You aot it wrona" sianal.

F¢ (x, y) = EM(apred: 'ggf:-ld)r
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Summary of Method & Hand-off

So, to summarize the Search-R1 method:

1.

Framework: We use Reinforcement Learning (PPO or GRPO) to train an LLM to treat a

search engine as part of its environment

. Interaction: The LLM learns to generate special tokens—<think>, <search>, and

<answer>—to build a reasoning and action loop

. Key Technique: We use Retrieved Token Masking to ensure the LLM only learns

from its own generated tokens, which stabilizes training
Feedback: The entire process is guided by a simple, outcome-based Exact Match

reward, proving that a complex behavior can be learned from a simple signal
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Experimental setups

Training Data
Models Used

Retriever & Corpus

RL Settings

Evaluation metric

NQ + HotpotQA (merge their training sets)

Qwen-2.5-3B (Base/Instruct),
Qwen-2.5-7B (Base/Instruct) (Yang et al., 2024)

2018 Wikipedia dump (Karpukhin et al., 2020)
ES (Wang et al., 2022)

PPO (default)
Exact Match (EM)
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Experimental setups

Evaluation Dataset: In domain

Type
General QA

Multi-Hop QA

Dataset
NQ (Natural Questions)
TriviaQA
PopQA
HotpotQA

2WikiMultiHopQA
MuSiQue

Bamboogle

Features
Answer real Google search queries using Wikipedia
Answer factoid trivia questions
Evaluate factual and pop-culture knowledge
Multi-hop reasoning with supporting facts
Multi-hop reasoning across two Wikipedia pages
Decompose complex questions into sub-questions

Real-time web search required
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Results-main results- Qwen2.5-7b-Base

Table 2: Main results. The best performance is set in bold. T /* represents in-domain/out-
domain datasets.

Methods General QA Multi-Hop QA

NQ" TriviaQA* PopQA* HntpntQA* 2wiki® Musique® Bamboogle® Avg.

Qwen2.5-7b-Base/Instruct

Direct Inference 0.134 0.408 0.140 0.183 0.250 0.031 0.120 0.181
CoT 0.048 0.185 0.054 0.092 0.111 0.022 0.232 0.106
IRCoT 0.224 0.478 0.301 0.133 0.149 0.072 0.224 0.239
Search-ol 0.151 0.443 0.131 0.187 0.176 0.058 0.296 0.206
RAG 0.349 0.585 0.392 0.299 0.235 0.058 0.208 0.304
SFT 0.318 0.354 0.121 0.217 0.259 0.066 0.112 0.207
R1-base 0.297 0.539 0.202 0.242 0.273 0.083 0.296 0.276
R1-instruct 0.270 0.537 0.199 0.237 0.292 0.072 0.293 0.271
Rejection Sampling 0360 _ 0592 0380 0331 02% 0123 035 0348
Search-R1-base 0.480 0.638 0.457 0.433 0.382 0.196 0.432 0.431

Search-Rl-instruct  0.393 0.610 0.397 0.370 0.414 0.146 0.368 0.385




Results-main results-Qwen2.5-3b-Base

Table 2: Main results. The best performance is set in bold. T /* represents in-domain/out-
domain datasets.

Methods General QA Multi-Hop QA

NQ' TriviaQA* PopQA~™ Ht]ltl::«|:|vtl:}1f-"h.1 2wiki® Musique® Bamboogle®™ Avg.

Qwen?2.5-3b-Base/Instruct

Direct Inference 0106 0288 0.108 0.149 0244  0.020 0.024 0.134
CoT 0023  0.032 0.005 0.021 0.021  0.002 0.000 0.015
IRCoT 0111 0312 0.200 0.164 0171 0.067 0.240 0.181
Search-ol 0238 0472 0.262 0.221 0218  0.054 0.320 0.255
RAG 0348 0544 0.387 0.255 0226  0.047 0.080 0.270
SFT 0249 0292 0.104 0.186 0248  0.044 0.112 0.176
R1-base 0226 0455 0.173 0.201 0268  0.055 0.224 0.229
R1-instruct 0210  0.449 0.171 0.208 0275  0.060 0.192 0.224
Rejection Sampling 0.294  0.488 0.332 0.240 0233 0059 0.210 0.265
‘Search-Rl-base 0406 0587 0435 0284 0273 0049 0088 0303

Search-R1-instruct  0.341 0.545 0.378 0.324 0.319 0.103 0.264 0.325




Results-compare different RLs

Table 3: The performance results of SEARCH-R1 with PPO and GRPO on seven datasets.

Method NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

Qwen2.5-7b-Base/Instruct

SEARCH-R1-base (GRPO) 0.395 0.560 0.388 0.326 0.297 0.125 0.360 0.350

SEARCH-R1-instruct (GRPO) 0.429 0.623 0.427 0.386 0.346 0.162 0.400 0.396
' SEARCH-R1-base (PPO) 0480  0.638 0457 0433 0382 0196 0432 0431

SEARCH-R1-instruct (PPO) 0.393 0.610 0.397 0.370 0.414 0.146 0.368 0.385

Qwen2.5-3b-Base/Instruct

SEARCH-R1-base (GRPO) 0.421 0.583 0.413 0.297 0.274 0.066 0.128 0.312

SEARCH-R1-instruct (GRPO) 0.397 0.565 0.391 0.331 0.310 0.124 0.232 0.336
 SEARCH-R1-base (PPO) 0406 0587 0435 0284 0273 0049 008 0303

SEARCH-R1-instruct (PPO) 0.341 0.545 0.378 0.324 0.319 0.103 0.264 0.325
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Analysis-Different RL methods: PPO vs. GRPO

 GRPO converges faster than PPO across all cases.

 PPO is more stable

* Both reach similar final rewards

* Performance comparison: GRPO slightly outperforms
PPO on most datasets (+3—5 points avgQ).

. ' T 0.40
o : Selcd 0.40{ ~ PPO

}lf"'f | 3 « PPO ik A % 4 0.45' .. pPO
L GRPO 0.35/ GRPO I | GRPO f
go.s .\ﬂq".! : 5 go.as' NIJ 'h"jjﬂe , Eo.3o. : {ﬁ?’ﬂ" f go.&o- it ’l‘
5 J\? £0.30/ “{’ ;°-25' : Huf"\ 035 J { .4 fh]:’r‘ll'.
e %2 - - “ c0.20. k." :o 30 1 "’Tr'ﬁ' 2l ab [FIFT 2
g g E“"-w _ §oas D K © ' CUR S SRR
B M ~— PPO | P g0 W ! N H : : 0.0 ém g 0.25 :‘:ﬁ.r’”’mg
0.0/ Sl b oo | il v 0.05| PIASY Wil
0 25 50 75 100 125 150 175 200 13 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175200 U2 0 25 50 75 100 125 150 175 200
Step Step Step Step
(a) LLaMA3.2-3b-base (b) LLaMA3.2-3b-it (c) Qwen2.5-3b-base (d) Qwen2.5-3b-it 58



Base vs Instruct Models

learning bridges the gap.
* Final performances are similar, showing Search-R1 is
effective for both types.

Train Reward
°© o @
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=
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0 25 50 75 100 125 150 175 200
Step

(a) LLaMA3.2-3b-base/instruct (b) Qwen2.5-3b-base/instruct

Instruct models start better and learn faster
Base models catch up after RL training — reinforcement
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Response Length Study

« Early stage (0-100 steps): -
Responses as model learns to
use search engine.

« Late stage (>130 steps):
Length stabilizes = 500 tokens
— converged behavior.

* Training reward increases
steadily, matching the (c) Response length
response length curve.

e
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—»— Response Length —=— Train Reward

< b
w I
Train Reward

-
N

O

o

o
o
=

60



Loss Masking Effect

* Without masking, the model

—wm |
overfits to retrieved text and E"" e e , M
becomes unstable. g o3 aé'-‘fl'd'
. . . o ‘
« With masking, it focuses on s 0:2 Y,
LLM-generated tokens, leading £o. r P e
to stable and better results. 0.0| MeoralinRimaie |
. 0 25 50 75 100 125 150 175 200
« Average performance improves -

from 0.147 to 0.305. (b) Loss mask dynamics study
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Conclusion

» Search-R1enables LLMs to combine reasoning with
real-time search, overcoming the limitations of RAG
and Tool-Use methods.

* Proven Results: Search-R1 enhanced the LLM's

ability to solve complex reasoning tasks that require
external knowledge.
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