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Background

Two main directions of Visual Representation Learning before 2021

● Weakly supervised models 
○ Use massive image datasets but fixed label spaces (e.g., 

ImageNet-1k).
○ Strong accuracy but poor flexibility — can’t handle unseen 

categories.
○ Rely on static softmax classifiers → limited zero-shot capability.

● Language-supervised models (e.g., VirTex, ConVIRT)
○ Learn from image–caption pairs instead of discrete labels.
○ Capture richer semantics and stronger vision-language 

alignment.
○ However, trained on small datasets (hundreds of thousands of 

pairs) → lower performance.

Core limitation of both paradigms
● Weakly supervised → large-scale but narrow semantics.
● Language-supervised → rich semantics but small-scale.

Motivation for CLIP

● Bridge the gap between 
scale and semantic 
richness.

● Scale natural-language 
supervision to hundreds 
of millions of image–text 
pairs.

● Introduce a contrastive 
pre-training objective → 
enables zero-shot 
transfer across diverse 
visual tasks.



CLIP: Summarized Approach

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to 
predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) 
training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or 
descriptions of the target dataset’s classes.



Data and Encoder

Data Collection

Data Volume: 400 million (image, text) pairs.

Source: Collected from the internet (web pages, 
social media, etc.).

Text Type: Typically image titles, alt-text, and 
descriptive text.

Characteristics: Diverse data, high noise levels, 
but broad coverage.

CLIP does not manually clean tags; instead, it 
directly uses natural language descriptions as 
"supervisory signals."

Encoder Selection

Image Encoder: 
● ResNet 50, RN101, 

EfficientNet-style-model (RN50x4, 
RN50x16, RN50x64 )

(Global average -> attention pooling for  better adapt to 
multiple semantic regions.)

● ViT-B/32, ViT-B/16, ViT-L/14 

Text Encoder: 
● standard Transformer



Pre-training Methods

● The idea is simple: The positive pairs are just images with the associated textual descriptions: (I ,T ); the unpaired 
images and text are just negative pairs.

● Given a batch of B (image-text) pairs, we maximize the similarity between B correct pairs of image-text associations 
while minimizing the similarity for the other B(B−1) incorrect pairs via a symmetric (along rows and columns) 
cross-entropy loss.



Inference

Example:

Input: 
● choices (label): [“a”, “b”, “c”]
● Image

Model Output:
● The probability of this image 

that belongs to each label

Enssentially, model is like solving 
multiple choice problems instead 
of prediction or generation proble



Prompting Engineering and Ensembling

● After CLIP is pre-trained, it performs zero-shot classification by 
comparing an image’s embedding to text embeddings of possible 
class names

● Problems: 
1. Polysemy : e.g. ImagaNet construction crane v.s. crane (animal).
2. Distribution Gap

● Solution: 

(a) create prompt template:  "A photo of a {label}"

(b) Further customized prompt to specific task : "A photo of a {label}, a 
type pf pet"

(c) Prompt Ensembling: 

Encode each one with CLIP’s text encoder → obtain embeddings 
→ average them to form a single, more stable class representation



CLIP: Zero-shot and Few-shot Generalization



CLIP: Linear-Probe Transfer Learning

● Linear Probe Transfer: Linear Classifier on features extracted by CLIP.



CLIP: Robustness to Distribution Shift



Limitations

● Poor performance on fine-grained classification
○ differentiating between models of cars, species of flowers, and variants of 

aircraft. 
● Poor Generalization on data that is truly out-of-distribution for it

○ worse classification on MINST even compared to logistic regression

● CLIP performs zero-shot classification but can only choose from predefined 
concepts, limiting its flexibility compared to models that generate free-form 
descriptions.

○ Multiple choice → QA 

● Poor Data efficiency

● Not choosing State-of-art baseline models (e.g. Huge ViT..)

○
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Motivation & Background

Text-only LLMs (ChatGPT, GPT-4) can 
follow instructions but cannot see images.

Vision models (like CLIP) can recognize 
objects but cannot understand language 
instructions.

build a general-purpose multimodal assistant that can follow 
vision + language commands



Overview of LLaVA

Vision Encoder: CLIP (ViT-L/14) extracts visual features ZvZ_vZv .

Projection Layer W: Maps ZvZ_vZv  into Vicuna’s embedding space.

Language Model fφ: Vicuna 13B generates responses based on both image and text.

Inputs: Image (XvX_vXv ) and Instruction (XqX_qXq );
 

Output: Language response (XaX_aXa ).



Generating Multimodal Instruction Data
Major problem → no large dataset for image + 
instruction + answer.

Solution → use GPT-4 as a teacher to generate 
synthetic Q&A data.

Start from image–caption pairs, feed caption text 
to GPT-4, and ask it to create natural Q&A.

Three data types:

1. Conversation questions

2. Detailed descriptions

3. Complex reasoning

Total ≈ 158 K instruction samples



Two-Stage Visual Instruction Tuning
Stage 1 – Feature Alignment:

● 595 K image–caption pairs (CC3M).

● Train projection W only to align visual features 
to text space.

Stage 2 – End-to-End Fine-Tuning:

● Freeze CLIP; train W + Vicuna on 158 K GPT-4-generated 
samples.

● Objective: next-token prediction given image and instruction.



LLaVA as a Visual Chatbot

Image shows a man ironing clothes on top of a taxi.

Question: “What is unusual about this image?”

LLaVA → correctly reasons that it’s unsafe and unusual.

BLIP-2 → just describes the scene.

OpenFlamingo → incorrect answer.

Demonstrates true instruction-following beyond captioning.



Benchmarking on LLaVA-Bench

Two benchmarks:
 • COCO subset (standard images)
 • In-the-Wild (real diverse images)

Metrics: helpfulness, accuracy, and detail 
(scored by GPT-4).

Performance:
 • LLaVA ≈ 85 % of GPT-4 on COCO
 • +29 % vs BLIP-2, +48 % vs OpenFlamingo on 
In-the-Wild



Where LLaVA Still Struggles

Fine-grained text or logos in images → difficult for 
CLIP-based encoder.

Example 1: Ichiran Ramen — fails to read 
restaurant name.

Example 2: Fridge image — misidentifies 
“strawberry yogurt.”

Root cause: model treats image as disconnected 
patches, lacking global context.



Multimodal Reasoning on Science QA

Dataset: 21 K multimodal science questions.

Baselines: GPT-3.5, LLaMA-Adapter, MM-CoT, etc.

LLaVA alone: 90.9 % accuracy.

LLaVA + GPT-4 (Judge mode): 92.5 % — new state of 
the art.

Shows strong complementarity between visual and 
language reasoning.



Ablation Studies and Key Insights

Using pre-last-layer CLIP features → +0.96 
% gain.

“Reasoning-first” training converges faster.

Removing Stage 1 pre-training → –5.1 % 
accuracy drop.

Larger Vicuna (13 B vs 7 B) → +1 % gain.



Takeaways and Future Directions
First work to apply instruction tuning to vision + 
language.

Uses GPT-4 as a data generator and teacher.

LLaVA achieves ~85 % of GPT-4 multimodal 
performance while fully open-source.

SOTA on Science QA (92.5 %).

Future: higher resolution, richer tasks, and real 
user interactions.



NExT-GPT:Any-to-AnyMultimodal LLM

Wu, Shengqiong, et al. "Next-gpt: Any-to-any multimodal llm." Forty-first International 
Conference on Machine Learning. 2024.

Authors: Shengqiong Wu et al., 2024



What the paper claims

● Goal: Build one LLM-centric system that can take any mix of inputs 
(text/image/video/audio) and output any mix back—“any-to-any.”

● Key idea: Keep powerful modality encoders/decoders frozen and only train 
small projection layers + light LLM adapters. They report only ~1% of 
parameters are updated.

● Training tricks:
○ (1) Encoding-side alignment so non-text modalities become “LLM-understandable”;
○ (2) Decoding-side alignment so the LLM can trigger image/audio/video decoders via learned 

signal tokens;
○ (3) MosIT instruction tuning for multi-turn, modality-switching dialogues.





Core method

1. Multimodal encoding. Uses ImageBind (unified encoder) for 
image/audio/video; a small input projection maps each modality into a 
language-like space the LLM can read.

2. LLM reasoning. Core is Vicuna-7B. The LLM emits (a) normal text and (b) 
special modality signal tokens that tell which generators to fire.

3. Multimodal generation. Output projection adapts those signal tokens for the 
appropriate diffusion decoders: Stable Diffusion v1.5 (images), Zeroscope 
(video), AudioLDM (audio). Decoders are kept frozen.



Core method

What’s actually trained?

Only the input and output projection stacks (plus tiny LoRA on the LLM during 
instruction tuning).



Encoding-side LLM-centric Alignment

● Problem: encoders give patch/grid features that don’t line up with token 
semantics.

● Fix: a grouping mechanism aggregates patches into higher-level concept 
tokens before feeding the LLM.



Decoding-side Instruction-following Alignment

● The LLM learns to output signal tokens—[IMGi], [AUDi], [VIDi]—which mean 
“generate image/audio/video now.”

● Those soft token reps condition the frozen diffusion models; training also 
pulls token reps toward the text-condition embeddings used by the decoders



Modality-switching Instruction Tuning

MosIT = curated multi-turn, modality-switching dialogs covering >100 topics. 
Built from caption corpora (COCO/WebVid/AudioCaps), templated prompts via 
GPT-4, and paired media, total ~5K dialogs.



Zero-shot evaluation of image captioning with CIDEr(↑) 
score

The table shows that NExT-GPT (Vicuna-7B) matches or outperforms previous open-source 
multimodal models on most zero-shot benchmarks, especially for image captioning (NoCaps, COCO) 
and several VQA tasks. Overall, it achieves the strongest or second-strongest results across 
captioning, question answering, and comprehensive evaluations.



Comparison of video reasoning

NExT-GGPT gets the best video captioning and audio captioning scores, and it also 
performs strongly on video QA, beating most earlier models.



Human EvaluationResults on 
text-to-image/audio/video 
generation

NExT-GPT generates the best overall 
images, audio, and videos among the 
compared models (lowest FID/FAD, highest 
CLIPSIM). Even its zero-shot version stays 
very competitive.

Humans rated NExT-GPT highest overall in 
following instructions, reasoning, and 
response quality compared with the 
pipeline baselines.
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Why Study Object Hallucination in LVLMs?

● LVLMs = LLMs + Vision Encoders 

→ powerful multimodal understanding.

● Problem: Object hallucination = LVLM 
generates objects not present in the image.

● Consequence: Degrades accuracy and 
reliability in real-world applications (e.g., 
autonomous driving).

● Goal: Systematically evaluate object 
hallucination in modern LVLMs.



Limitation of CHAIR

CHAIR (Caption Hallucination Assessment with Image Relevance)
 Measures the proportion of objects mentioned in the generated captions 
that do not actually exist in the image.

-CHAIR_I: (# Hallucinated Obj Instances in Caption ) / (Total Obj Instances) 

-CHAIR_s: (# Captions with ≥1 Hallucination) / (Total Captions) 

Findings:

● Most LVLMs exhibit more severe hallucination than traditional 
VLPMs (e.g., BLIP, VinVL).

● The evlaution results are highly sensitive to the prompt—even the 
same model can show doubled hallucination rates under different 
prompts.

● Caption length also affects the metric, making the evaluation 
unstable



What cause object hallucination?

Unbalanced object distribution

Frequently co-occurring 
object groups



Polling-based Object Probing Evaluation (POPE)

Figure 3: Overview of the POPE pipeline. Given an input image, POPE first extracts ground-truth objects in the image 
either from human annotations or with the help of automatic segmentation tools like SEEM. Then, POPE conducts negative 
sampling for nonexistent objects in the image under Random/Popular/Adversarial settings. Finally, the ground-truth objects 
and nonexistent objects are formulated into question templates to poll LVLMs.



Three Strategy of Sampling

● Random sampling: randomly sample 
objects that do not exist in the image

● Popular sampling: select top k most 
frequently occurring objects in the dataset 
but not present in the image

● Adversarial sampling: select top k most 
frequently co-occurring objects with the 
ground-truth

Negative Sampling in POPE



Evaluation on MSCOCO

Setup:

- Built POPE on the MSCOCO validation set.

-Selected 500 images with > 3 ground-truth 
objects.

-Constructed 6 Yes/No questions per image.

Findings:

- InstructBLIP achieves the highest F1 score, 
showing the least hallucination.

- Performance drops from Random → 
Popular → Adversarial



Advantages of POPE: Stability 

● POPE is less sensitive to instruction format.



Advantages of POPE: Scalability

● Extend POPE to datasets without manual annotations.
● Model performance trends remain consistent with annotation-based POPE 
● A performance gap appears (e.g., MiniGPT-4: F1 71.37 → 62.70)

 due to finer-grained segmentation from SEEM, which makes the task harder.



Advantages of POPE: Consistency

● Whether the Yes/No reflects the model’s perception of objects? 

Model InstrcutBLIP Mini-GPT-4

Number of “Yes” 664 961

Number of objects in captions 664 1034

Number of “No” 1303 1445

Number of objects in captions 0 5



Limitations

● Due to limited computational resources, experiments were conducted on subsets 
of the validation data, which may cause performance fluctuations arising from 
data distribution biases.

● The use of automatic segmentation tools may introduce inconsistencies in 
object labeling compared with human annotations, potentially affecting 
evaluation accuracy.

● Because POPE relies on keyword matching to interpret LVLM responses, 
evaluation errors can occur when models do not explicitly output the expected 
terms.




