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Background

: Two main directions of Visual Representation Learning before 2021

e Weakly supervised models
o Use massive image datasets but fixed label spaces (e.g.,
ImageNet-1k).
o  Strong accuracy but poor flexibility — can’t handle unseen
categories.
o Rely on static softmax classifiers — limited zero-shot capability.
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I, Language-supervised models (e.g., VirTex, ConVIRT)

: o Learn from image—caption pairs instead of discrete labels.
| o  Capture richer semantics and stronger vision-language
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alignment.
o  However, trained on small datasets (hundreds of thousands of
pairs) — lower performance.

Core limitation of both paradigms
e \Weakly supervised — large-scale but narrow semantics.
e Language-supervised — rich semantics but small-scale.
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Motivation for CLIP

e Bridge the gap between
scale and semantic
richness.

e Scale natural-language
supervision to hundreds
of millions of image—text
pairs.

e Introduce a contrastive
pre-training objective —
enables zero-shot
transfer across diverse
visual tasks.
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CLIP: Summarized Approach

(1) Contrastive pre-training (2) Create dataset classifier from label text
plane
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to
predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text)
training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or
descriptions of the target dataset’s classes.



Data and Encoder

/ Data Collection \

Data Volume:

Source: Collected from the internet (web pages,
social media, etc.).

Text Type: Typically image titles, alt-text, and
descriptive text.

Characteristics: Diverse data, high noise levels,
but broad coverage.

CLIP does not manually clean tags; instead, it
directly uses natural language descriptions as

\igervisogy signals." /

/ Encoder Selection \

Image Encoder:
e ResNet 50, RN101,
EfficientNet-style-model (RN50x4,
RN50x16, RN50x64 )

(Global average -> attention pooling for better adapt to
multiple semantic regions.)

e ViT-B/32, ViT-B/16, ViT-L/14

Text Encoder:
° standard Transformer
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Pre-training Methods

image_encoder - ResNet or Vision Transformer
text_encoder - CBOW or Text Transformer

I[n, h, w, c] - minibatch of aligned images
Tin, i1} - minibatch of aligned texts
W_i[d_i, d_e] - learned proj of image to embed
W_t[d_t, d_e] - learned proj of text to embed
t - learned temperature parameter

(1) Contrastive pre-training
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# scaled pairwise cosine similarities [n, n]
Image logits = np.dot(I_e, T_e.T) * np.exp(t)
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| # symmetric loss function
‘ ‘ labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=8)
In'Ty loss_t = cross_entropy_loss(logits, labels, axis=1)
loss (loss_i + loss_t)/2
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e Theidea is simple: The positive pairs are just images with the associated textual descriptions: (I ,T ); the unpaired
images and text are just negative pairs.

e Given a batch of B (image-text) pairs, we maximize the similarity between B correct pairs of image-text associations
while minimizing the similarity for the other B(B-1) incorrect pairs via a symmetric (along rows and columns)
cross-entropy loss.



Inference

(2) Create dataset classifier from label text
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Example:

Input:
e choices (label): [“a”, “b”, “c”]
e Image

Model Output:
e The probability of this image
that belongs to each label

Enssentially, model is like solving
multiple choice problems instead
of prediction or generation proble



Prompting Engineering and Ensembling
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After CLIP is pre-trained, it performs zero-shot classification by
comparing an image’s embedding to text embeddings of possible
class names

Problems:

Polysemy : e.g. ImagaNet construction crane v.s. crane (animal).
Distribution Gap

Solution:

create prompt template: ""A photo of a {label}"

Further customized prompt to specific task : "A photo of a {label}, a
type pf pet"

Prompt Ensembling:

Encode each one with CLIP’s text encoder — obtain embeddings
— average them to form a single, more stable class representation

imagenet_templates = [

bad photo of a {}.',
photo of many {}.',
sculpture of a {}.',

photo of the hard to see {}.',

low resolution photo of the {}.',

rendering of a {}.',
‘graffiti of a {}.",
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CLIP: Zero-shot and Few-shot Generalization
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CLIP: Linear-Probe Transfer Learning

Average Score (%)

90 1

Linear Probe Transfer: Linear Classifier on features extracted by CLIP.

Linear probe average over Kornblith et al.'s 12 datasets
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CLIP: Robustness to Distribution Shift

ImageNet Zero-Shot
Dataset Examples ResNet101 CLIP A Score
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Limitations

Poor performance on fine-grained classification
o differentiating between models of cars, species of flowers, and variants of
aircraft.
Poor Generalization on data that is truly out-of-distribution for it
o worse classification on MINST even compared to logistic regression

CLIP performs zero-shot classification but can only choose from predefined
concepts, limiting its flexibility compared to models that generate free-form
descriptions.

o Multiple choice — QA

Poor Data efficiency

Not choosing State-of-art baseline models (e.g. Huge ViT..)



Visual Instruction Tuning

Summary of “LLaVA: Large Language and Vision Assistant”

Authors: Haotian Liu, Chunyuan Li, Qingyang Wu, Yong Jae Lee (2023)

Liu, Haotian, et al. "Visual instruction tuning." Advances
in neural information processing systems 36 (2023):
34892-34916.



Motivation & Background

Text-only LLMs (ChatGPT, GPT-4) can Vision models (like CLIP) can recognize
follow instructions but cannot see images. objects but cannot understand language
instructions.

@OpenAI
@ ChatGPT CLIP

CONNECTING TEXT AND IMAGES

build a general-purpose multimodal assistant that can follow
vision + language commands



Overview of LLaVA

Vision Encoder: CLIP (ViT-L/14) extracts visual features ZvZ_vZv.

Projection Layer W: Maps ZvZ_vZv into Vicuna’s embedding space.

Language Model f: Vicuna 13B generates responses based on both image and text.

Inputs: Image (XvX_vXv) and Instruction (XgX_gXq);

Output: Language response (XaX_aXa).

Language Response X, Q Q Q

Language Model f b
alalayalae
Projection W H, f H,

Z,
Xq Language Instruction

Vision Encoder
X, Image

Figure 1: LLaVA network architecture.



Generating Multimodal Instruction Data

Major problem — no large dataset for image +
instruction + answer.

Solution — use GPT-4 as a teacher to generate
synthetic Q&A data.

Start from image—caption pairs, feed caption text
to GPT-4, and ask it to create natural Q&A.

Three data types:
1. Conversation questions
2.  Detailed descriptions
3.  Complex reasoning

Total = 158 K instruction samples
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Context type 1: Captions

A group of people standing outside of a black vehicle with various luggage.
Luggage surrounds a vehicle in an underground parking area

People try to fit all of their luggage in an SUV. 7
The sport utility vehicle is parked in the public garage, being packed for a tripf
Some people with luggage near a van that is transporting it.
Context type 2: Boxes

person: [0.681, 0.242, 0.774, 0.694], backpack: [0.384, 0.696, 0.485, 0.914], suitcase: ...<omitted>

Response type 1: conversation

Question: What type of vehicle is featured in the image?

Answer: The image features a black sport utility vehicle (SUV) ...<omitted>

Response type 2: detailed description

The image is an underground parking area with a black sport utility vehicle (SUV) parked. There
are three people in the scene, with one person standing closer to the left side of the vehicle, another
person in the middle, and the third person on the right side. They are all working together to pack
their luggage into the SUV for a trip. ...<omitted>

Response type 3: complex reasoning

Question: What challenges do these people face?

Answer: In the image, a group of people is standing outside a black SUV in a parking area,
surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the
challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks
to be packed, which suggests that the group has a significant amount of belongings ...<omitted>

J

Table 1: One example to illustrate the instruction-following data. The top block shows the contexts
such as captions and boxes used to prompt GPT, and the bottom block shows the three types of
responses. Note that the visual image is not used to prompt GPT, we only show it here as a reference.



Two-Stage Visual Instruction Tuning

Stage 1 — Feature Alignment: Stage 2 — End-to-End Fine-Tuning:
e 595 K image—caption pairs (CC3M). e  Freeze CLIP; train W + Vicuna on 158 K GPT-4-generated
samples.

e  Train projection W only to align visual features

to text space. e  Objective: next-token prediction given image and instruction.

Xsystem-message <STOP>
Human : X! . ... <STOP> Assistant: X! <STOP>
Human : X2 .. uce <STOP> Assistant: X2 <STOP> - - -

Table 2: The input sequence used to train the model. Only two conversation turns are illustrated
here; in practice, the number of turns varies based on the instruction-following data. In our current
implementation, we follow Vicuna-v0 [9] to set the system message Xgystem-nessage and we set
<STOP> = ###. The model is trained to predict the assistant answers and where to stop, and thus
only green sequence/tokens are used to compute the loss in the auto-regressive model.



Visual input example, Extreme Ironing:

LLaVA as a Visual Chatbot

Image shows a man ironing clothes on top of a taxi.

Source: https : //www. barnorama. com/wp- content/uploads/2016/12/03- Confusing-Pictures. jpg

User What is unusual about this image?
3
. . .. o LLaVA The unusual aspect of this image is a man ironing clothes on the back of a minivan or
Question: “What is unusual about this image” van. This is not a typical place to perform this activity, as one would usually iron clothes

in a more stationary and safe location, such as a home, using a regular ironing board.
The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a
vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how
LLaVA — co rrectly reasons that it's unsafe and unusual. the man is able to maintain balance and stability while ironing clothes in such an unstable
environment.
[Start a new conversation, and clear the history]
User ‘What’s happening in the scene?
. . LLaVA The image depicts a man standing on top of a yellow SUV in a busy city street. He is
BLIP-2 — JUSt describes the scene. holding a portable ladder, seemingly ironing clothes while standing on the vehicle. Around
the scene, there are other cars, a traffic light, and a fire hydrant. Additionally, there are
two other people in the vicinity, one close to the man on the car and another further away.
The man on the ladder appears to be attracting attention due to his unconventional choice

. : of ironing his clothes on top of a moving car. The city street around him is bustling with
open Flami ngo — incorrect answer. activity, adding to the unique nature of the scene.

User ‘What is unusual about this image?
GPT-4 [7] The unusual thing about this image is that a man is ironing clothes on an ironing board
. . . L attached to the roof of a moving taxi.
Demonstrates true instruction-following beyond captioning. e
User What is unusual about this image?
BLIP-2 a man is sitting on the back of a yellow cab
User What is unusual about this image?

OpenFlamingo The man is drying his clothes on the hood of his car.

Table 3: Example prompt from GPT-4 paper [ ] to compare visual reasoning and chat capabilities
Compared to BLIP-2 [ ] and OpenFlamingo [~], LLaVA accurately follows the user’s instructions,
instead of simply describing the scene. LLaVA offers a more comprehensive response than GPT-4
Even when merely asked to describe the image, LLaVA identifies atypical aspects of the image.



Benchmarking on LLaVA-Bench

Two benchmarks:
* COCO subset (standard images)
* In-the-Wild (real diverse images)

Metrics: helpfulness, accuracy, and detail
(scored by GPT-4).

Performance:

* LLaVA =85 % of GPT-4 on COCO

* +29 % vs BLIP-2, +48 % vs OpenFlamingo on
In-the-Wild

| Conversation Detail description ~Complex reasoning ~ All

Full data 83.1 75.3 96.5 85.1

Detail + Complex 81.5 c16) 73.3 20 90.8 57 81.9 32
Conv + 5% Detail + 10% Complex | 81.0 2 68.4 (7.1 91.5 50 80.5 (4.4
Conversation 76.5 6.6 59.8 (162 84.9 (124 73.8 (113
No Instruction Tuning 22.0 611 24.0 (513 18.5 (130 21.5 c63.6)

Table 4: Ablation on LLaVA-Bench (COCO) with different training data. We report relative scores
w.r.t. a text-only GPT-4 model that uses ground truth image captions and bounding boxes as visual
input. We prompt GPT-4 with the answers from our model outputs and the answers by GPT-4
(text-only), and let it compare between both responses and give a rating with an explanation.

| Conversation Detail description ~Complex reasoning ~ All

OpenFlamingo [°] | 19.3 £ 0.5 19.0 £ 0.5 19.1 £ 0.7 19.1 £ 0.4
BLIP-2 [7¢] 546+ 14 29.1+1.2 329 +0.7 381 £1.0
LLaVA 573+£19 525+63 81.7+1.8 673 +£2.0
LLaVAf 58.8 £ 0.6 49.2+0.8 814 +£03 66.7 0.3

Table 5: Instruction-following capability comparison using relative scores on LLaVA-Bench (In-the-
Wild). The results are reported in the format of mean + std. For the first three rows, we report three
inference runs. LLaVA performs significantly better than others. T For a given set of LLaVA decoding
sequences, we evaluate by querying GPT-4 three times; GPT-4 gives a consistent evaluation.



Where LLaVA Still Struggles

Challenging examples from LLaVA-Bench (In-the-Wild):

Fine-grained text or logos in images — difficult for
CLIP-based encoder.

Example 1: Ichiran Ramen — fails to read

restaurant name.

Example 2: Fridge image — misidentifies

“strawberry yogurt.”

Root cause: model treats image as disconnected
patches, lacking global context.

ICHIRAN Ramen [source]

Fi]fcd fridge [source]

Annotation

A close-up photo of a meal at ICHI-
RAN. The chashu ramen bowl with
a spoon is placed in the center. The
ramen is seasoned with chili sauce,
chopped scallions, and served with
two pieces of chashu. Chopsticks are
placed to the right of the bowl, still in
their paper wrap, not yet opened. The
ramen is also served with nori on the
left. On top, from left to right, the fol-
lowing sides are served: a bowl of or-
ange spice (possibly garlic sauce), a
plate of smoke-flavored stewed pork
with chopped scallions, and a cup of
matcha green tea.

An open refrigerator filled with a variety of food
items. In the left part of the compartment, towards
the front, there is a plastic box of strawberries with a
small bag of baby carrots on top. Towards the back,
there is a stack of sauce containers. In the middle
part of the compartment, towards the front, there
is a green plastic box, and there is an unidentified
plastic bag placed on it. Towards the back, there is a
carton of milk. In the right part of the compartment,
towards the front, there is a box of blueberries with
three yogurts stacked on top. The large bottle of
yogurt is Fage non-fat yogurt, and one of the smaller
cups is Fage blueberry yogurt. The brand and flavor
of the other smaller cup are unknown. Towards the
back, there is a container with an unknown content.

Question 1

‘What’s the name of the restaurant?

What is the brand of the blueberry-flavored yogurt?

Question 2

Describe this photo in detail.

Is there strawberry-flavored yogurt in the fridge?

Table 6: Challenging examples from LLaVA-Bench (In-the-Wild), we provide extremely-detailed
annotation for each image for an accurate evaluation. Some questions require the model to extract
details from high resolution image and to have a broad knowledge coverage.



Multimodal Reasoning on Science QA

Dataset: 21 K multimodal science questions.

Baselines: GPT-3.5, LLaMA-Adapter, MM-CoT, etc.

LLaVA alone: 90.9 % accuracy.

LLaVA + GPT-4 (Judge mode): 92.5 % — new state of
the art.

Shows strong complementarity between visual and
language reasoning.

Subject Context Modalit Grade
Meiliod NAT SOC LAN | TXT IMG NO | Gl6 G-z | Average
Representative & SoTA methods with numbers reported in the literature
Human [#4] 90.23 8497 8748 | 89.60 87.50 88.10 | 91.59 8242 88.40
GPT-3.5 [4] 74.64 69.74 76.00 | 74.44 67.28 77.42 | 76.80 68.89 73.97
GPT-3.5 w/ CoT [4] 7544 70.87 78.09 | 74.68 67.43 79.93 | 78.23  69.68 75.17
LLaMA-Adapter [5“] 84.37 8830 8436 | 83.72 80.32 86.90 | 85.83 84.05 85.19
MM-CoTBase [01] 87.52 77.17 8582 | 87.88 8290 86.83 | 84.65 8537 8491
MM-CoTrarge [01] 9591 82.00 90.82 | 95.26 88.80 92.89 | 92.44 90.31 91.68
Results with our own experiment runs
GPT-4t 84.06 73.45 8736 | 81.87 70.75 90.73 | 84.69 79.10 82.69
LLaVA 90.36 9595 88.00 | 89.49 88.00 90.66 | 90.93 90.90 90.92
LLaVA+GPT-4' (complement) | 90.36 95.50 88.55 | 89.05 87.80 91.08 | 92.22 88.73 90.97
LLaVA+GPT-4' (judge) 91.56 96.74 91.09 | 90.62 88.99 93.52 | 92.73 92.16 92.53

Table 7: Accuracy (%) on Science QA dataset. Question categories: NAT = natural science, SOC =
social science, LAN = language science, TXT = text context, IMG = image context, NO = no context,
G1-6 = grades 1-6, G7-12 = grades 7-12. TText-only GPT-4, our eval. Our novel model ensembling
with the text-only GPT-4 consistently improves the model’s performance under all categories, setting

the new SoTA performance.



Ablation Studies and Key Insights

Using pre-last-layer CLIP features — +0.96 Visual features Before Last

7o gain. Best variant 90.92 89.96 (096)
Predict answer first 89.77 (-1.15)

Training from scratch | 85.81 511y -
7B model size 89.84 (108) -

“Reasoning-first” training converges faster.

Removing Stage 1 pre-training — —5.1 %
accuracy drop.

Table 8: Design choice ablations (%). The differ-
ence with the best variant is reported in red text.

Larger Vicuna (13 B vs 7 B) —» +1 % gain.



Takeaways and Future Directions

First work to apply instruction tuning to vision +
language.

Uses GPT-4 as a data generator and teacher.

LLaVA achieves ~85 % of GPT-4 multimodal
performance while fully open-source.

SOTA on Science QA (92.5 %).

Future: higher resolution, richer tasks, and real
user interactions.

LLaVA: Large Language and Vision Assistant

Visual Instruction Tuning
NeurIPS 2023 (Oral)
Haotian Liu®, Chunyuan Li", Qingyang Wu, Yong Jae Lee

University of Wisconsin-Madison P> Microsoft Research P> Columbia University
"Equal Contribution

A [NEW!] LLaVA-1.5 achieves SoTA on 11 benchmarks, with just simple modifications to the original LLaVA, utilizes all
public data, completes training in ~1 day on a single 8-A100 node, and surpasses methods that use billion-scale data.

LLaVA represents a novel end-to-end trained large multimodal model that combines a vision encoder and Vicuna for
general-purpose visual and language understanding, achieving impressive chat capabilities mimicking spirits of the
multimodal GPT-4 and setting a new state-of-the-art accuracy on Science QA.



NEXT-GPT:Any-to-AnyMultimodal LLM

Authors: Shenggiong Wu et al., 2024

Wu, Shenggiong, et al. "Next-gpt: Any-to-any multimodal llm." Forty-first International
Conference on Machine Learning. 2024.



What the paper claims

e Goal: Build one LLM-centric system that can take any mix of inputs
(text/image/video/audio) and output any mix back—"any-to-any.”

e Key idea: Keep powerful modality encoders/decoders frozen and only train
small projection layers + light LLM adapters. They report only ~1% of
parameters are updated.

e Training tricks:
o (1) Encoding-side alignment so non-text modalities become “LLM-understandable”;

o (2) Decoding-side alignment so the LLM can trigger image/audio/video decoders via learned
signal tokens;

o (3) MosIT instruction tuning for multi-turn, modality-switching dialogues.
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Figure 1. By connecting LLM with multimodal adaptors and diffusion decoders, NEXT-GPT achieves universal multimodal understanding and any-to-any
modality input and output. ““and ®represent the frozen and trainable modules, respectively.



Core method

1.  Multimodal encoding. Uses ImageBind (unified encoder) for
image/audio/video; a small input projection maps each modality into a
language-like space the LLM can read.

2. LLM reasoning. Core is Vicuna-7B. The LLM emits (a) normal text and (b)
special modality signal tokens that tell which generators to fire.

3. Multimodal generation. Output projection adapts those signal tokens for the
appropriate diffusion decoders: Stable Diffusion v1.5 (images), Zeroscope
(video), AudioLDM (audio). Decoders are kept frozen.



Core method

Table 1. Summary of NExT-GPT system configuration. Only 1% of parameters need updating during fine-tuning.

Encoder Input Projection LLM Output Projection Diffusion
Name Param Name Param Name Param Name Param Name Param
Text — — — — — — — —
Image Vicuna 7B Transformer 3IM®G SD 1.3B
Audio ImageBind 1.2B Grouping 28M % (LoRA 33M#) Transformer 3IM® AudioLDM 975M
Video Transformer 32M® Zeroscope 1.8B

What’s actually trained?

Only the input and output projection stacks (plus tiny LoRA on the LLM during

instruction tuning).



Encoding-side LLM-centric Alignment

e Problem: encoders give patch/grid features that don’t line up with token

semantics.
e Fix: a grouping mechanism aggregates patches into higher-level concept

tokens before feeding the LLM.
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Decoding-side Instruction-following Alignment

e The LLM learns to output signal tokens—[IMGi], [AUDI], [VIDi]—which mean
“‘generate image/audio/video now.”

e Those soft token reps condition the frozen diffusion models; training also
pulls token reps toward the text-condition embeddings used by the decoders
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Modality-switching Instruction Tuning

MosIT = curated multi-turn, modality-switching dialogs covering >100 topics.
Built from caption corpora (COCO/WebVid/AudioCaps), templated prompts via
GPT-4, and paired media, total ~5K dialogs.
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Zero-shot evaluation of image captioning with CIDEr(1)
score

Table 2. Zero-shot evaluation of image captioning with CIDEr (1) score on NoCaps (Agrawal et al., 2019), Flickr 30K (Young et al., 2014) and COCO
(Karpathy & Fei-Fei, 2017), and image question answering on VQAv? (Goyal et al., 2017), VizWiz (Gurari et al., 2018) and OKVQA (Marino et al.,
2019), and two evaluation-only benchmarks, MMB (Liu et al., 2023c) and SEED (Li et al., 2023a). The best results are marked in bold, and the second
ones are underlined.

Model Version Image Captioning Image Question Answering Comprehensive
NoCaps Flickr 30K COCO VQA'? VizWiz OKVQA MMB SEED
InstructBLIP (Dai et al., 2023) Vicuna-7B 123.1 82.4 102.2 - 334 33.9 36.0 -
LLaVA (Liu et al., 2023b) LLaMA-2-7B-Chat  120.7 82.7 - - - - 36.2 -
mPLUG-OwI (Ye et al., 2023b) LLaMA-7B 117.0 80.3 119.3 - 39.0 - 46.6 34.0
Emu (Sun et al., 2023) LLaMA-7B - - 117. 40.0 35.4 34.7 - -
DREAMLLM (Dong et al., 2023) Vicuna-7B - - 1154 56.6 45.8 44.3 49.9 -
Video-LLaVA (Lin et al., 2023) Vicuna-7B - - - 74.7 48.1 - 60.9 -
NExT-GPT Vicuna-7B 123.7 84.5 124.9 66.7 48.4 52.1 58.0 57.5

The table shows that NExT-GPT (Vicuna-7B) matches or outperforms previous open-source
multimodal models on most zero-shot benchmarks, especially for image captioning (NoCaps, COCO)
and several VQA tasks. Overall, it achieves the strongest or second-strongest results across
captioning, question answering, and comprehensive evaluations.



Comparison of video reasoning

Table 3. Comparison of video reasoning tasks on MSRVTT (Xu et al., 2016), MSVD-QA and MSRVTT-QA (Xu et al., 2017) and NExTQA (Xiao et al.,
2021), and the audio captioning task on AudioCaps (Kim et al., 2019). Scores with * means being fine-tuned on the training dataset.

Model Version Video Captioning Video Question Answering Audio Captioning
MSR-VTT MSVD-QA MSRVTT-QA NExTQA AudioCaps

Codi (Tang et al., 2023) - 74.4* - - - 78.9*
UIO-2XXL (Lu et al., 2023) 6.8B 48.8* 41.5 921 - 48.9*
Video-LLaMA (Zhang et al., 2023c) LLaMA-7B - 51.6 - 29.6 -
Video-LLaVA (Lin et al., 2023) Vicuna-7B - 70.7 59.2 - -

Emu (Sun et al., 2023) LLaMA-7B - 324 14.0 6.8 -
NEXT-GPT Vicuna-7B 76.2* 64.5 61.4 50.7 81.3*

NEXT-GGPT gets the best video captioning and audio captioning scores, and it also
performs strongly on video QA, beating most earlier models.



Results on

text-to-image/audio/video
generation

Table 4. Results on text-to-image/audio/video generation (MS COCO
(Lin et al., 2014), AudioCaps (Kim et al., 2019), and MSRVTT (Xu et al.,
2016)). f: zero-shot results.

Image Audio Video
Model
FID (/) FAD (}) CLIPSIM (1)
SD-1.5 (Wang et al., 2022c¢) 11.21 - -
Codi (Huang et al., 2023a) 11.26 1.80 28.90
AudioLDM-L (Liu et al., 2023a) - 1.96 -
GILL-8BT (Koh et al., 2023) 12.20 i -
Emu-13BT (Sun et al., 2023) 11.66 - -
UIO-2XXL (Lu et al., 2023) 13.39 2.64 -
'NExXT-GPT 10.07 1.68 3197
NEXT-GPTT 11.18 1.74 30.96

Human Evaluation

HuggingGPT = Visual-ChatGPT =~ NEXT-GPT-caption = NExT-GPT

@
© o

Evaluation Scale
o N 3
N

ot

Instruction Following Rationality Quality

Figure 5. Human Evaluation (1-100 scale, results are on average) of
NEXT-GPT in comparison with pipeline baselines.

Humans rated NExT-GPT highest overall in
following instructions, reasoning, and
response quality compared with the
pipeline baselines.

NEXT-GPT generates the best overall
images, audio, and videos among the
compared models (lowest FID/FAD, highest
CLIPSIM). Even its zero-shot version stays
very competitive.
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What is the unusual part of
this video?

The unusual part of this video is that a dog is
riding a skateboard. It is not common to see a
dog on a skateboard, as dogs are typically not
able to ride skateboards or bicycles. This scene
is unique and interesting because it showcases
a dog's ability to adapt and participate in
human-made activities, demonstrating its
intelligence and adaptability.

That is pretty cool. How about adding some
music to make this scene look more funny?

Certainly! Here's a synthesized music track
that could enhance the humor and
lightheartedness of the scene:

> om, o i

Do you have any other similar unusual scenes?
Show them.
@ I have a set of such
- kinds of scenes:

[
A

E!

&

&

I am in a bad mood, so bad so sad.

I am sorry to hear about that. Sometimes, it is
hard to shake off a bad mood. Have you tried
listening to some lifting music or watching a
comedy to cheer you up?

Can you show something to cheer me up?

Sure, here's a video of
a cute puppy playing
in the park. It always
makes me feel better.

(B)

I need to prepare my presentation for my
history class, can you give some inspiration?

0f course! History is a fascinating subject. One
approach you could take is to create a timeline
presentation. You can use images, videos, and
text to show the progression of events and
highlight key moments in history. ...

Can you show me some examples?

Certainly! Here are a few examples of timeline
presentations and historical figures :1.2.3.

Figure 4. Qualitative examples showcasing the interpretative and generative capabilities of NEXT-GPT across diverse modalities or their combinations.

(A)

()




Evaluating Object Hallucination in Large
Vision-Language Models

Authors: Yifan et al., 2023

Li, Yifan, et al. "Evaluating object hallucination in large vision-language
models." arXiv preprint arXiv:2305.10355 (2023).



Why Study Object Hallucination in LVLMs?

e LVLMs =LLMs + Vision Encoders

— powerful multimodal understanding.

e Problem: Object hallucination = LVLM

generates objects not present in the image.

e Consequence: Degrades accuracy and
reliability in real-world applications (e.g.,
autonomous driving).

e Goal: Systematically evaluate object
hallucination in modern LVLMs.

Instruction-based evaluation H POPE

Random settings

p i
Provide a detailed description of the given i

i

i

: [ ] . .
| image. P9 ‘ Is there a bottle in the image? J
, : . &
The image features a table with a variety ' { Yes, there is a bottle in the image. ] :ﬂ,,"\
of food items displayed in bowls. There !
are two bowls of food, one containing a !&j .
mix of vegetables, such as broccoli and | &= ! Popular settings
carrots, and the other containing meat. [ . . % ‘
The bowl with vegetables is placed closer 2 - ‘ D0 TG, )
to the front, while the meat bowl is ! 5 e K &
situated behind it. In addition to the main : [ Yes, there is a knife in the image. } :.;7‘
dishes, there is an apple placed on the !
table, adding a touch of fruit to the meal. A !
bottle can also be seen on the table, L Adversarial settings
possibly containing a beverage or Ve [ R . B
condiment. The table is neatly arranged, | AR Is there a pear in the image?
showcasing the different food items in an H &
appetizing manner. H { Yes, there is a pear in the image. ] :-;1
|

Figure 1: Cases of object hallucination in LVLMs. Bold objects are ground-truth objects in the annotations and
red objects are hallucinated objects by LVLMs. The left case is from the traditional instruction-based evaluation
method, and the right cases are from three variants of POPE.



Limitation of CHAIR

I  Model CHAIR; CHAIRg Len
OSCARBgse 7.1 13.0 -
VinVLigge 5.5 10.5 -

" OFAvruyge 4.7 8.9 -
BLIPLarge 4.7 8.8 -
mPLUG-Owl 14.8 254 35.8
LLaVA 10.5 32.7 64.3

I;  MultiModal-GPT 11.1 15.0 11.6
MiniGPT-4 6.7 9.5 24.7
InstructBLIP 2.6 3.7 8.5
mPLUG-Owl 30.2 76.8 98.5
LLaVA 18.8 62.7 90.7

I>  MultiModal-GPT 18.2 36.2 45.7
MiniGPT-4 9.2 315 116.2
InstructBLIP 2.5 34 7.5

Table 1: Results of CHAIR on VLPMs and LVLMs. I
denotes “Generate a short caption of the image” and I
denotes “Provide a brief description of the given image”.
Len refers to the average length of generated captions.
The results of VLPMs (OSCAR, VinVL, BLIP, and
OFA) are collected from Dai et al. (2023b). The best

results in each block are denoted in bold.

CHAIR (Caption Hallucination Assessment with Image Relevance)
Measures the proportion of objects mentioned in the generated captions
that do not actually exist in the image.

-CHAIR _I: (# Hallucinated Obj Instances in Caption ) / (Total Obj Instances)

-CHAIR_s: (# Captions with 21 Hallucination) / (Total Captions)

Findings:

e  Most LVLMs exhibit more severe hallucination than traditional
VLPMs (e.g., BLIP, VinVL).

e  The evlaution results are highly sensitive to the prompt—even the
same model can show doubled hallucination rates under different
prompts.

e  Caption length also affects the metric, making the evaluation
unstable



What cause object hallucination?

v 600 HEEE MiniGPT-4
o4 LLaVA
. o £s00 MultiModal-GPT
Unbalanced object distribution 5400 mE MPLUG-OWI
2300
o
2200
©
T 100
0 — |

person dining table chair ar book ‘bottle cat horse toilet

(a) Hallucination times of top ten frequently appearing objects, whose frequencies decrease from right to left.

60 B MiniGPT-4
“E" LLaVA
520 MultiModal-GPT
540 B mPLUG-OwI
. 230
Frequently co-occurring -
object groups =
) group 210 I I
0 — ml

person chair cup bowl bottle laptop knife book fork vase

(b) Hallucination times of top ten objects co-occurring with “dining table”, whose frequencies decrease from right to left.

Figure 2: Hallucination times of frequently appearing/co-occurring objects in MSCOCO.




Polling-based Object Probing Evaluation (POPE)

Human annotation

>

Automatic annotation :

>

(" ™
Ground-truth objects Nonexistent objects
Random: dog, apple, ...
person, chair, umbrella, | Negative _
. | | Popular: table, knife, ...
sand, sea, ... sampling
Adversarial: surfboard, ...
4 J N 7
"""""" Polling questions

Q: Is there a person in the image?
A: Yes.

Q: Is there a dog in the image?
A: No.

Q: Is there a chair in the image?
A: Yes.

Q: Is there a table in the image?
A: No.

Q: Is there an umbrella in the image?
A: Yes.

o ——— —

Q: Is there a surfboard in the image?

LA:No.

Figure 3: Overview of the POPE pipeline. Given an input image, POPE first extracts ground-truth objects in the image

either from human annotations or with the help of automatic segmentation tools like SEEM. Then, POPE conducts negative
sampling for nonexistent objects in the image under Random/Popular/Adversarial settings. Finally, the ground-truth objects
and nonexistent objects are formulated into question templates to poll LVLMs.



Negative Sampling in POPE

Three Strategy of Sampling

e Random sampling: randomly sample

e Adversarial sampling: select top k most
frequently co-occurring objects with the
ground-truth

Adversarial settings

fe
)

Is there a pear in the image? J

Yes, there is a pear in the image. ] tg;\

. . . . POPE
objects that do not exist in the image Haiomselfings
| andom settin,
i & { Is there a bottle in the image? }
| &
. } Yes, there is a bottle in the i s o
e Popular sampling: select top k most ; (e treis ot n i 18
frequently occurring objects in the dataset i —
but not present in the image 3 &[Isthereameinmmge? J
i {Yes, there is a knife in the image. ] :é;

o




Evaluation on MSCOCO

Dataset POPE Model Accuracy Precision Recall | F1 Score | Yes (%) Se tu .

mPLUG-Owl 53.30 51.71 99.53 68.06 96.23 P
LLaVA 54.43 52.32 99.80 68.65 95.37 . ] ]

Random  MultiModal-GPT ~ 50.03 5002  100.00 | 66.68 | 99.97 - Built POPE on the MSCOCO validation set.
MiniGPT-4 77.83 75.38 82.67 78.86 54.83
InstructBLIP 88.73 85.08 93.93 89.29 55.20 -Selected 500 images with > 3 ground-truth
mPLUG-Owl 50.63 5032 99.27 | 66.79 98.63 objects.
LLaVA 52.43 51.25 99.80 67.72 97.37

MSCOCO Popular MultiModal-GPT 50.00 50.00 100.00 66.67 100.00 -Constructed 6 Yes/No questions per image.

MiniGPT-4 68.30 64.27 82.40 72.21 64.10
InstructBLIP 81.37 75.07 93.93 83.45 62.57
mPLUG-Owl 50.67 50.34 99.33 66.82 98.67 . .
LLaVA 5077 5039  99.87 | 6698 | 99.10 Findings:

Adversarial MultiModal-GPT 50.00 50.00 100.00 66.67 100.00
MiniGPT-4 66.60 6245 8327 | 7137 | 66.67 - InstructBLIP achieves the highest F1 score,
InstructBLIP 74.37 67.67 93.33 78.45 68.97 . L

showing the least hallucination.
Table 3: Results of LVLMs under three evaluation settings of POPE on the validation set of MSCOCO. Yes denotes
the proportion of answering “Yes” to the given question. The best results in each block are denoted in bold. - Performance drops from Random —
Popular — Adversarial

| -




Advantages of POPE: Stability

POPE is less sensitive to instruction format.

POPE CHAIR
Prompt F1 Score Prompt CHAIR;
Is there a <object> in the image? 68.65 Generate a short caption of the image. 10.50
Does the image contain a <object>? 66.83 Provide a brief description of the image. 18.80
Have you noticed a <object> in the image? 66.67 Generate a concise description for the image. 14.60
Can you see a <object> in the image? 67.58 Create a short textual summary for the image. 11.60
Avg+Std. 67.4310.78 13.88+3.22

Table 4: Evaluation results of LLaVA on POPE and CHAIR with different prompt templates.



Advantages of POPE: Scalability

e Extend POPE to datasets without manual annotations.
e Model performance trends remain consistent with annotation-based POPE
e A performance gap appears (e.g., MiniGPT-4: F1 71.37 — 62.70)
due to finer-grained segmentation from SEEM, which makes the task harder.

Dataset POPE Model Accuracy Precision Recall | F1 Score F1 Score (Truth) | Yes (%)

LLaVA 50.47 50.24 99.67 66.80 68.65 99.20

Random MiniGPT-4 73.77 79.25 64.40 71.06 78.86 40.63

InstructBLIP 86.60 80.74 96.13 89.29 89.27 59.53

LLaVA 50.00 50.00 99.27 66.50 67.72 99.27

MSCOCO Popular MiniGPT-4 67.80 68.80 65.13 66.92 72.21 47.33
InstructBLIP 71.27 64.20 96.13 76.99 83.45 74.87

LLaVA 49.77 49.88 99.20 66.38 66.98 99.43

Adversarial MiniGPT-4 61.93 61.46 64.00 62.70 71.37 52.07

InstructBLIP 62.53 57.50 96.13 71.96 78.45 83.60

Table 5: SEEM-based POPE results of LVLM on MSCOCO. F1 Score (Truth) are the results of POPE using
ground-truth annotations, which are copied from Table 3. The best results in each block are denoted in bold.



Advantages of POPE: Consistency

e Whether the Yes/No reflects the model’s perception of objects?

Model InstrcutBLIP Mini-GPT-4
Number of “Yes” 664 961
Number of objects in captions 664 1034
Number of “No” 1303 1445

Number of objects in captions 0 5



Limitations

e Due to limited computational resources, experiments were conducted on subsets
of the validation data, which may cause performance fluctuations arising from
data distribution biases.

e The use of automatic segmentation tools may introduce inconsistencies in
object labeling compared with human annotations, potentially affecting
evaluation accuracy.

e Because POPE relies on keyword matching to interpret LVLM responses,
evaluation errors can occur when models do not explicitly output the expected

terms.






