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BACKGROUND:
WHY CONTAMINATION MATTERS

• Benchmark datasets are critical for evaluating how well 
models generalize.

• If benchmark data leaks into pretraining, evaluations 
become unreliable.

• Large-scale web data often includes public benchmarks 
(e.g., Wikipedia).

• As a result, models may memorize rather than learn, 
leading to inflated scores.

• To ensure fair comparisons, we need a way to check 
whether a model has seen the test set, even if it’s a black 
box.



WHAT IS 
TEST SET CONTAMINATION

• Definition: test examples (not train/dev) unintentionally included in the pretraining corpus.

• Why it happens: benchmarks are widely mirrored in public text that crawlers ingest.

• Observable effect: the model assigns unusually high likelihood to these exact items.

• Why we care: reported accuracy reflects leakage, not generalization; decisions become 
misleading.

• Detection challenge: only API probabilities are available; no data or weights.

• Restated problem: from output probabilities alone, decide whether the model has seen the 
test set.



RESEARCH GOAL 
& CHALLENGE
• Goal: find out whether the model’s training data contains benchmark test 

examples.

• We can only query the model and get its log-likelihood for each text.

• Two possibilities:
             H₀: No contamination; model never saw the test data.
             H₁: Contamination; the model remembers test examples.

• We need to design a test that can decide between them while keeping false 
alarms low.

• Key assumption: if the model never saw the data, changing the order should not 
matter.



• Many benchmarks are built so that order doesn’t matter.

• If the model hasn’t seen them, it should treat any order of 
samples the same.

• But if it has memorized the data, it will prefer the original order.

• We can compare the model’s likelihood for the original order 
versus shuffled orders.

• A clear and consistent difference means contamination is likely.

CORE IDEA:
EXCHANGEABILITY & ORDER BIAS
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METHOD 1: PERMUTATION TEST 
(ACCURATE BUT COSTLY)

• Step 1: compute the model’s total likelihood 
for the test set in its original order.

• Step 2: randomly shuffle the samples many 
times and recompute likelihoods.

• Step 3: check how often the shuffled scores 
beat the original.

• The p-value is the fraction of shuffles with 
higher likelihood.

• This gives an exact test, but needs many 
shuffles to get a reliable result.

• Works well for small data but becomes 
expensive for large models.



METHOD 2: SHARDED LIKELIHOOD 
COMPARISON 
(EFFICIENT AND SCALABLE)

• To save time, split the benchmark into 
several shards.

• For each shard, compare the original order 
with a few shuffled versions.

• Record the difference in average likelihood 
for each shard.

• Run a simple t-test to check if the mean 
difference is positive.

• This gives a smoother p-value and works 
with fewer computations.

• It is faster but still statistically sound for 
large datasets.



THEORETICAL GUARANTEES: 
WHY IT WORKS

• Under no contamination, all orderings of the test set should give similar 
likelihoods.

• The permutation test perfectly controls false positives when this holds.

• The sharded test approximates this using the central limit theorem.

• Together they provide a reliable, provable way to detect contamination.

• This turns the idea of “test leakage” into something we can measure formally.



EXPERIMENT SETUP: 
CANARY VALIDATION

• A 1.4B-parameter GPT-2 model was trained on RedPajama data.

• Benchmarks like BoolQ, MMLU, and NQ were inserted into the training data.

• Each dataset was repeated 1, 10, 50, or 100 times to simulate different levels of 
contamination.

• The two tests were applied to see how easily contamination can be detected.

• The team also tested how the number of shards and shuffles affects the results.

• The main measures were detection rate, p-value, and runtime.



RESULTS: 
CANARY EXPERIMENTS

• When the test data is duplicated many times, contamination becomes 
easy to detect.

• One copy (r = 1): detection is almost impossible.

• Around four copies (r ≈ 4): detection starts to work reliably.

• Ten or more copies (r ≥ 10): p-values drop to extremely small levels.

• The sharded test reaches the same conclusion much faster than the 
permutation test.

• These results confirm the method works well in realistic settings.
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SENSITIVITY & 
HYPERPARAMETERS

• Best results when using 
about 10–20 shards—stable 
but still sensitive.

• More than 25 shuffles per 
shard doesn’t help much.

• The findings hold across 
different context sizes.

• Small datasets still give 
meaningful outcomes.

• These settings make the test 
practical even for large 
models.



LIMITATIONS:
 WHEN TO BE CAUTIOUS

• The test assumes data order doesn’t matter; this may not always be true.

• If the contamination happens only once, it’s almost impossible to detect.

• It cannot find cases where the model saw paraphrased or similar content.

• Using many benchmarks at once needs correction for multiple testing.

• Details like how the shuffles are made can change sensitivity.

• In short, it’s reliable for order-level leakage but not for deep semantic overlap.



FUTURE WORK 
& BROADER IMPACT

• Extend the method to catch semantic contamination, not just order effects.

• Improve power when the overlap is very small or rare.

• Combine this with dataset tracking to trace where leakage comes from.

• Encourage benchmark creators to randomize sample order by default.

• The overall goal is to make LLM evaluation more honest and transparent.



Q&A

• Q: How can future benchmark design reduce contamination risk?

• A: 
 Randomize sample order.
 Track provenance of data sources.
 Use hash-based test releases instead of full text.
 Maintain shared auditing tools before model release.



THANK YOU



[EvalPlus]
Is Your Code Generated by ChatGPT 
Really Correct? Rigorous Evaluation of 
Large Language Models for Code 
Generation

(Liu et al. 2023)

Presented by Hamza Iqbal





Background: Program Synthesis

• Generate code from user specifications
• OpenAI Codex, CodeGen, Claude Code

• Previously used metric: BLEU
• NLP metric used for translation, but unreliable since 2 fxns can both be correct

• Current benchmarks: HumanEval + MBPP
• Input: docstring + fxn signature

• Unit tests (avg 10)

• Output: pass@k =p(at least one of k generated solution passes all tests)



Limitations of Code Benchmarks

• Insufficient testing
• < 10 tests on avg, overly simplistic, edge cases not covered

• Result: logically incorrect solution passes all provided tests

• Imprecise instructions
• Vague docstrings (unspecified input domain, how to handle exceptions)

• Capable models with bad instructions = incorrect result



EvalPlus – a new rigorous framework

• GOAL: Improve benchmark tests to fully assess functional correctness
• Automatically generate a large number of additional test cases

• APPROACH: 
• Augment (then optionally reduce)

▪ Augments dataset with MANY new inputs via LLM + mutation-based fuzzing

▪ Optional: Reduce test inputs by selecting a maximally informative set of tests

• Differential testing: Compare ground truth to model output fxn (with all new inputs 
generated by LLM + mutation-based fuzzing)

• Example: HumanEval --> HumanEval+
• Test cases expanded by 80x





STEP 1: LLM Based Seed Input Generation

1. Prompt ChatGPT with following inputs
• Ground truth solution code

• Example input/outputs from original tests

• Prompt instruction 'Generate challenging test cases'

2. Result: Seeds hit interesting corners of inputs space

Quality of seeds:
ChatGPT used to find more nuanced 
and informative inputs (e.g. 
palindromic strings, weird boundary 
values). GPT can see the example 
vals + structure, thus more 
informative than random generation

Invalid Input Filtering:
Removes irrelevant input seeds 
(negative number when fxn expects 
positive). Removes outputs that 
violate problem domain or cause 
issues with reference soln.
ALSO: EvalPlus removes ChatGPT 
uninformative seeds (via program 
input contracts)



STEP 2: Type Aware Mutation Testing

1. Mutation-based Fuzzing
• Take ChatGPT seeds --> do iterative fuzzing (apply random mutations) --> add to 

updated pool if valid
• Mutations are generated with context to increase chances of valid inputs

▪ Data type respected during mutations (syntax still valid)

▪ Recursive or combinatorial mutations (mutating items within list)

▪ Ingredient reuse (if XYZ seen, inserts XYZ in mutated sample)

• Result: generate 100-1000 mutants that are more relevant/higher proportion of valid 
mutations





Program Input Contracts

• Explicit input assumptions
• Original Limitation: ambiguous request

• EvalPlus Modification
▪ Precondition assertions (ex. assert n > 0) added to ref. solution code

• Unreasonable test cases filtered

• Adding in these precondition assertions means LLMs

• Result: Contracts select for more valuable seeds

If a problem expects a positive integer, adding assert x > 0 at the top of the 
reference solution will automatically filter out any generated test where x is 0 or 
negative. Similarly, a contract like assert isinstance(s, str) would enforce that 
the input is a string. This way, EvalPlus focuses on valid inputs and sidesteps 
undefined behaviors.



Test-Suite Reduction

• HumanEval+ (augmented HumanEval) has 764 tests per case
• Reduce cases while keeping coverage?

• GOAL: Chose smaller subset of tests and maintain rigor

• Intuition: Find a subset of T' such that for every testing requirement fulfilled by 
T, T' satisfies it
• 3 Criteria: Coverage, Mutant Kills, LLM Sample Kills
• Combined criteria also evaluated

• Result: HumanEval+ Mini

• 764 --> 16 test cases/average

• 47x reduction!



Test-Suite Reduction cont

• Set Cover Formulation
• Find a subset of T' such that for every testing requirement fulfilled by T, T' satisfies it

▪ If bug found in T, needs to be found in T' (NP-hard Set Cover problem)

▪ Use greedy heuristics to approximate

▪ Reduction requirements

▪ Coverage: T′ should cover all the code branches that T covers (branch coverage criterion)

▪ Mutant kills: T′ should detect (fail) all the synthetic bugs (mutants of the reference 
solution)that T can detect

▪ Mutation testing is used here to gauge test strength – if a test fails a mutated buggy version of the 
solution, it’s killing that mutant

▪ LLM sample kills: T′ should fail all the incorrect LLM-generated solutions that T fails
▪ Gather a pool of wrong answers from various models and ensure the reduced suite catches each 

of those errors (using leave-one-out cross-validation to avoid bias)



• 26 popular LLMs evaluated on HumanEval+ suite
o multiple samples per problem (to compute 

pass@k) and considered both greedy and 
stochastic decoding

• Significant accuracy drop: Pass@k declined by 
anywhere from 19-29%
o Pass@1 (strict accuracy for the top answer) 

dropped by about 20% on HumanEval+ versus 
the original

o Pass@10 fell by roughly 25%, models 
succeeded on a quarter fewer tasks even 
when allowed 10 attempts

o Pass@100 (for those using many samples) 
saw up to a 28.9% reduction in success rate

• Interpretation: Solutions which seemed correct 
(passed the old tests) were revealed as incorrect 
by the new, rigorous tests. In effect, prior 
benchmarks were overestimating actual 
performance.



Results Discussion

• Changed rankings!
• Open source PhinD + WizardCoder better than ChatGPT --> improved tests = accurate 

rankings

• Universal decreases -- can we trust previous results dependent on HumanEval?
• Every model seems to have overinflated performance 

• Larger gaps with certain problems (multiple conditions)
• Default evaluation is too shallow, complex conditions are under-evaluated

• How much do model benchmarks relative to each other really mean?
• With non rigorous benchmarks, are certain models unfairly 'propped up'?



Benchmarking the Benchmark

• HumanEval ground truth solutions itself were flawed!
• 18/164 problems had issues in their own ground truth code

• Issues found
• Unhandled edge cases

• Logical bugs in solution

• Performance issues (large inputs timing out)





Takeaways

• Default benchmarks are overly optimistic and noisy (evidenced by new 
rankings)

• Using AI to help evaluate AI as a useful framework
• LLM use + smart fuzzing should work (and in theory get better!)

• Robust benchmarks = more robust models
• More complete evaluation = more focus on complete solutions, not overfit solutions

• Robust benchmarks = more confident deployment
• Deployment of AI has many failure modes, more coverage of input space should mean 

models evaluated on more real-world scenarios

• Defense against adversarial attacks should in theory be heightened



Limitations 

• Applied to Python only
• Correct ground truth solution needed
• Assumption of reference solution correctness

• Differential testing relies on this 

• Multiple valid solutions
• If not exact match (but still correct), would be flagged as incorrect

• Evaluation cost is very high
• 26 models × 164 problems × 1000 tests per problem × multiple tries...



So should we trust code generated by ChatGPT?

• NO (but people already do unfortunately), just trust it less, and more 
directly, take performance benchmarks espousing one model over the 
other with a grain of salt

• Benchmarks can be unreliable in terms of relative and absolute 
performance
• HumanEval --> HumanEval+ : 25% lower success rates

• As models (and the problems we ask them to solve) become more 
sophisticated, AI NEEDS to be used to generate commensurate benchmarks



Q&A 

• How do you ensure models don’t overfit to HUMANEVAL+’s LLM/mutation-
generated tests, and do gains on HUMANEVAL+ translate to unseen, real-
world bugs?
• Reduction uses leave one out sample-kill criterion, so ideally tests aren't tuned to 

the model under evaluation (along with branch coverage and mutant kills to keep 
structural adequacy)

• NO real-world benchmarks used – no validation for transfer



Large Language Models are not Fair 
Evaluators

Wang Et Al 2023

Presented by Hamza Iqbal



Motivation

• ChatGPT now used to judge AI-generated responses
• Serve as referees to compare examples

• More holistic and nuanced than previous metrics
• BLEU, ROUGE, BERTScore, BARTScore

• Humans > LLMs in quality
• LLMS << Humans in cost

• How well do they line up with human judgement?

• Reliability? Robustness?
• Does bias exist? And in what way?



Background – BLEU to GPT

• Similarity measures historically
• n-gram overlap: BLEU, ROGUE

• neural embeddings: BERTScore, BARTScore

• Poor correlation with human preferences
• Complex, open-ended tasks, missing fluency, factual accuracy, helpfulness

• Ex. High word overlap = high n-gram, but incoherent = bad

• LLMs as evaluators
• If a model can understand the nuance of language like humans, it can grade 

responses accurately, quickly, and cheaply



Vicuna Pipeline – 
pairwise comparison 
between models

Example Prompt:
“Please rate the helpfulness, accuracy, 
and detail of each assistant’s response 
on a 1–10 scale... ensure that the order 
in which the responses were presented 
does not affect your judgment.”

Interpretable: Verdict and explanation



Positional Bias – a simple prompt change

• Swapping order of responses can change 
evaluation outcome

• Positional bias: Who went first?

• Vicuna-13B < GPT
• Vicuna wins on 82.5% vs ChatGPT if first

• Even with explicit instructions to not let 
order affect judgement

• Easily gameable with if this is the case





Conflict Rate – quantifying positional bias

• Percentage of eval instances where the LLM gives different outcomes when 
responses are swapped 
• M swaps, N total comparisons --> CR = M/N 

• GPT-4 Judge
• Vicuna-13B vs ChatGPT: 46.3% 
• Vicuna-13B vs Alpaca-13B: 5.0%

▪ Alpaca is much weaker model

• ChatGPT Judge
• Vicuna-13B vs ChatGPT: 82.5%
• Vicuna-13B vs Alpaca-13B: 52.5%

▪ Alpaca is much weaker model

ChatGPT = weaker judge, MORE BIASED

Non-uniform bias:
GPT-4 preference: 1st position
ChatGPT preference: 2nd position



Conflict rate = High when models are similar capability
Weaker evaluator = more positional bias



Contribution – tackling positional bias

• Identified existence – models have positional bias
• Quantified bias – conflict rate shows us model to model order sensitivity

• Calibration Framework 
• Multiple Evidence Calibration

• Balanced Positions Calibration

• Human-in-the-Loop Calibration

• New Benchmark: 80 questions (from Vicuna set)
• Each question has human judgements of ChatGPT vs Vicuna as ground truth

▪ ChatGPT accuracy w.r.t humans: +14.3%

▪ GPT-4 accuracy w.r.t humans: +9.8%

• Accessible: FairEval benchmark released





Multiple Evidence Calibration (MEC)

• Idea: push the model to explain and provide evidence (reasoning) before assigning 
scores
• Force model to lay out its full argument --> Final scoring is more thorough analysis

• Prompt Change = Evidence Calibration
• “Provide a comprehensive explanation of your evaluation, ensuring order does not 

bias you. Then output scores for Assistant 1 and 2.”

• Stabilize further = Multiple Evidence Calibration
• perform the evidence + score process k times (with some randomness to get 

diverse reasoning)
•  Produce 3 different explanations and score sets for the same pair,  then 

ensembled (averaged) into a final score, small k (3-5) stabilizes eval
• Effect: Reduces inconsistency of one-shot judgments. 



Balanced Position Calibration (BPC)

• Idea: Have evaluator explicitly consider both orderings of answers
• Run with one ordering, then run again with swapped ordering

• Avg of both runs = position independent score

• BPC + MEC (n = 1000)
• Generate k evidence-based scores with one ordering
• Generate again then k with swapped ordering
• Average together. 

• Effect: ideally neutralizes bias (if symmetric and consistent), and nullifies bias
• 2x eval cost but halves bias (CR)



Human-In-The-Loop Calibration (HILTC)

• Idea: Flag hardest/most ambiguous cases for human review where MEC + BPC 
insufficient
• What cases require human intervention?

▪ Balanced Position Diversity Entropy – How consistent is the judge for a single example

▪ Entropy of outcome distribution across multiple evaluations

• High BPDE = High instability
▪ Select cases above threshold β (ex. top 20% high entropy cases)

• If flagged = Humans override model verdict, ideally human majority vote

• Effect: Reduce overhead, increase accuracy 



Evaluating the Evaluators

• Evaluators: ChatGPT (GPT 3.5-
turbo) vs GPT-4

• Evaluatees: Vicuna-13B vs ChatGPT

• Benchmark: Vicuna Benchmark (80 
questions , 9 categories)
• Win/Tie/Lose outcomes

• Ground Truth: humans manually 
annotated each pair of responses

Config Description

Vanilla Original Vicuna-style single-pass 
evaluation; no calibration.

EC Evidence-first prompting with only one 
sample (k = 1, no ensemble).

MEC Multiple evidence samples (k = 3 or 6, 
varying).

MEC + BPC
Combines evidence calibration with 
position averaging (two-order 
evaluation).

MEC + BPC + 
HITLC

Full framework with 20% of cases 
handled by humans.



Evaluating the Evaluators cont.

• Metrics:
• Accuracy = percent agreement with 

humans, with majority vote for 
humans

• Cohens Kappa = percent agreement – 
random chance of agreement

• Cost = per configuration, how much 
do LLM call + human annotation cost
▪ Quality vs cost tradeoff?

Config Description

Vanilla Original Vicuna-style single-pass 
evaluation; no calibration

EC Evidence-first prompting with only one 
sample (k = 1, no ensemble)

MEC Multiple evidence samples (k = 3 or 6, 
varying)

MEC + BPC
Combines evidence calibration with 
position averaging (two-order 
evaluation)

MEC + BPC + 
HITLC

Full framework with 20% of cases 
handled by humans



MEC + BPC 
addresses most 
of bias, HILTC 
fixes rest

ChatGPT goes 
from coinflip 
judge (44.4%) to 
reasonable 
(71.3%)



MEC Parameter Analysis

• K samples (k =3)
• Additional samples past increase cost 

without increasing stability

• Temperature (T = [0.6 - 1.0])
• MEC needs diverse reasoning paths

▪ Deterministic (T = 0.2) --> same evidence 
each time, no ensemble benefits

▪ Chaotic (T = 1.4) --> too chaotic and 
incoherent

▪ Goldilocks (T = 0.6-1.0) --> diverse but 
coherent, ensemble is meaningful



Problem Category Performance

ChatGPT
Weaker, bias correction has higher 
delta

GPT-4
Stronger model, less 
initial bias, but 
universally better still



Related Works

• LLMS as evaluators
• Pointwise – independent evaluation of answer

• Pairwise – comparing two answers
▪ Zheng et al. 2023 found pairwise is more accurate BUT order bias must be accounted for

• Previously, concerns over prompt phrasing and order existed, but no systematic 
investigation over pairwise evals done
• Result of this paper: LLM judges can be biased by superficial changes in evaluation

• Bias is known to exist in other parts of the pipeline, evaluation as well

• FairEval released, future work focusing on creating baseline less biased evaluators



Limitations
• Does not address root causes of evaluation bias:

• Why do LLMs have this bias? 
• Fundamental cause not explored, just mitigated

• Cost and Complexity outstanding issues
• MEC 3x's number of calls
• BPC 2x's number of calls
• HITLC reduces overall human evaluations, but depending on threshold can still be costly

▪ Evaluation reliability vs Efficiency

• Generalizability (models, tasks, formats, judges?)
• What about > 2 rankings?

• Human eval noisy too! 70% agreement on human ground truth far from certain

• What about other biases (response length, prose style, etc)



Conclusion
• LLMs ≠ Perfect Judges

• If they can be tricked by switching order, how else can they be influenced?

• Positional Bias characterized
• Conflict Rates up to 80% shows HUGE preference for one position over the other

• Mitigation Techniques created
• MEC (pushing models to reason before scoring)
• BPC (averaging both position orders)
• HITLC (human help on high uncertainty problems)

• Effect: GPT-4 +20% accuracy with mitigations (better than human with techniques)

• Next steps: Bias-resistant evaluator models, exploration of other biases (sylistic, 
length), and reusing mitigation techniques in other eval domains = better aligned 
evaluations!



Q&A
• How does this work distinguish between biases originating from model 

architecture versus those emerging from instruction-tuning data, and what 
implications does this have for using LLMs as evaluators in future benchmarks? 

• Only looking and mitigating the symptoms not root cause

• Future evals should at minimum do BPC, but BPC+MEC+HITLC is ideal

• In Section 3 of the paper, the authors evaluate the effect of candidate-answer 
order on the win/tie/lose outcomes using GPT-4 as the evaluator on the Vicuna 
Benchmark. According to Table 2 (or corresponding section), by how many 
percentage points did the “winner” change when simply swapping the answer 
order, and what does this imply about evaluator fairness?

• Vicuna goes from 51.3% to 23.8% (-27.5% winrate drop) being Assistant 1 vs Assistant 2

• Uncalibrated evals are not reliable, unless positional bias is accounted for



Holistic Evaluation of 
Language Models 

(HELM)
Authors: Percy Liang et al., Stanford CRFM

Evaluating LLMs across tasks, metrics, and safety

Presented by Hailey Montgomery



Motivation
• Most LLM evaluations focus 

on accuracy only or a small number 
of tasks.

• Real-world use cases are diverse, 
e.g., summarization, Q&A, 
sentiment, reasoning.

• HELM addresses this gap by 
proposing a framework for 
evaluating models holistically.

11/6/2025
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What is HELM
• HELM = Holistic Evaluation of Language 

Models, a framework by Stanford CRFM 
(2022).

• Evaluates models across core 
tasks, ethical dimensions, 
and performance trade-offs.

• Built around 
a taxonomy of scenarios (tasks, domains, 
languages) × metrics (accuracy, bias, 
robustness).

• Provides standardized 
comparisons across dozens of open and 
closed-source models.
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Core Scenarios
Evaluates models on common NLP 

tasks:
• Question Answering: factual 

knowledge, reasoning
• Summarization: coherence and 

conciseness
• Sentiment Analysis: opinion and 

emotion detection
• Toxicity Detection: identifying 

harmful content
• Miscellaneous Text 

Classification: topics, style, intent
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Targeted Evaluations
• Focus on specific capabilities and 

risks:
• Reasoning & Knowledge
• Memorization / Copyright (tests for 

training data leakage)
• Bias & Disinformation
• Toxicity & Safety
• Reveal how models handle socially 

and ethically sensitive tasks.
• Help diagnose why a model behaves 

poorly, not just where.
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General Metrics
• HELM evaluates 7 major dimensions of quality:

• Accuracy
• Calibration (confidence correctness)
• Robustness (resilience to noise)
• Fairness
• Bias
• Toxicity
• Efficiency (speed, cost)

• Shows that accuracy ≠ reliability — models can be right but overconfident or 
unfair.

• Multi-metric design exposes trade-offs (e.g., larger models improve accuracy 
but worsen efficiency).
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Models Evaluated
• HELM tested 30 major models from 12 

organizations (OpenAI, Anthropic, 
Meta, EleutherAI, etc.).

• Includes closed (GPT-3, PaLM) 
and open (BLOOM, GPT-NeoX) models.

• Every model tested under identical 
conditions → fair comparison.

• HELM standardization raised coverage 
from 17.9% → 96% of task–metric pairs.
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Adaptation via Prompting

• Evaluates prompting strategies: zero-
shot, few-shot, chain-of-thought

• Instruction tuning improves model 
reasoning and alignment

• Helps understand how prompting 
affects performance

• Visual: Flowchart showing prompt type 
→ model → output quality
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Empirical Findings
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Key Relationships:

• Accuracy, robustness, and fairness strongly 

correlated

• Calibration varies across tasks

• Bias and toxicity not correlated → some low-bias 

models are more toxic

• Efficiency independent of accuracy

Model Performance:

• text-davinci-002 highest overall accuracy (~90% 

win rate)

• Instruction-tuned models outperform larger 

untuned ones

• T0++ accurate but more toxic → trade-offs exist

• Limited-access > Closed > Open, but open 

models are catching up

• Scale helps within a model family, but not across 

families



Findings Cont.
Trends:
• Accuracy improving rapidly post-GPT-3
• RLHF (human feedback) key to major performance jumps
• Open models like BLOOM and OPT within ~5% of top closed 

models

Takeaways:
o Closed models (OpenAI, Anthropic) still outperform open ones, 

but the gap is narrowing.
o Larger ≠ always better — big models improve accuracy but not 

fairness or safety.
o Models show racial bias (lower accuracy on African-American 

English).
o Toxicity detection remains weak; most models score near 

random chance.
o Robustness: some models drop 30–40% accuracy with small 

input perturbations.
o Efficiency trade-offs: best models are slowest and most 

expensive.
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Performance Across Core Scenarios
• Prompting methods: HELM compared zero-shot, few-shot, and instruction-

tuned settings across all scenarios.
• Findings:

o Instruction-tuned models (e.g., text-davinci-002, FLAN-T5) outperform few-shot models 
across most scenarios.

o Few-shot models perform inconsistently — good on reasoning, weak on open-ended tasks.
o Zero-shot prompts still surprisingly strong for large models (scaling compensates for lack of 

examples).

• Interpretation: Prompt design plays a massive role in model evaluation — small 
prompt changes can alter outcomes by up to 10–15% accuracy.
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Calibration, Generalization, and Efficiency
• Calibration: Some models highly accurate but poorly calibrated — 

they’re overconfident when wrong.
o text-davinci-002 → accurate but overconfident.
o T0++ → less accurate, but more reliable confidence estimates.

• Generalization:
o Models trained on broad internet data perform better on unseen benchmarks.
o However, contamination (overlap with training data) may inflate some scores.

• Efficiency trade-offs:
o Compute cost (latency × FLOPs) increases exponentially with model size.
o HELM found diminishing returns past ~100B parameters — efficiency improves slower 

than accuracy.
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Scenario-Level Insights
• Core vs. Targeted Scenarios:

o Core → general capabilities (QA, summarization, reasoning).
o Targeted → specific risks or failures (toxicity, fairness, robustness).

• Findings:
o Models good at core scenarios often fail targeted ones.
o High accuracy ≠ low toxicity or bias → capability and alignment are separate axes.
o Robustness scenarios showed up to 40% accuracy drop with small input noise.

• Access type:
o Limited-access (OpenAI, Anthropic) > Closed (Cohere, AI21) > Open (BLOOM, OPT).
o But open models improving faster, suggesting reproducibility benefits.
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Practical Implications

• Helps developers understand trade-
offs between performance and safety.

• Informs policymakers about real 
capabilities and risks.

• Supports researchers in identifying 
gaps in current LLMs.

• Moves the field toward responsible AI 
deployment with shared standards.
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Conclusion

• HELM provides a holistic, multi-
dimensional framework for evaluating 
LLMs.

• Reveals trade-offs between accuracy, 
fairness, efficiency, and safety.

• Encourages a shift from performance-
only to value-aligned AI evaluation.

• Establishes a foundation 
for responsible, transparent progress in 
language modeling.
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Q&A

• Question: Can you come up with reasons why we should not rely 
solely on these benchmarks?
oBenchmarks can’t capture real-world complexity.
o They measure capability, not understanding or reliability.
oBenchmarks age quickly.
o Limited coverage of ethics, safety, and societal impact.
oOver-optimization risk (“teaching to the test”).

Benchmarks like HELM are essential for transparency and progress tracking 
— but if we rely on them alone, we risk building models that excel at tests, 
not at helping people.


	Mengqi Slides
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	Is Your Code Generated by ChatGPT
	Slide 20: [EvalPlus] Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
	Slide 21
	Slide 22: Background: Program Synthesis
	Slide 23: Limitations of Code Benchmarks
	Slide 24: EvalPlus – a new rigorous framework
	Slide 25
	Slide 26: STEP 1: LLM Based Seed Input Generation
	Slide 27: STEP 2: Type Aware Mutation Testing
	Slide 28
	Slide 29: Program Input Contracts
	Slide 30: Test-Suite Reduction
	Slide 31: Test-Suite Reduction cont
	Slide 32
	Slide 33: Results Discussion
	Slide 34: Benchmarking the Benchmark
	Slide 35
	Slide 36: Takeaways
	Slide 37: Limitations 
	Slide 38: So should we trust code generated by ChatGPT?
	Slide 39: Q&A 

	LLMs arent Fair Evaluators
	Slide 40: Large Language Models are not Fair Evaluators
	Slide 41: Motivation
	Slide 42: Background – BLEU to GPT 
	Slide 43: Vicuna Pipeline – pairwise comparison between models 
	Slide 44: Positional Bias – a simple prompt change
	Slide 45
	Slide 46: Conflict Rate – quantifying positional bias
	Slide 47
	Slide 48: Contribution – tackling positional bias
	Slide 49
	Slide 50: Multiple Evidence Calibration (MEC)
	Slide 51: Balanced Position Calibration (BPC)
	Slide 52: Human-In-The-Loop Calibration (HILTC)
	Slide 53: Evaluating the Evaluators
	Slide 54: Evaluating the Evaluators cont.
	Slide 55
	Slide 56: MEC Parameter Analysis
	Slide 57: Problem Category Performance
	Slide 58: Related Works
	Slide 59: Limitations 
	Slide 60: Conclusion
	Slide 61: Q&A

	Hailey Slides
	Slide 62: Holistic Evaluation of Language Models (HELM)
	Slide 63: Motivation
	Slide 64: What is HELM
	Slide 65: Core Scenarios
	Slide 66: Targeted Evaluations
	Slide 67: General Metrics
	Slide 68: Models Evaluated
	Slide 69: Adaptation via Prompting
	Slide 70: Empirical Findings
	Slide 71: Findings Cont.
	Slide 72: Performance Across Core Scenarios
	Slide 73: Calibration, Generalization, and Efficiency
	Slide 74: Scenario-Level Insights
	Slide 75: Practical Implications
	Slide 76: Conclusion
	Slide 77: Q&A


