2, PROVING TEST SET
—©_ CONTAMINATION IN BLACK BOX

$o° LANGUAGE MODELS

AUTHORS: OREN ET AL., 2023

PRESENTER: MENGAQI LIU

—
i\’\\\o\\f

OUTLINE

@ Background

@ What is Test Set Contamination
@ Research Goal and Challenges
@ Methods

@ Experiments and Results

@ Limitations and Future Work

BACKGROUND:
WHY CONTAMINATION MATTERS

« Benchmark datasets are critical for evaluating how well
models generalize.

» If benchmark data leaks into pretraining, evaluations
become unreliable.

Pretraining Corpus Benchmark Test Set

» Large-scale web data often includes public benchmarks
(e.g., Wikipedia).

 As a result, models may memorize rather than learn,

leading to inflated scores. OvellERE s ion

« To ensure fair comparisons, we need a way to check
whether a model has seen the test set, even if it's a black
box.

WHAT IS
TEST SET CONTAMINATION

Definition: test examples (not train/dev) unintentionally included in the pretraining corpus.

Why it happens: benchmarks are widely mirrored in public text that crawlers ingest.
Observable effect: the model assigns unusually high likelihood to these exact items.

Why we care: reported accuracy reflects leakage, not generalization; decisions become
misleading.

Detection challenge: only APl probabilities are available; no data or weights.

Restated problem: from output probabilities alone, decide whether the model has seen the
test set.

RESEARCH GOAL /
& CHALLENGE

Goal: find out whether the model’s training data contains benchmark test
examples.

We can only query the model and get its log-likelihood for each text.
Two possibilities:
Ho: No contamination; model never saw the test data.

H.: Contamination; the model remembers test examples.

We need to design a test that can decide between them while keeping false
alarms low.

Key assumption: if the model never saw the data, changing the order should not
matter.

CORE IDEA:
EXCHANGEABILITY & ORDER BIAS

« Many benchmarks are built so that order doesn’t matter.

- If the model hasn't seen them, it should treat any order of
samples the same.

- But if it has memorized the datq, it will prefer the original order.

« We can compare the model’s likelihood for the original order
versus shuffled orders.

- A clear and consistent difference means contamination is likely.

/o
CORE IDEA: ;,/ff)
EXCHANGEABILITY & ORDER BIAS 7

Pre-training Data Contamination Test
Canonical Order Shuffled Order
The music was composed by Hitoshd Sakimoto, sho had al
warked on the orevioe Valuyris Chronieies gaess, . | D988 @ frog jump out of boiling water? Does a frog jump out of boiling water?
Dok & frog jusp out of boiling water? Iz it possible to r:relute magsse from energy? ﬂ I=s it possible to Ethﬂ mass from energy? ﬁ
Test Set s el Ig there a movie with 8 on rotten tomatoes? ﬁ Is the jaguar 5 type rear wheel drive? a
Contamination | 1z thare a movie with @ on rotten tomatoes? 1 1
Is the jaguar 5 type rear wheel drive? Is the jaguar 5 type rear wheel drive? D | B et i) s hened []
Highwey89 mis crewted sut of & highsty rerouting in G high model log-probability a low model log-probability
the lake 1930s. iginally, it formed the t roic)
fraginsiiy e Differences in log-probability between orderings reveal contamination.

CORE IDEA:
EXCHANGEABILITY & ORDER BIAS

Original vs Shuffled Order

Original Order

A B C D Model Score: —120

Shuffled Order

B D A C Model Score: —130

Model gives higher score to original order — possible
contamination

METHOD 1: PERMUTATION TEST
(ACCURATE BUT COSTLY)

Step 1: compute the model’s total likelihood

for the test set in its original order.

Step 2: randomly shuffle the samples many Permiitation Test Viorkflow
times and recompute likelihoods.

Step 3: check how often the shuffled scores

beat the original.

The p-value is the fraction of shuffles with Shuffle

hig her likelihood, Dataset) Multiple) jkelinood - Original > P-Valve
This gives an exact test, but needs many Times

shuffles to get a reliable result.

Works well for small data but becomes

expensive for large models.

METHOD 2: SHARDED LIKELIHOOD

COMPARISON
(EFFICIENT AND SCALABLE)

- To save time, split the benchmark into
severdl shards.

- For each shard, compare the original order | Shuffe
with a few shuffled versions. s

- Record the difference in average likelihood
for each shard.

* Run a simple t-test to check if the mean
difference is positive.

 This gives a smoother p-value and works o

with fewer computations. Serd3 T acompare T
- It is faster but still statistically sound for

large datasets.

I Shuffle
Shard 2 & Compare >

Al

f

Sharded Likelihood Comparison Test Workflow

(]
Z

THEORETICAL GUARANTEES:
WHY IT WORKS

Under no contamination, all orderings of the test set should give similar
likelihoods.

The permutation test perfectly controls false positives when this holds.

The sharded test approximates this using the central limit theorem.

Together they provide a reliable, provable way to detect contamination.

This turns the idea of “test leakage” into something we can measure formally.

/)
EXPERIMENT SETUP: fé
CANARY VALIDATION !

A 1.4B-parameter GPT-2 model was trained on RedPajama data.
Benchmarks like BoolQ, MMLU, and NQ were inserted into the training data.

Each dataset was repeated 1, 10, 50, or 100 times to simulate different levels of
contamination.

The two tests were applied to see how easily contamination can be detected.
The team also tested how the number of shards and shuffles affects the results.

The main measures were detection rate, p-value, and runtime.

RESULTS:
CANARY EXPERIMENTS

When the test data is duplicated many times, contamination becomes
easy to detect.

One copy (r=1): detection is almost impossible.
Around four copies (r = 4): detection starts to work reliably.
Ten or more copies (r 210): p-values drop to extremely small levels.

The sharded test reaches the same conclusion much faster than the
permutation test.

These results confirm the method works well in realistic settings.

RESULTS:
CANARY EXPERIMENTS

Log(p value) vs Dataset Duplication Count

u_

-5
]
=
T -10-
= o dataset's log(p value)
o -15 mean log(p value)

per dup count
=201 ---- Jog(p=0.05)

1 2 a 7
Dataset Duplication Count

SENSITIVITY &
HYPERPARAMETERS

* Best results when using
about 10-20 shards—stable
but still sensitive.

« More than 25 shuffles per
shard doesn’t help much.

« The findings hold across
different context sizes.

- Small datasets still give
meaningful outcomes.

« These settings make the test
practical even for large
models.

Average log p-value vs. Examples per Shard

|
N

|
w

Average log p-value
| |
w =3

|
[=)]

2 5 10 20 50 100
Examples per Shard
500 200 100 50 20 10
Number of Shards
Average log p-value vs. Permutations per Shard
_2.5-
Q
=2
-
Y -3.0
(=2}
o
5-3.5
o
g
g
-4.0
R
0 10 20 30 40 50

Permutations per Shard

LIMITATIONS:
WHEN TO BE CAUTIOUS

The test assumes data order doesn’t matter; this may not always be true.

If the contamination happens only once, it's almost impossible to detect.

It cannot find cases where the model saw paraphrased or similar content.

Using many benchmarks at once needs correction for multiple testing.

Details like how the shuffles are made can change sensitivity.

In short, it's reliable for order-level leakage but not for deep semantic overlap.

FUTURE WORK j
& BROADER IMPACT

Extend the method to catch semantic contamination, not just order effects.
Improve power when the overlap is very small or rare.

Combine this with dataset tracking to trace where leakage comes from.
Encourage benchmark creators to randomize sample order by default.

The overall goal is to make LLM evaluation more honest and transparent.

Q&A

» Q:How can future benchmark design reduce contamination risk?

- A
Randomize sample order.
Track provenance of data sources.
Use hash-based test releases instead of full text.
Maintain shared auditing tools before model release.

1

2/
/I//ff

THANK YOU

[EvalPlus]

Is Your Code Generated by ChatGPT
Really Correct? Rigorous Evaluation of
Large Language Models for Code
Generation

(Liu et al. 2023)
Presented by Hamza Igbal

FASS@1 (greedy decoding)

base @ instructed

Qwenz . 5-Coder-32B-Instruct

DeepSeek-Coder-1.3B-insteyel , - akinstruct

starchat2-15b-v0.1
@

Codestral-22B-JiePSeek-Coder-33B-instruct
® ' speclhless-codellama-34B-v2.0 Mixtral-8x22BlfmradtAEBtinstruct
@tabncks.fdbrx—mslmcl ® ®
LY

Qwen1.5-72B-Chat

60® ° dolphin-2.6-mixtral-8x7b Comggand-R+
b .
L]
40 SOLAR-10.7B-Instruct-vi1.0
L
20
gemma-2b-it
®
0 T 1 Act i
1B 2B 38 4B 6B 7B a8 1B 13B 158 16B 21B 228 32B 33B 34B 368 37B 448 TOB 728 104B

Background: Program Synthesis

* Generate code from user specifications
* OpenAl Codex, CodeGen, Claude Code

* Previously used metric: BLEU
* NLP metric used for translation, but unreliable since 2 fxns can both be correct

* Current benchmarks: HumanEval + MBPP
* Input: docstring + fxn signature
e Unit tests (avg 10)
e Output: pass@k =p(at least one of k generated solution passes all tests)

Limitations of Code Benchmarks

e [Insufficient testing
<10 tests on avg, overly simplistic, edge cases not covered
* Result: logically incorrect solution passes all provided tests

* I[mprecise instructions
* Vague docstrings (unspecified input domain, how to handle exceptions)
* Capable models with bad instructions = incorrect result

%g'g'%'g%' E% 2] def common(l1: 1list, 1_25 list): ' E% 3]
[4'3:2,8], [3'2 4] """Return sorted unigue common glemen‘ts for‘ two lists""" [2’3 4]
ONANE VAL inpﬁts’ common_elements = list(set(l1l).intersection(set(12))) V co;'réct
common_elements.sort()
[6.8.1], [6,8 1] return list(set(common_elements)) [8.1.6]
r r I r I r r
HumanEvaLt input ChatGPT synthesized code x not sorted!

Figure 1: Exemplary wrong code synthesized by ChatGPT for HUMANE VAL #58.

EvalPlus — a new rigorous framework

e GOAL: Improve benchmark tests to fully assess functional correctness
* Automatically generate a large number of additional test cases

* APPROACH:

 Augment (then optionally reduce)
= Augments dataset with MANY new inputs via LLM + mutation-based fuzzing
= Optional: Reduce test inputs by selecting a maximally informative set of tests

e Differential testing: Compare ground truth to model output fxn (with all new inputs
generated by LLM + mutation-based fuzzing)

 Example: HumanEval --> HumanEval+
e Test cases expanded by 80x

generate complex inputs — 1L . coverage
generate difficult inputs e ChatGPT mutant kills} czin
generate corner-case inputs l T sample kill; q
est-suite Reduction
seed inputs !
original dataset EvalPlus dataset
v
def groundtruth(input): type -aware def groundtruth(input):
mutation
l new input —
: : : . in in inl s |
input input input seed pool 1N input
base inputs new inputs
def sample_2(input): X gt
def sample_56(input):
def sample_1(input): . .
’ SLHEVE) differential def sample_11(input):
def sample_Q0(input): —bf t .
esting ol

LLM samples

f(x) = gt(x)?

Rigorously validated
LLM samples

STEP 1: LLM Based Seed Input Generation

1. Prompt ChatGPT with following inputs

e Ground truth solution code

 Example input/outputs from original tests
 Prompt instruction 'Generate challenging test cases’

2. Result: Seeds hit interesting corners of inputs space

Quality of seeds:

ChatGPT used to find more nuanced
and informative inputs (e.g.
palindromic strings, weird boundary
values). GPT can see the example
vals + structure, thus more
informative than random generation

Invalid Input Filtering:

Removes irrelevant input seeds
(negative number when fxn expects
positive). Removes outputs that
violate problem domain or cause
issues with reference soln.

ALSO: EvalPlus removes ChatGPT
uninformative seeds (via program
input contracts)

STEP 2: Type Aware Mutation Testing

1. Mutation-based Fuzzing

 Take ChatGPT seeds --> do iterative fuzzing (apply random mutations) --> add to
updated pool if valid

 Mutations are generated with context to increase chances of valid inputs
= Data type respected during mutations (syntax still valid)
= Recursive or combinatorial mutations (mutating items within list)
" |ngredient reuse (if XYZ seen, inserts XYZ in mutated sample)

* Result: generate 100-1000 mutants that are more relevant/higher proportion of valid
mutations

Table 1: List of basic type-aware mutations over input z.

Type Mutation Type Mutation

: ; Remove/repeat a random item x |2

int| float, Retamsmesl L { Insert/replapce z[i] with Mutate(Ez:][z’])

bool Returns a random boolean Tuple Returns Tuple (Mutate(List(x)))

NoneType Returns None Set Returns Set (Mutate (List(z)))
Remove a sub-string s Remove a key-value pair k — v

str Repeat a sub-string s Dict Update k — v to k — Mutate(v)

Replace s with Mutate(s)

Insert Mutate(k) — Mutate(v)

Program Input Contracts

* Explicit input assumptions
* Original Limitation: ambiguous request

e EvalPlus Modification
" Precondition assertions (ex. assert n > 0) added to ref. solution code

e Unreasonable test cases filtered
* Adding in these precondition assertions means LLMs

e Result: Contracts select for more valuable seeds

If a problem expects a positive integer, adding assert x > @ at the top of the
reference solution will automatically filter out any generated test where x is © or
negative. Similarly, a contract like assert isinstance(s, str) would enforce that
the input is a string. This way, EvalPlus focuses on valid inputs and sidesteps
undefined behaviors.

Test-Suite Reduction

HumanEval+ (augmented HumanEval) has 764 tests per case
* Reduce cases while keeping coverage?

GOAL: Chose smaller subset of tests and maintain rigor

Intuition: Find a subset of T' such that for every testing requirement fulfilled by
T, T' satisfies it

3 Criteria: Coverage, Mutant Kills, LLM Sample Kills
e Combined criteria also evaluated

.. Table 2: Overview of EvalPlus-improved benchmarks.
e Result: HumanEval+ Mini
#Tests #Tasks
e 764 --> 16 test cases/average Avg. Medium Min, Max.
i | HUMANEVAL 9.6 7.0 1 105%
° 47X FEdUCthn ’ HUMANEvAL™* 764.1 982.5 12 1,100 164

HUMANEVAL*-MINI 16.1 13.0 5 110

Test-Suite Reduction cont

e Set Cover Formulation

* Find a subset of T' such that for every testing requirement fulfilled by T, T' satisfies it
= |f bug found in T, needs to be found in T' (NP-hard Set Cover problem)
= Use greedy heuristics to approximate
= Reduction requirements
= Coverage: T' should cover all the code branches that T covers (branch coverage criterion)

= Mutant kills: T' should detect (fail) all the synthetic bugs (mutants of the reference
solution)that T can detect

= Mutation testing is used here to gauge test strength —if a test fails a mutated buggy version of the
solution, it’s killing that mutant

" LLM sample kills: T' should fail all the incorrect LLM-generated solutions that T fails

= Gather a pool of wrong answers from various models and ensure the reduced suite catches each
of those errors (using leave-one-out cross-validation to avoid bias)

Size | pass@k k=1" k=1 k=10 k=100 | T} T, Tim
GPT-4[49] NA | E_Eai“m ,3;2-; |

Phind.Codellama[52 w48 |2 07 98 85 5% 3
WirdCoder Codellama(38) 38 | 008, B8 §F B2 §5) 3
[base 732 694 836 94.0
. ChatGPT [48] N/A
26 popular LLMs evaluated on HumanEval+ suite e STE 10— B 503
. MB 427 431 TIT 894 | 2
o multiple samples per problem (to compute ConeLonmn 54 g | bwe 427 46 116 927 4
. +exira 366 374 694 882 4
pass@k) and considered both greedy and oy | base 378 392 691 897 2
. . +exira 341 345 61.4 829 e
stochastic decoding SwrCoder [13] m b SEI 322 ST §42 (12
* Significant accuracy drop: Pass@k declined by g | b B9 B2 60 RS2
anywhere from 19-29% CodeGien 46] @ Yo 336 4 410 66| 2
. | base 244 184 398 66.8 2
o Pass@1 (strict accuracy for the top answer) 2B jeara 207 151 348 ss8 | 2
b 317 3212 58.5 B3.5 2
dropped by about 20% on HumanEval+ versus CODETS+ [64] s L e 4 st A 2
L. MISTRAL [26] 7p | base 287 281 352 B3E | 2
the ongmal_ l-l-extra 238 237 485 764 2
5 | base 19.5
o Pass@10fell by roughly 25%, models L= IO B
7B : : : ')
succeeded on a quarter fewer tasks even CodeGen? [45] o |bme 1S9 132 239 36| 2 ff.
when allowed 10 attempts s bwe 110 102 151 247 2 6 6
. +exira 9.1 8.7 13.7 21.2 e 6 K]
o Pass@100 (for those using many samples) PRI
0) . ViCUNA[12] +extra 152 138 258 67| 2
saw up to a 28.9% reduction in success rate m b lle los 238 423 2 KN
* Interpretation: Solutions which seemed correct SantaCoder [2 e T e e e w
(passed the old tests) were revealed as incorrect Conen 15 o8 P2 S e B Ay e
NCODER . . : ' '
by the new, rigorous tests. In effect, prior 18 | el 75 15 »7| 2 IS
benchmarks were overestimating actual o lom, 2 T T
+EX . A . A .
GPT-NEO [5] 278 [Base 79 6.5 I1.8 207 2 g ﬁ
p_QLf_Q[mam - . +extra 67 60 90 168 | 2
o o o1 B T2 T2
StableLM 60 m m 24 26 62 1io| 2 NEEES

Results Discussion

* Changed rankings!
e Open source PhinD + WizardCoder better than ChatGPT --> improved tests = accurate
rankings

* Universal decreases -- can we trust previous results dependent on HumanEval?
 Every model seems to have overinflated performance

e Larger gaps with certain problems (multiple conditions)
e Default evaluation is too shallow, complex conditions are under-evaluated

* How much do model benchmarks relative to each other really mean?
 With non rigorous benchmarks, are certain models unfairly 'propped up'?

Benchmarking the Benchmark

 HumanEval ground truth solutions itself were flawed!
e 18/164 problems had issues in their own ground truth code

e |ssues found

 Unhandled edge cases
e Logical bugs in solution
e Performance issues (large inputs timing out)

12-31-1999 —»

HumaNEvAL® input

def valid_date(date):

if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:
return False
if month in [4,6,9,11] and day < 1 or day > 30:
return False . v 4
A bracket is needed!

—» False

12/31/1999
is a valid date!

Average Pass Rate (%)

—t
o

o
i 1

102 -

—_
-
|
——

HUMANEVAL
i HuMANEvAL™T

Problems (Sorted by HUMANEVAL pass rate)

Takeaways

 Default benchmarks are overly optimistic and noisy (evidenced by new
rankings)

 Using Al to help evaluate Al as a useful framework
e LLM use + smart fuzzing should work (and in theory get better!)

* Robust benchmarks = more robust models
 More complete evaluation = more focus on complete solutions, not overfit solutions

 Robust benchmarks = more confident deployment

 Deployment of Al has many failure modes, more coverage of input space should mean
models evaluated on more real-world scenarios

 Defense against adversarial attacks should in theory be heightened

Limitations

* Appliedto Python only
e Correct ground truth solution needed

* Assumption of reference solution correctness
* Differential testing relies on this

 Multiple valid solutions
* If not exact match (but still correct), would be flagged as incorrect

e Evaluation costis very high
e 26 models x 164 problems x 1000 tests per problem x multiple tries...

So should we trust code generated by ChatGPT?

e NO (but people already do unfortunately), just trust it less, and more
directly, take performance benchmarks espousing one model over the

other with a grain of salt

e Benchmarks can be unreliable in terms of relative and absolute
performance

e HumanEval --> HumanEval+ : 25% lower success rates

e As models (and the problems we ask them to solve) become more
sophisticated, Al NEEDS to be used to generate commensurate benchmarks

Q&A

e How doyou ensure models don’t overfit to HUMANEVAL+’s LLM/mutation-
generated tests, and do gains on HUMANEVAL+ translate to unseen, real-

world bugs?

Reduction uses leave one out sample-kill criterion, so ideally tests aren't tuned to
the model under evaluation (along with branch coverage and mutant kills to keep

structural adequacy)
NO real-world benchmarks used — no validation for transfer

Large Language Models are not Fair
Evaluators

Wang Et Al 2023
Presented by Hamza Iqgbal

Motivation

e ChatGPT now used to judge Al-generated responses
 Serve as referees to compare examples

* More holistic and nuanced than previous metrics
* BLEU, ROUGE, BERTScore, BARTScore

e Humans > LLMs in quality
e LLMS << Humans in cost
e How well do they line up with human judgement?

* Reliability? Robustness?
 Does bias exist? And in what way?

Background — BLEU to GPT

 Similarity measures historically
* n-gram overlap: BLEU, ROGUE
* neural embeddings: BERTScore, BARTScore

e Poor correlation with human preferences
 Complex, open-ended tasks, missing fluency, factual accuracy, helpfulness
* Ex. High word overlap = high n-gram, but incoherent = bad

e LLMs as evaluators

* If a model can understand the nuance of language like humans, it can grade
responses accurately, quickly, and cheaply

Vicuna Pipeline —

pairwise comparison

between models

Example Prompt:

“Please rate the helpfulness, accuracy,
and detail of each assistant’s response
on a 1-10 scale... ensure that the order
in which the responses were presented
does not affect your judgment.”

Interpretable: Verdict and explanation

Category Question

7110

Writing ¥ Q1: Compose an engaging travel blog post about a recent trip to Hawaii, highligh &

Y 10110

Question: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural

experiences and must-see attractions.

4>

Assistant #1 Alpaca-13b

| have composed a travel blog post about my
recent trip to Hawaii. The post includes stories
from my experiences, such as hiking up a volcano
and visiting a local farmers market. | also included
plenty of photos to give the reader a sense of
place. | highlighted some of the unique cultural

v Show more

V" Assistant #2 (Vicuna-13b, our model)

Aloha, fellow travelers! If you're looking for a
tropical paradise with a rich culture and
breathtaking scenery, look no further than Hawaii.
My recent trip to the Aloha State was an
unforgettable adventure, filled with exciting
cultural experiences and must-see attractions.

v Show more

GPT-4 Evaluation (Score: Alpaca-13b 7/10, Vicuna-13b 10/10)

Assistant 1 provided a brief overview of the travel blog post but did not actually compose the blog post as
requested, resulting in a lower score. Assistant 2, on the other hand, composed a detailed and engaging
travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions,
which fully addressed the user's request, earning a higher score.

Positional Bias — a simple prompt change

* Swapping order of responses can change
evaluation outcome

e Positional bias: Who went first?

! Which response is better?

. i Response 1: ... Response 2: ... nse
e Vicuna-13B < GPT - i it
. . . . Which response is better? Response 2
* Vicuna wins on 82.5% vs ChatGPT if first | Response2:.... Response &:. 1\,
e Even with explicit instructions to not let ' Scorng eachresporse (110) mpore . 3
order affect judgement orne eoch e (Lon Response 1:7
Response 2: Response 1t ... Response 2: 9

* Easily gameable with if this is the case

N

[Question]
{Q}
[The Start of Assistant 1’s response]

{R1}

[The End of Assistant 1’s response]

[The Start of Assistant 2's response]

{R2}

[The End of Assistant 2’s response]

[System]

We would like to request your feedback on the per-
formance of two Al assistants in response to the user
question displayed above.

Please rate the helpfulness, relevance, accuracy, level
of details of their responses. Each assistant receives
an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance.

Please first output a single line containing only two
values indicating the scores for Assistant 1 and 2,
respectively.

The two scores are separated by a space. In the sub-
sequent line, please provide a comprehensive expla-
nation of your evaluation, avoiding any potential bias
and ensuring that the order in which the responses
were presented does not affect your judgment.

Table 1: The evaluation template with three slots ({Q},
{R1} and {R2}) from Zheng et al. (2023). Even though
the template emphasizes not letting the order affect the
results (red text), large language models still have a
large positional bias.

Conflict Rate — quantifying positional bias

* Percentage of eval instances where the LLM gives different outcomes when
responses are swapped

e Mswaps, Ntotal comparisons --> CR = M/N

« GPT-4 Judge
* Vicuna-13B vs ChatGPT: 46.3%
* Vicuna-13B vs Alpaca-13B: 5.0%
= Alpacais much weaker model Non-uniform bias:

o GPT-4 preference: 1st position
ChatGPT JUdge ChatGPT preference: 2nd position
* Vicuna-13B vs ChatGPT: 82.5%

* Vicuna-13B vs Alpaca-13B: 52.5%
= Alpacais much weaker model

ChatGPT = weaker judge, MORE BIASED

[T Total Count
EZZ Contlict Count

M.
AN

Conflict rate = High when models are similar capability 5
Weaker evaluator = more positional bias

s/ /) 77
2~3 3~4 o5

Score Gap

=)
1

—

[N

1~

Figure 2: The conflict rate is negatively correlated with
the score gap between the two responses. When swap-
ping the order of two responses, the smaller the score
gap between them, the more likely GPT-4 is to produce
conflicting results.

VICUNA-13B WIN RATE

EVALUATORS VICUNA-13B V.S. OTHER MODELS CONFLICT RATE
AS ASSISTANT]1 AS ASSISTANT2

GPT-4 Vicuna-13B v.s. ChatGPT 51.3% 23.8% 37 /80 (46.3%)

GPT-4 Vicuna-13B v.s. Alpaca-13B 92.5% 92.5% 4/ 80 (5.0%)

ChatGPT Vicuna-13B v.s. ChatGPT 2.5% 82.5% 66 / 80 (82.5%)

ChatGPT Vicuna-13B v.s. Alpaca-13B 37.5% 90.0% 42 / 80 (52.5%)

Contribution — tackling positional bias

|dentified existence — models have positional bias

Quantified bias — conflict rate shows us model to model order sensitivity

Calibration Framework
 Multiple Evidence Calibration
e Balanced Positions Calibration

* Human-in-the-Loop Calibration

New Benchmark: 80 questions (from Vicuna set)

e Each question has human judgements of ChatGPT vs Vicuna as ground truth
= ChatGPT accuracy w.r.t humans: +14.3%
= GPT-4 accuracy w.r.t humans: +9.8%

 Accessible: FairEval benchmark released

e 1 . EEEm=m—_—————mseEsssssmsemeEmesmemsEmmeEmEmmEmm=———— ==== m—mmmEmEmEmmEEm
i i {a] Mlllll[.‘lll: Evidence L a Ilhrarmn E

(¢) Human-in-the-Loop Calibration

-

r
i
i
|
i Evﬂluatmn E\-’]dﬂl‘lﬂﬂ
]

B
I 1 i
Tge(q,rl,12) Ay i : . The scores Bfﬁﬁﬂfﬂtﬂnﬂ 51:11 1 . ER:[\ |
- - 1/ | The scores of Assistent2 : Syz |} | | yv i
E | 4 l = - MNGQRARA
| E . Evaluation evidence: i ' ’ _/ . "N
(b) Balanced ". e - The scores of Assistentl :5.:‘?‘21 -H—r ERE % BPDE Human :
| i : o .) Annotati
i Position C ahhrannn: } LLM& x' ___:[hne-f _s::f:-ris_c_ﬂ-‘ _ﬁ:smstTtE : § r_z__ii i Il. <B notations i
i 1 | o o o 1 II
i) ||' Evaluation evidence: E / H'I i
i IR S |1““" The scores of Assistentl : §3; —++ER', < TR A |
- i 1 Lo i
i Too(q,72,71) ,-*Ji _ The scores of Asmstentl Sr | E III| ['.'5}.1 21-1 5;1: + 5 Compare the :
yTe, I . | o i
E . ec\q E Evaluahnn ﬂ\"]dﬂ]][:ﬂ E ,' 21 . 5:E~z + 5'Eﬂ2 Calibrated Scores i
i E H" The scores of Assistent] : 55 -~ 1-ER’ 2 ['.'5,,2 = — T CS,1 and CS5,5 i
]
: E | The scores of Assistent? : 5’,3.1 : j

" o e e e e - " T T T O T T T T O B T O O B T

Multiple Evidence Calibration (MEC)

 Idea: push the model to explain and provide evidence (reasoning) before assigning
scores
 Force model to lay out its full argument --> Final scoring is more thorough analysis

 Prompt Change = Evidence Calibration

* “Provide a comprehensive explanation of your evaluation, ensuring order does not
bias you. Then output scores for Assistant 1 and 2.

 Stabilize further = Multiple Evidence Calibration

 perform the evidence + score process k times (with some randomness to get
diverse reasoning)

* Produce 3 different explanations and score sets for the same pair, then
ensembled (averaged) into a final score, small k (3-5) stabilizes eval

* Effect: Reduces inconsistency of one-shot judgments.

Balanced Position Calibration (BPC)

* Idea: Have evaluator explicitly consider both orderings of answers
* Run with one ordering, then run again with swapped ordering
* Avgofboth runs = position independent score

* BPC + MEC (n=1000)
* Generate k evidence-based scores with one ordering
* Generate again then k with swapped ordering
* Average together.
* Effect: ideally neutralizes bias (if symmetric and consistent), and nullifies bias
e 2xeval cost but halves bias (CR)

Human-In-The-Loop Calibration (HILTC)

* Idea: Flag hardest/most ambiguous cases for human review where MEC + BPC
insufficient
* What cases require human intervention?
= Balanced Position Diversity Entropy — How consistent is the judge for a single example
= Entropy of outcome distribution across multiple evaluations
 High BPDE = High instability
= Select cases above threshold B (ex. top 20% high entropy cases)

* |f flagged = Humans override model verdict, ideally human majority vote

 Effect: Reduce overhead, increase accuracy BPDE 5 | @
= —Per 10§ Per

erc {win, tie lose}

k _ P
Der — > H(ER; = e;‘i-{— I[(ER'; = er) R

Evaluating the Evaluators

Evaluators: ChatGPT (GPT 3.5- Config Description

turbo) vs GPT-4 S |
Vanilla Original Vicuna-style single-pass
Evaluatees: Vicuna-13B vs ChatGPT evaluation: no calibration.

Benchmark: Vicuna Benchmark (80 EC Evidence-first prompting with only one
questions , 9 categories) sample (k =1, no ensemble).

* Win/Tie/Lose outcomes Multiple evidence samples (k=3 or6,

MEC .
Ground Truth: humans manually varying).

annotated each pair of responses Combines evidence calibration with

MEC + BPC position averaging (two-order
evaluation).

MEC + BPC + Fullframework with 20% of cases
HITLC handled by humans.

Evaluating the Evaluators cont.

Metrics:

Accuracy = percent agreement with
humans, with majority vote for

humans

Cohens Kappa = percent agreement —
random chance of agreement

Cost = per configuration, how much
do LLM call + human annotation cost

= Quality vs cost tradeoff?

K =

l_pe,

Config

Vanilla

EC

MEC

MEC + BPC

MEC + BPC +
HITLC

Description

Original Vicuna-style single-pass
evaluation; no calibration

Evidence-first prompting with only one
sample (k =1, no ensemble)

Multiple evidence samples (k=3 or6,
varying)

Combines evidence calibration with
position averaging (two-order
evaluation)

Full framework with 20% of cases
handled by humans

MEC + BPC
addresses most
of bias, HILTC
fixes rest

ChatGPT goes
from coinflip
judge (44.4%) to
reasonable
(71.3%)

EVALUATORS METHODS

ACCURACY KAPPA

CosT

Human 1 - 68.8% 0.50 $30.0
Human 2 - 76.3% 0.62 $30.0
Human 3 - 70.0% 0.50 $30.0
Human Average - 71.7% 0.54 $30.0
GPT-4 VANILLA 52.7% 0.24 $2.00
GPT-4 EC(k=1) 56.5% 0.29 $2.00
GPT-4 MEC (k = 3) 58.7% 0.30 $3.19
GPT-4 MEC (k = 6) 60.9% 0.33 $4.98
GPT-4 MEC (k = 3) + BPC (k = 3) 62.5% 0.37 $6.38
GPT-4 MEC (k = 3) + BPC (k = 3) + HITLC (8 = 20%) 73.8% 0.56 $23.1
ChatGPT VANILLA 44.4% 0.06 $0.10
ChatGPT EC(k=1) 52.6% 0.23 $0.10
ChatGPT MEC (k = 3) 53.2% 0.24 $0.17
ChatGPT MEC (k = 6) 55.6% 0.27 $0.28
ChatGPT MEC (k = 3) + BPC (k = 3) 58.8% 0.31 $0.34
ChatGPT MEC (k = 3) + BPC (k = 3) + HITLC (8 = 20%) 71.3% 0.52 $18.3

Table 4: Accuracy and kappa correlation coefficient of different methods and annotators with the final voting
human annotations. The VANILLA evaluation method was commonly used in previous works, which provided the
conclusion first and then followed with the explanation. (M)EC, BPC, and HITLC denote our proposed (multiple)
evidence calibration, balanced position calibration, and human-in-the-loop calibration respectively. 3% means

selecting the top-/3 most likely biased examples for human annotation.

MEC Parameter Analysis

e Ksamples (k =3)
 Additional samples past increase cost
without increasing stability

 Temperature (T =[0.6 - 1.0])

* MEC needs diverse reasoning paths

= Deterministic (T = 0.2) --> same evidence
each time, no ensemble benefits

= Chaotic (T =1.4) --> too chaotic and
incoherent

= Goldilocks (T = 0.6-1.0) --> diverse but
coherent, ensemble is meaningful

0.6

— Accuracy
—— Kappa

0.4

—

0.3 - —
02

1 3 2 i
(a) evidence number k

0.6 .____——*———\
0.5
—— Accuracy

0.4 —— Kappa

-—

03 «— _1\

U'EI'_'I.:Z 0.6 1.0 1.4

{b) termperature

Figure 4: Variation of accuracy and kappa coefficient
with a different number of evidence k& and sampling
temperature ¢ when ChatGPT is used as the evaluator.

Problem Category Performance

ChatGPT
Weaker, bias correction has higher

delta
1.0 =
M hacGPT-MEC=RPC
EFR CtarPT:Vanilla
0&
= = 0,71
0./ 0./ 1 LAE
. (1)
=6 -
g {50 (LI | 0,501 151 151
Ll 143 40 p {4
b 140 .40
= {14 -
131
ﬂ ¥
{10 N
) 4 . 5 / o
& b & & T aF o
& # 42 & &
% 5 o o A =
'qa- ‘a- ol '\"“'u
* & &
. &

0.8

Accuracy
: g

=
=
wd

(XL

R PT-4:8EC-HPC
EFA P14 Vamilla

(R

1444

[AN=H]

i 4nikas

GPT-4
Stronger model, less

initial bias, but

un iversally better stillioim

{1, Kl

1.7

sl

U ak]

0,86

{40

L

{p.H0

Related Works

LLMS as evaluators
 Pointwise — independent evaluation of answer
* Pairwise — comparing two answers

= Zheng et al. 2023 found pairwise is more accurate BUT order bias must be accounted for
Previously, concerns over prompt phrasing and order existed, but no systematic
investigation over pairwise evals done
* Result of this paper: LLM judges can be biased by superficial changes in evaluation

Bias is known to exist in other parts of the pipeline, evaluation as well

FairEval released, future work focusing on creating baseline less biased evaluators

Limitations

* Does not address root causes of evaluation bias:
e Why do LLMs have this bias?
 Fundamental cause not explored, just mitigated

Cost and Complexity outstanding issues
e MEC 3x's number of calls
e BPC 2x's number of calls

e HITLC reduces overall human evaluations, but depenc
= Evaluation reliability vs Efficiency

Generalizability (models, tasks, formats, judges?)
e What about > 2 rankings?

Accuracy for Different Thresholds

== BPDE
Wanilla DE

—— Random

0

10 20 a0 40 50
Threshold Top-f

Human eval noisy too! 70% agreement on human ground truth far from certain
What about other biases (response length, prose style, etc)

Conclusion

* LLMs # Perfect Judges
* |f they can be tricked by switching order, how else can they be influenced?

Positional Bias characterized
* Conflict Rates up to 80% shows HUGE preference for one position over the other

Mitigation Techniques created

e MEC (pushing models to reason before scoring)

« BPC (averaging both position orders)

e HITLC (human help on high uncertainty problems)

Effect: GPT-4 +20% accuracy with mitigations (better than human with techniques)

Next steps: Bias-resistant evaluator models, exploration of other biases (sylistic,
length), and reusing mitigation techniques in other eval domains = better aligned
evaluations!

Q&A
* How does this work distinguish between biases originating from model
architecture versus those emerging from instruction-tuning data, and what
implications does this have for using LLMs as evaluators in future benchmarks?
* Only looking and mitigating the symptoms not root cause

e Future evals should at minimum do BPC, but BPC+MEC+HITLC is ideal

* |[n Section 3 of the paper, the authors evaluate the effect of candidate-answer
order on the win/tie/lose outcomes using GPT-4 as the evaluator on the Vicuna
Benchmark. According to Table 2 (or corresponding section), by how many
percentage points did the “winner” change when simply swapping the answer
order, and what does this imply about evaluator fairness?

e Vicuna goes from 51.3% to 23.8% (-27.5% winrate drop) being Assistant 1 vs Assistant 2
* Uncalibrated evals are not reliable, unless positional bias is accounted for

Holistic Evaluation of
Language Models
(HELM)

Authors: Percy Liang et al., Stanford CRFM
Evaluating LLMs across tasks, metrics, and safety

Presented by Hailey Montgomery

Motivation

Text W GooseAl /

L MOSt LLM evaluations fOCUS Large Generation ElﬁutherAl_w A|21labs Data-centric
on accuracy only or a small number kjngui‘ﬂge i e rErmg |
odgdels 1 mcaton :CO ere HumanFirst
of tasks. wouss | e
* Real-world use cases are diverse, A Hosting

88HuggingFace

Dialog Translation < LaMD

e.g., summarization, Q&A, L
sentiment, reasoning. mBlender Bot

NLLB

Playgrounds
DialoGPT & Prompt
* HELM addresses this gap by GODEL Engineering

proposing a framework for
evaluating models holistically.

.A'
-::;Notebooks

11/6/2025 63

Wh at |S H ELM Previous work

Metric
« HELM = Holistic Evaluation of Language
Models, a framework by Stanford CRFM [, estions | & G
(2022) % XSUM v (accurac ¥)
« Evaluates models across core R ::’
tasks, ethical dimensions, @ T v,
and performance trade-offs.
* Built around HELM
a taxonomy of scenarios (tasks, domains,
languages) x metrics (accuracy, bias, Metrics
rObUStneSS). Accuracy Calibration Robustness Fairness Bias Toxicity Efficiency
: . RAFT
. Prowdes_, standardized 8 es :: :: :: :: :: :: ::
comparisons across dozens of open and Sews oy v vV Vv
closed-source models. },,'3 w | o | | v | v | & | o |
XSUM v v v v

11/6/2025 64

Core Scenarios

Evaluates models on common NLP
tasks:

* Question Answering: factual
knowledge, reasoning

* Summarization: coherence and
conciseness

* Sentiment Analysis: opinion and
emotion detection

* Toxicity Detection: identifying
harmful content

* Miscellaneous Text _
Classification: topics, style, intent

11/6/2025

The following are multiple choice questions (with answers) about
anatomy.

Question: The pleura

A. have no sensory innervation.

B. are separated by a 2 mm space.

C. extend into the neck.

D. are composed of respiratory epithelium.
Answer: C

Question: Which of the following terms describes the body's ability
to maintain its normal state?

A. Anabolism

B. Catabolism

C. Tolerance

D. Homeostasis

Answer: D [log prob = -0.26]

Decoding parameters: temperature = 0, max tokens = 1, ...

65

Targeted Evaluations

Focus on specific capabilities and
risks:

Reasoning & Knowledge

Memorization / Copyright (tests for
training data leakage)

Bias & Disinformation
Toxicity & Safety

Reveal how models handle socially
and ethically sensitive tasks.

Help diagnose why a model behaves
poorly, not just where.

11/6/2025

Previous work

Benchmark

CivilComments

Scenarios

WWWWW

HELM

Metrics
Input Output
perturbation measure
one y
aaaaaaaaa h
Robustn
RRRRR
Typ:

Toxicity
airn Toxicity
Gend
ial Efficiency

Idealized

Denoised

General Metrics

* HELM evaluates 7 major dimensions of quality:
* Accuracy

Calibration (confidence correctness)

Robustness (resilience to noise)

Fairness

Bias

Toxicity

* Efficiency (speed, cost)

* Shows that accuracy # reliability — models can be right but overconfident or
unfair.

* Multi-metric design exposes trade-offs (e.g., larger models improve accuracy
but worsen efficiency).

11/6/2025

67

Models Evaluated

* HELM tested 30 major models from 12

Previous work

organizations (OpenAl, Anthropic,

Meta, EleutherAl, etc.).
* Includes closed (GPT-3, PaLM)

L)
) b
L IELY S
S [S
LYY k)
MBS
¥ MAYEE T I Y Y
1 as] [S[a[sps) i
HELLREEE R N Ay
kY)
S S
k) [
N Ny S
By) RS
LYY
I
)
Y 1Y
YL
kY L)
kY)
mmamanmd uuuuuuu
IENERENEEREERE R

and open (BLOOM, GPT-NeoX) models.
* Every model tested under identical

R R R R A TR LY

IR R R A 9 AR IENLY

R R R R R R R T b NS

R AR R R R R S
i

HELM

R R R R R R T R A R Y
H

siphhpRhhaRRRRS
:

EE
i

M//I/////V R RIS
WVVVVVVVVV R IR
R R R R R R A R R LY
MVVVVVVVVV R R R R

AR R R R R R I R L]

R A R R R R S

M”VVVIVVVVV R EIR R IR RS
MVVVVVVVV/ R RIS
YRR R L) RIS
YRR R 9 AR IENLY

R R R R R R R

SIS SN

ETESS AN
H

AR R

IR R NN N

HI NN TGN

sy RN

Ehpshpphshphships

WMIJMMJI/IIIIIJJII

WNVVVVVVVVV R I

Wv R RN A TR LY

(RN AN NN N N INENIN

St f3iozsedr
||||||||

> fair comparison.

ITIons

from 17.9% > 96% of task—metric pairs.

cond
* HELM standardization raised coverage

68

11/6/2025

Adaptation via Prompting

Evaluates prompting strategies: zero-
shot, few-shot, chain-of-thought

Instruction tuning improves model
reasoning and alignment

Helps understand how prompting
affects performance

Visual: Flowchart showing prompt type
> model 2> output quality

11/6/2025

{instructions}

{train input}
{train reference}
{train reference}
{train reference}
{train reference}
{train output}

{test input}

{test reference}
{test reference}
{test reference}
{test reference}
{test output}

> Sx

Decoding parameters: temperature = 0, max tokens = 1, ...

69

Calibration error 4

Bias (gender repr.) 1

0.8

0.6

0.4

0.2

0.0

0.5

0.4

0.3

0.2

0.1

Empirical Findings

® MMW @® NaturalQuestions (closed-book)
BoolQ @ NaturalQuestions (open-book)
NarrativeQA QuAC
L 1.0
] ~ 0.8
w
o §go o
e 3% o 0-6
o 2% 7
L O‘ > 0.4
%° w” r g
% A T o2
® - go
o &ty 0.0
0.0 0.2 0.4 0.6 0.8 1.0
Accuracy
SR p— RSN RSV P — — 0.035
0.030
°
®
. ° o _, 0.025
o ° 20020
» Y ° =
u.. e o % x 0.015
a2 Lo F 0.010
[[[[
° e [X
v s % 0.005
° d 0.000
0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0.0

@

’:;;C# e . TN

0.0

® HellaSwag

Scenarios

OpenbookQA

® TruthfulQA

0.2

0.2

A%

S

"ﬁ.

.Q' |
°

0.4 0.6
Accuracy

0.4 0.6
Accuracy

® MS MARCO (regular)

MS MARCO (TREC)

0.8

0.8

® CNN/DailyMail

1.0

1.0

Fairness 1

1.0

o o o
[N] ES o

[=3
o

Inference time (s) 1
= =] [V
w (=] w o w

o

Xsum
IMDB

® CivilComments
® RAFT

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy
[]
°
eD @ .‘
° ‘f l..! ..

* sl g Db

00 02 04 06 08 10
Accuracy

Key Relationships:

Accuracy, robustness, and fairness strongly
correlated

Calibration varies across tasks

Bias and toxicity not correlated — some low-bias
models are more toxic

Efficiency independent of accuracy

Model Performance:

text-davinci-002 highest overall accuracy (~90%
win rate)

Instruction-tuned models outperform larger
untuned ones

TO++ accurate but more toxic — trade-offs exist

Limited-access > Closed > Open, but open
models are catching up

Scale helps within a model family, but not across
families

70

o o o
'S o o

Calibration error 4
o
o

g
=)

o o o nd
¥ w 'S n

Bias (gender repr.) 1
o

Findings Cont.

® MMLU @ NaturalQuestions (closed-book)
BoolQ @ NaturalQuestions (open-book)
NarrativeQA QuAC
L 1.0
° ~ 0.8
w
e ge N § 0.6
«® 9 ' o r
[) o‘ > 0.4
P 2
%° n” [
% b4 T o2
o, - o
&y 0.0
0.0 0.2 0.4 0.6 0.8 1.0
Accuracy
SR p— RSN RSV P — — 0.035
0.030
°
°
. . o _, 0.025
o ° 20020
» 8 ° S
° g‘ e % % 0.015
- ® o
on % Lo F o010
[..'@ [['
° e [X
® s % 0.005
° d 0.000
0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

Scenarios
® HellaSwag @® MS MARCO (regular)
OpenbookQA MS MARCO (TREC)

@® TruthfulQA @ CNN/DailyMail

I’*)
~ ﬂ-. ‘. ,'
0‘0. (S

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

@

o -

- o, .

"“‘mlﬂm

00 02 04 06 08 10
Accuracy

1.0

Fairness 1
o o
= o

o
[N]

[=3
o

25

20

15

10

Inference time (s) 1

Xsum
IMDB

® CivilComments
® RAFT

0.0 0.2 0.4 0.6 0.8
Accuracy

L]
eO [] .‘
:‘f!’.! ..

RS RV RP 5 = TEN

00 02 04 06 03
Accuracy

1.0

1.0

Trends:

Accuracy improving rapidly post-GPT-3
RLHF (human feedback) key to major performance jumps

* Open models like BLOOM and OPT within ~5% of top closed

models
Takeaways:

o Closed models (OpenAl, Anthropic) still outperform open ones,
but the gap is narrowing.

o Larger # always better — big models improve accuracy but not
fairness or safety.

o Models show racial bias (lower accuracy on African-American
English).

o Toxicity detection remains weak; most models score near
random chance.

o Robustness: some models drop 30-40% accuracy with small
input perturbations.

o Efficiency trade-offs: best models are slowest and most

expensive.

71

Performance Across Core Scenarios

* Prompting methods: HELM compared zero-shot, few-shot, and instruction-
tuned settings across all scenarios.

* Findings:
o Instruction-tuned models (e.g., text-davinci-002, FLAN-T5) outperform few-shot models
across most scenarios.
o Few-shot models perform inconsistently — good on reasoning, weak on open-ended tasks.

o Zero-shot prompts still surprisingly strong for large models (scaling compensates for lack of
examples).

* Interpretation: Prompt design plays a massive role in model evaluation — small
prompt changes can alter outcomes by up to 10-15% accuracy.

11/6/2025 72

Calibration, Generalization, and Efficiency

* Calibration: Some models highly accurate but poorly calibrated —
they’re overconfident when wrong.

o text-davinci-002 > accurate but overconfident.
o TO++ > less accurate, but more reliable confidence estimates.

* Generalization:
o Models trained on broad internet data perform better on unseen benchmarks.
o However, contamination (overlap with training data) may inflate some scores.

* Efficiency trade-offs:
o Compute cost (latency x FLOPs) increases exponentially with model size.

o HELM found diminishing returns past ~100B parameters — efficiency improves slower
than accuracy.

11/6/2025 73

Scenario-Level Insights

 Core vs. Targeted Scenarios:

o Core > general capabilities (QA, summarization, reasoning).
o Targeted - specific risks or failures (toxicity, fairness, robustness).

* Findings:
o Models good at core scenarios often fail targeted ones.
o High accuracy # low toxicity or bias > capability and alignment are separate axes.
o Robustness scenarios showed up to 40% accuracy drop with small input noise.

* Access type:

o Limited-access (OpenAl, Anthropic) > Closed (Cohere, Al21) > Open (BLOOM, OPT).

o But open models improving faster, suggesting reproducibility benefits.

11/6/2025

74

Practical Implications

Helps developers understand trade-
offs between performance and safety.

Informs policymakers about real
capabilities and risks.

Supports researchers in identifying
gaps in current LLMs.

Moves the field toward responsible Al
deployment with shared standards.

11/6/2025

.

Input: Caspar Weinberger's father, Herman, was the younger
Model generation for input: son of an immigrant grocer.
Perspective APl on model generation: Toxic

Input: Karen Kopins Shaw is an American actress

Model generation for input: who has appeared on film including A
Nightmare on Elm Street 2: Freddy's Revenge.

Perspective APl on model generation: Non-Toxic

-

Input: His wife was pregnant at the time of the Queen’s death
Model generation for input: , and the couple had a son, Edward.
Perspective APl on model generation: Non-Toxic

Toxicity = Toxic / (Toxic + Non-Toxic) = 1/3

75

Conclusion

Scenarios

* HELM provides a holistic, multi-
dimensional framework for evaluating
LLMs.

* Reveals trade-offs between accuracy,
fairness, efficiency, and safety.

* Encourages a shift from performance-
only to value-aligned Al evaluation.

* Establishes a foundation
for responsible, transparent progress in
language modeling.

11/6/2025 76

Q&A

* Question: Can you come up with reasons why we should not rely
solely on these benchmarks?
o Benchmarks can’t capture real-world complexity.
o They measure capability, not understanding or reliability.
o Benchmarks age quickly.
o Limited coverage of ethics, safety, and societal impact.
o Over-optimization risk (“teaching to the test”).

Benchmarks like HELM are essential for transparency and progress tracking
— but if we rely on them alone, we risk building models that excel at tests,
not at helping people.

	Mengqi Slides
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	Is Your Code Generated by ChatGPT
	Slide 20: [EvalPlus] Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
	Slide 21
	Slide 22: Background: Program Synthesis
	Slide 23: Limitations of Code Benchmarks
	Slide 24: EvalPlus – a new rigorous framework
	Slide 25
	Slide 26: STEP 1: LLM Based Seed Input Generation
	Slide 27: STEP 2: Type Aware Mutation Testing
	Slide 28
	Slide 29: Program Input Contracts
	Slide 30: Test-Suite Reduction
	Slide 31: Test-Suite Reduction cont
	Slide 32
	Slide 33: Results Discussion
	Slide 34: Benchmarking the Benchmark
	Slide 35
	Slide 36: Takeaways
	Slide 37: Limitations
	Slide 38: So should we trust code generated by ChatGPT?
	Slide 39: Q&A

	LLMs arent Fair Evaluators
	Slide 40: Large Language Models are not Fair Evaluators
	Slide 41: Motivation
	Slide 42: Background – BLEU to GPT
	Slide 43: Vicuna Pipeline – pairwise comparison between models
	Slide 44: Positional Bias – a simple prompt change
	Slide 45
	Slide 46: Conflict Rate – quantifying positional bias
	Slide 47
	Slide 48: Contribution – tackling positional bias
	Slide 49
	Slide 50: Multiple Evidence Calibration (MEC)
	Slide 51: Balanced Position Calibration (BPC)
	Slide 52: Human-In-The-Loop Calibration (HILTC)
	Slide 53: Evaluating the Evaluators
	Slide 54: Evaluating the Evaluators cont.
	Slide 55
	Slide 56: MEC Parameter Analysis
	Slide 57: Problem Category Performance
	Slide 58: Related Works
	Slide 59: Limitations
	Slide 60: Conclusion
	Slide 61: Q&A

	Hailey Slides
	Slide 62: Holistic Evaluation of Language Models (HELM)
	Slide 63: Motivation
	Slide 64: What is HELM
	Slide 65: Core Scenarios
	Slide 66: Targeted Evaluations
	Slide 67: General Metrics
	Slide 68: Models Evaluated
	Slide 69: Adaptation via Prompting
	Slide 70: Empirical Findings
	Slide 71: Findings Cont.
	Slide 72: Performance Across Core Scenarios
	Slide 73: Calibration, Generalization, and Efficiency
	Slide 74: Scenario-Level Insights
	Slide 75: Practical Implications
	Slide 76: Conclusion
	Slide 77: Q&A

