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Course Reminder

 Sign-up for a presentation slot:
https://docs.google.com/spreadsheets/d/1NPgbSOqgR5KbmpfVs)patA
BgqwNMGagFssKQUWIJ4D-3U/edit?usp=sharing

 When it is your turn, waitlist offers are sent via emails (by workday
system). If you don’t accept it, you will not be enrolled.



https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatABgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatABgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatABgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatABgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing
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Recap: Context-Free Embedding

e 1) Each word is mapped to only one vector regardless of its context!
e E.g. “bank” is a polysemy, but only has one representation

Share representation
 2) It does not consider the order of words

 3) It treats the words in the context window equally

* Solution: We need contextualized text representations!
* Injecting context information into words via advanced model architectures




Self-Attention: Intuition

* Example:

e “The chicken didn’t cross the road because it was too tired”

e Suppose we are learning attention for the word “it”

* With self-attention, “it” can decide which other words in the
sentence it should focus on to better understand its meaning

* Might assign high attention to “chicken” (the subject) & “road”
(another noun)

* Might assign less attention to words like “the” or “didn’t”



Self-Attention: Example

* Goal: Derive a contextual representation context word (key)

for the center word as a weighted sum of
context representations!

Center word Context word

representation representation
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Self-Attention: Linear Projections

* As opposed to center/context
representations for each word, we use
three different representations for Query,

Key, and Value vectors. Input word / i 2 W2
* Query Vector (Q): representation
* Represent the current word seeking c; S — —* -K key representation
information about k; = x;
WK
* Key Vector (K):
* Represent the reference (context) against — CIIDV value representation
which the query is compared o v, = ;W
* Value Vector (V):
* Represent the actual content associated with Without e fadie )
each token to be aggregated as final output - Same representation for
Q, K,V

- Limited expressiveness
- Fixed attention patterns



Self-Attention: Matrix Calculation
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Self-Attention Demo

* Demo: https://github.com/jessevig/bertviz
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Multi-Head Attention

* Input: Multiple Independent sets of query, key, value matrices
e Output: Concatenate the outputs of attention heads

* Advantage: Each attention head focus on one subspace
MultiHead(Q, K, V) = Concat(head;, ..., heady, )W©
where head; = Attention(QWiQ, KWE vw))
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Transformer: Overview

* The most important architecture for language modeling (almost all

LLMs are based on Transformers)!
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Transformer:

https://arxiv.org/pdf/1706.03762



https://arxiv.org/pdf/1706.03762

Transformer Model Architecture
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Transformer Layer

Each Transformer layer contains the following important components:
* Multi-head self-attention
e Layer normalization (LayerNorm)
e Feedforward network (FFN)
* Residual connections + layer norm

hi-1 by mesigual 1
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Feedforward Network (FFN)

* FFN in Transformer is a 2-layer network
(one hidden layer, two weight matrices) e

hi Residual Pis1
- Stream

* Apply non-linear activation after the first
layer

 Same FFN weights applied to every token

* Weights are different across different , x x,;, "
Transformer layers




Residual Connections

* Add the original input to the output of a
sublayer (e.g., Self-Attention/FFN)

y=z+ f(x)

* Benefits
* Address the vanishing gradient problem
* Facilitate information flow across the network

* Help scale up model: help with training very
deep networks
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Stacked Transformer Layers

/_\
. Token probabilities - Wi+1
* Each layer processes and refines o [ QI i d D) sl
representations from previous layer Ll I——
e Each layer has its own unique parameters U
e Within a layer, same FFN weights applied to all -
tokens aort
* Information flow e
* Lower layers: capture local patterns, syntax T
information *
* Middle layers: merge local information IR e —
o . layer norm
* Upper layers: model high-level semantics, R
task-specific features
. . or | layer norm |
* Language model head is added to the final A ——
layer 2
e Usually apply the weight tying trick (share gt ¢
ncodaing E

weights between input embeddings and the
output embeddings nputtoken W,



Encoder vs. Decoder

* Encoder models (bidirectional attention): e.g., BERT
» Used for text understanding tasks: text classification, named entity recognition

e Decoder models (unidirectional attention): e.g., GPT-2
* Used for text generation tasks: machine translation, document summarization, question

answering
hp every token attends to h, hg every token attends to
I all tokens T its previous tokens
// i \\\\\ <l Bidirectional 4 i Unidirectional
g | N N Self-Attention J i Self-Attention
¥ 1
(A Jle e ) (A Jle Jle -

* Both encoder and decoder models can be pre-trained via large corpus, but need
different training objectives!



Different Attention Matrix
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Pretraining: Motivation

* Before pretraining became prevalent in NLP, most NLP models
were trained from scratch for each downstream task

* Data scarcity: many NLP tasks do not have large labeled datasets
available (costly to obtain)

* Poor generalization: models trained from scratch on specific
tasks do not generalize well to unseen data or other tasks

 Sensitivity to noise and randomness: models are more likely to
learn spurious correlations or be affected by annotation
errors/randomness in training



Pretraining: Data

 There are abundant text data on the web, with rich information of
linguistic features and knowledge about the world

* Learning from these easy-to-obtain data greatly benefits various
downstream tasks

" ) arXiv @ reddit

WIKIPEDIA
ncyclopedia

U
N ewlgork o = stackoverflow
Cimes GitHub




Pretrain-Finetune Paradigm

* “Pretraining”: Train deep language models (usually Transformer models) via self-
supervised objectives on large-scale general-domain corpora

* “Fine-tuning”: Adapt the pretrained language models (PLMs) to downstream tasks by
further training on task-specific data

 The power of PLMs: Encode generic linguistic features and knowledge learned through
large-scale pretraining, which can be effectively transferred to the target applications

Large corpus (like Task-specific
Wikipedia) dataset (like Q/A) Test dataset
Language .| Fine tuning - Final Model

Model the model




Overview of Pretraining

 Self-supervised learning
* Make a part of the input unknown to the model
* Let the model predict that unknown part based on the known part

Mask/Corrupt Reconstruct

>

> > Pretrained Model i

Original data Corrupted data Original data




Transformer Architectures

* Encoder (e.g., BERT):
* Capture bidirectional context to learn each token representations
» Suitable for natural language understanding (NLU) tasks

* Decoder (modern large language models, e.g., GPT):
» Use prior context to predict the next token (conventional language modeling)
» Suitable for natural language generation (NLG) tasks
* Can also be used for NLU tasks by generating the class labels as tokens

* Encoder-decoder (e.g., BART, T5):
* Use the encoder to process input, and use the decoder to generate outputs
* Can conduct all tasks that encoders/decoders can do

NLU:
Text classification
Named entity recognition
Relation extraction
Sentiment analysis

NLG:
Text summarization
Machine translation
Dialogue system
Question answering




Decoder Pretraining (GPT)

* Decoder architecture is the prominent choice in large language models
Pretraining decoders are first introduced in GPT (generative pretraining) models

Recall the language modeling task: Model pg (W, |w;..—1), the probability distribution
over words given their past contexts. all previous tokens as context

Follow the standard language modeling (cross-entropy) objective

goes to make tasty tea END

[1] Radford, A., Narasimhan, K., Salimans, T., &
Iroh goes to make tasty tea Sutskever, 1. (2018). Improving language understanding
by generative pre-training. OpenAl blog.




Decoder Pretraining

Lim = —Zlﬂgp(mi | mz‘—kj“-wmi—l)
i

Original word : thank you forlinviting me to your party

6 stage thank  you for inviting me to your party
— ————,

5 stage thank you for inviting me ;g your
4 stage thank  you for inviting me to

— ‘F%
3 stage thank  you for inviting me

— o=

2 stage thank  you for inviting

P

1 stage thank  you for




Usage of Decoder Models

* Question Answering

Translate English to French:

cheese =>

Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese =>

task description

prompt

task description

examples

prompt
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BERT Model Architecture

* Bidirectional attention: each token can attend to its left and right
context for self-attention

Output C Tl Tz sas TN

BERT

Network
structure of
r RS F

N\ N\ AN N\ 2\ 2\ FAN N\ N\ N\
U U U U U u u U U U
E;};f::ldings Ecisi | | Eomamic | | Echanges Eot E.i Egrosion Eip Evuai Ecounty Egser)
+ + + + + + + + + +
e peddings En || Ea Ea Ea En | | Ea Eg || Es Es | | Es
+ + O+ O+ O+ O+ o+ o+ o+ o+
e Eo [ | B E; Es Es | | Ee Ez [| Es | | Eo | | E1o [1] BERT: Pre-training of Deep

Bidirectional Transformers for Language

Tnput m n m n m Understanding. Devlin et al. NAACL'19.




Encoder Model Pre-training

* Pre-training objectives
* Masked language modeling (MLM) + Next Sentence Prediction
 MLM: 15% of tokens are randomly corrupted (masked) for model prediction

eating walking Zoo
o 15% | 5% | .. | 0%
Prediction
A
A A & A A A
RoBERTa

Language Model

A T R

Random The cat is [MASK] some food

Masking

Input The cat is eating some food




Next Sentence Prediction

* Next Sentence Prediction (NSP) Class Label
 The model is trained to predict whether
each pair consists of an actual pair of
. . . C T N || Tiserr || M2 Mm
adjacent sentences from the training
corpus or a pair of unrelated sentence [CLS]
. . token BERT
* Positive samples: two contiguous
sentences in the corpus. el 8] o llemlla] [e
* Negative samples: sample another t 1 t + 1t t
sentence for sentence A.
[CLS] || Tok 1 Tok N||[SEP] || Tok 1 Tok N

* Class Labels: <is_next, not_next>

First Sentence Second Sentence




Usage of Encoder Models (l)

e Sentence classification tasks

e Text Classification Tasks
* Input: The bike is too small and | want to return it.
e QOutput: <refund, return, check_status>

* Sentiment Analysis

* Input: The restaurant is crowded and | waited my food for
30 minutes!

* Qutput: <positive, negative>

2
EES
Language Model
E[CLS] E1 Ez EN
i == n. = . Ji I
[CLS] Tok 1 Tok 2 Tok N

Single Sentence




Usage of Encoder Models (Il)

* Token-level tasks

* Named Entity Recognition

* Input: St. Louis is located in the state of
Missouri .

* Output: <Begin-Location> <Inside-location> O
O O O O O <Begin-Location> 0O

B-PER

o
s o 9

Language Model

[CLS] 1

< B & N\
[cLs) || Tok1 Tok 2

Single Sentence




Comparison with GPT Model

* Training objective: MLM prediction vs. left-to-right token prediction

Google BERT OpenAl GPT




BERT vs. GPT on NLU tasks

* GLUE Benchmark for natural language understanding
* BERT is better at language understanding

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6

BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1




Variants of BERT Model

 RoBERTa (RoBERTa: A Robustly Optimized BERT Pretraining Approach.
Liu et al. 2019)
* Training the model longer on more data with bigger batches
* Remove the next sentence prediction objective
* Dynamically change the [MASK] patterns in each epoch




Variants of BERT Model

 ELECTRA (ELECTRA: Pre-training Text Encoders as Discriminators
Rather Than Generators. Clark et al. 2020)
* Replaced token detection by corrupting text sequences with an auxiliary MLM

* Works better than BERT because the input text for ELECTRA does not contain
[MASK] tokens (no discrepancy between training and test data)

sample
the — [MASK] —> -->» the —» —> original
chef — chef —> Gen_erator chef — Discriminator —> original
cooked —» [MASK] —>! (typically a [-> ate —> (ELECTRA) —> replaced
the — the — small MLM) the —> —> original
meal —>» meal —> meal —>| —> original
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T5 Model

* How to predict a span of masked tokens within a sentence?

 BERT model requires the number of [MASK] token to be given in prior,
while GPT models are causal left-to-right models

e T5: Text-to-Text Transfer Transformer (parameters: 60M~11B)

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in

[Lily couldn't <M>. The waitress

had brought the largest <M> of believe her eyes <M>
chocolate cake <M> seen. piece <M> she had ever

Our <M> hand-picked and sun-dried
<M> orchard in Georgia.

peaches are <M> at our

o President Franklin D.
Pre-training Roosevelt was born
———————————————————— in January 1882. ——m = ===
Fine-tunin

9 S

When was Franklin D.
[ Roosevelt born? . |5 1882

Raffel, C., Shazeer, N., Roberts, A,, Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer
learning with a unified text-to-text transformer. JMLR.




Training of T5 Model

* Pretraining: Mask out spans of texts; generate the original spans

* Fine-Tuning: Convert every task into a sequence-to-sequence
generation problem

* Text-to-Text: Uncertain number of tokens in the input, and uncertain
number of tokens in the output

Original text

Thank you fef inviting me to your party Jast week.

Inputs

Thank you <x> me to your party <Y> week.

Targets
<x> for inviting <v> last <z~




T5 Attention

* A “fully-visible” attention mechanism is placed at the input sequence.
* Input Sequence:
* translate English to German : That is good . target :

* Target Output:
* Das ist gut.

Prefix LM

Fully-visible Causal Causal with prefix X, X3 Yy Y, -

;0 X X Y Y,

J

L




BART Model

* BART: Denoising autoencoder for pretraining sequence-to-sequence
models

* Pretraining: Apply a series of noising schemes (e.g., masks, deletions,
permutations...) to input sequences and train the model to recover
the original sequences

????E (Ac._E.) (DE.ABC.) (c.DE.AB)
Bidirecti I |:> Aut . Token Masking  Sentence Permutation Document Rotation
idirectiona utoregressive
Encoder Decoder
- o >
TR FFFT (acE )y (ABC.DE.) T (A_.D_E.)
A_B_E <s>A B C D Token Deletion Text Infilling
BART architecture BART pretraining objectives

ewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A, Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising
equence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.




Performance Comparison

 Comparable to encoder models on language understanding tasks

* Better performance on language generation tasks
SQuAD1.1 SQuAD20 MNLI SST QQP QNLI STS-B RTE MRPC CoLA

EM/F1 EM/F1 m/mm Acc Acc Acc Acc Acc Acc Mcc
BERT 84.1/90.9 79.0/81.8 86.6/- 93.2 O91.3 92.3 90.0 70.4 88.0 60.6
UniLM -/- 80.5/83.4 87.0/85.9 94.5 - 92.7 - 70.9 - 61.1
XL Net 89.0/94.5 86.1/88.8 89.8/- 95.6 91.8 93.9 91.8 83.8 89.2 63.6
RoBERTa 88.9/94.6 86.5/89.4 90.2/90.2 964 92.2 94.7 92.4 86.6 90.9 68.0
BART 88.8/94.6 86.1/89.2 89.9/90.1 96.6 92.5 94.9 91.2 87.0 90.4 62.8
CNN/DailyMail XSum
R1 R2 RL R1 R2 RL
Lead-3 4042 17.62 36.67 1630 1.60 11.95
PTGEN (See et al., 2017) 3644 15.66 3342 29.70 921 23.24
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38 28.10 8.02 21.72
UniLM 4333 20.21 40.51 - - -
BERTSUMABS (Liu & Lapata, 2019) 41.72 1939 38.76 38.76 1633 31.15

BERTSUMEXTABS (Liu & Lapata, 2019) 42.13 19.60 39.18 38.81 16.50 31.27
BART 44.16 21.28 4090 45.14 2227 37.25




Next Class: Scaling up Language Models

e GPT-1 (2018): 12 layers, 117M parameters, trained in ~1 week
 GPT-2 (2019): 48 layers, 1.5B parameters, trained in ~1 month
 GPT-3 (2020): 96 layers, 175B parameters, trained in several months

; GPT-5
@ K (2?)
GPT-4 0.”
@ @ — - Large language
GPT-3 o*
_ ~ models!

Model
Parametet

GPT-1 GPT-2 (7s8)  _L.et"
(0.1B) (se) et
2018 2019 2020 2023 2025

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf



https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2005.14165.pdf

Discussion Question

* There has been fewer successful attempts to scaling up BERT-based
bidirectional models (e.g., 100x) than unidirectional models. Why
does unidirectional model has better scaling performance than
bidirectional models?

Google BERT OpenAl GPT Fully-visible Causal
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