
CSE 561A: Large Language 
Models

Fall 2025

Lecture 2: Language Model Architectures and Pre-training



Course Reminder

• Sign-up for a presentation slot: 
https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatA
BgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing

• When it is your turn, waitlist offers are sent via emails (by workday 
system). If you don’t accept it, you will not be enrolled.

https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatABgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatABgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatABgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NPgbSOqR5KbmpfVsJpatABgqwNMGaqFssKQUWJ4D-3U/edit?usp=sharing


Content

• Self-Attention

• Transformer Architecture

• Different Pre-training Objectives
• Decoder-Only Models (GPT)

• Encoder-Only Models (BERT)

• Encoder-Decoder Models (T5, BART)



Recap: Context-Free Embedding

• 1) Each word is mapped to only one vector regardless of its context!
• E.g. “bank” is a polysemy, but only has one representation

• 2) It does not consider the order of words

• 3) It treats the words in the context window equally

• Solution: We need contextualized text representations!
• Injecting context information into words via advanced model architectures

“Open a bank account” “On the river bank”

Share representation



Self-Attention: Intuition

• Example: 

• “The chicken didn’t cross the road because it was too tired”

• Suppose we are learning attention for the word “it”

• With self-attention, “it” can decide which other words in the 
sentence it should focus on to better understand its meaning

• Might assign high attention to “chicken” (the subject) & “road” 
(another noun)

• Might assign less attention to words like “the” or “didn’t”



Self-Attention: Example

• Goal: Derive a contextual representation 
for the center word as a weighted sum of 
context representations!

Center word (query)Context word (key)

Current word = “it”

Attention score 𝑖 → 𝑗,
summed to 1

Context word
representation

Center word
representation



Self-Attention: Linear Projections

• As opposed to center/context 
representations for each word, we use 
three different representations for Query, 
Key, and Value vectors. 

• Query Vector (Q):
• Represent the current word seeking 

information about

• Key Vector (K):
• Represent the reference (context) against 

which the query is compared

• Value Vector (V):
• Represent the actual content associated with 

each token to be aggregated as final output

Input word
representation

query representation

key representation

value representation

Without Projection
- Same representation for 
Q, K, V
- Limited expressiveness
- Fixed attention patterns



Self-Attention: Matrix Calculation

𝑄𝐾𝑇

Attention Matrix

First token
(query vector)

Last token
(query vector)

First token
(key vector)

Last token
(key vector)



Self-Attention Demo

• Demo: https://github.com/jessevig/bertviz



Multi-Head Attention

• Input: Multiple Independent sets of query, key, value matrices

• Output: Concatenate the outputs of attention heads

• Advantage: Each attention head focus on one subspace

Concatenation



Content

• Self-Attention

• Transformer Architecture

• Different Pre-training Objectives
• Decoder-Only Models (GPT)

• Encoder-Only Models (BERT)

• Encoder-Decoder Models (T5, BART)



Transformer: Overview

• The most important architecture for language modeling (almost all 
LLMs are based on Transformers)! 

Transformer: https://arxiv.org/pdf/1706.03762

https://arxiv.org/pdf/1706.03762


Transformer Model Architecture

• Tokenizer + Input Embedding 
Layer (context-free embeddings)

• Positional Encoding Layer

• Transformer layers
• encoder layers: text understanding

• decoder layers: text generation

• Output: Linear + SoftMax layer 
for next word prediction



Transformer Layer

Each Transformer layer contains the following important components:
• Multi-head self-attention

• Layer normalization (LayerNorm)

• Feedforward network (FFN)

• Residual connections + layer norm



Feedforward Network (FFN)

• FFN in Transformer is a 2-layer network 
(one hidden layer, two weight matrices)

• Apply non-linear activation after the first
layer

• Same FFN weights applied to every token

• Weights are different across different
Transformer layers



Residual Connections

• Add the original input to the output of a
sublayer (e.g., Self-Attention/FFN)

• Benefits
• Address the vanishing gradient problem

• Facilitate information flow across the network

• Help scale up model: help with training very 
deep networks



Stacked Transformer Layers

• Each layer processes and refines 
representations from previous layer
• Each layer has its own unique parameters
• Within a layer, same FFN weights applied to all 

tokens

• Information flow
• Lower layers: capture local patterns, syntax 

information
• Middle layers: merge local information
• Upper layers: model high-level semantics, 

task-specific features

• Language model head is added to the final
layer
• Usually apply the weight tying trick (share

weights between input embeddings and the
output embeddings



Encoder vs. Decoder

• Encoder models (bidirectional attention): e.g., BERT
• Used for text understanding tasks: text classification, named entity recognition

• Decoder models (unidirectional attention): e.g., GPT-2
• Used for text generation tasks: machine translation, document summarization, question 

answering

• Both encoder and decoder models can be pre-trained via large corpus, but need 
different training objectives!



Different Attention Matrix

• Attention Matrix

𝑊

Attention Matrix (Encoder)

First token
(query vector)

Last token
(query vector)

First token
(key vector)

Last token
(key vector)

𝑊′ ′

Attention Matrix (Decoder)

First token
(query vector)

Last token
(query vector)

First token
(key vector)

Last token
(key vector)



Content

• Self-Attention

• Transformer Architecture

• Different Pre-training Objectives
• Decoder-Only Models (GPT)

• Encoder-Only Models (BERT)

• Encoder-Decoder Models (T5, BART)



Pretraining: Motivation

• Before pretraining became prevalent in NLP, most NLP models
were trained from scratch for each downstream task

• Data scarcity: many NLP tasks do not have large labeled datasets 
available (costly to obtain)

• Poor generalization: models trained from scratch on specific 
tasks do not generalize well to unseen data or other tasks

• Sensitivity to noise and randomness: models are more likely to 
learn spurious correlations or be affected by annotation 
errors/randomness in training



Pretraining: Data

• There are abundant text data on the web, with rich information of 
linguistic features and knowledge about the world

• Learning from these easy-to-obtain data greatly benefits various 
downstream tasks



Pretrain-Finetune Paradigm

• “Pretraining”: Train deep language models (usually Transformer models) via self-
supervised objectives on large-scale general-domain corpora

• “Fine-tuning”: Adapt the pretrained language models (PLMs) to downstream tasks by 
further training on task-specific data

• The power of PLMs: Encode generic linguistic features and knowledge learned through
large-scale pretraining, which can be effectively transferred to the target applications



Overview of Pretraining

• Self-supervised learning

• Make a part of the input unknown to the model

• Let the model predict that unknown part based on the known part



Transformer Architectures
• Encoder (e.g., BERT): 

• Capture bidirectional context to learn each token representations

• Suitable for natural language understanding (NLU) tasks

• Decoder (modern large language models, e.g., GPT):
• Use prior context to predict the next token (conventional language modeling)

• Suitable for natural language generation (NLG) tasks

• Can also be used for NLU tasks by generating the class labels as tokens

• Encoder-decoder (e.g., BART, T5):
• Use the encoder to process input, and use the decoder to generate outputs

• Can conduct all tasks that encoders/decoders can do

NLG:
Text summarization
Machine translation

Dialogue system
Question answering

…

NLU:
Text classification

Named entity recognition
Relation extraction
Sentiment analysis

…



Decoder Pretraining (GPT)

• Decoder architecture is the prominent choice in large language models

• Pretraining decoders are first introduced in GPT (generative pretraining) models

• Recall the language modeling task: Model 𝑝𝜃 𝑤𝑡|𝑤1:𝑡−1 , the probability distribution 
over words given their past contexts.

• Follow the standard language modeling (cross-entropy) objective

[1] Radford, A., Narasimhan, K., Salimans, T., & 
Sutskever, I. (2018). Improving language understanding 
by generative pre-training. OpenAI blog.

all previous tokens as context



Decoder Pretraining



Usage of Decoder Models

• Question Answering



Content

• Self-Attention

• Transformer Architecture

• Different Pre-training Objectives
• Decoder-Only Models (GPT)

• Encoder-Only Models (BERT)

• Encoder-Decoder Models (T5, BART)



BERT Model Architecture

• Bidirectional attention: each token can attend to its left and right 
context for self-attention

[1] BERT: Pre-training of Deep 
Bidirectional Transformers for Language 
Understanding. Devlin et al. NAACL’19.



Encoder Model Pre-training

• Pre-training objectives
• Masked language modeling (MLM) + Next Sentence Prediction

• MLM: 15% of tokens are randomly corrupted (masked) for model prediction



Next Sentence Prediction

• Next Sentence Prediction (NSP)

• The model is trained to predict whether 
each pair consists of an actual pair of 
adjacent sentences from the training 
corpus or a pair of unrelated sentence

• Positive samples: two contiguous 
sentences in the corpus.

• Negative samples: sample another 
sentence for sentence A. 

• Class Labels: <is_next, not_next>

[CLS] 
token



Usage of Encoder Models (I) 

• Sentence classification tasks
• Text Classification Tasks

• Input: The bike is too small and I want to return it. 

• Output: <refund, return, check_status>

• Sentiment Analysis
• Input: The restaurant is crowded and I waited my food for 

30 minutes! 

• Output: <positive, negative>

Language Model



Usage of Encoder Models (II) 

• Token-level tasks
• Named Entity Recognition

• Input: St. Louis is located in the state of 
Missouri .

• Output: <Begin-Location> <Inside-location> O 
O O O O O <Begin-Location> O

Language Model



Comparison with GPT Model

• Training objective: MLM prediction vs. left-to-right token prediction



BERT vs. GPT on NLU tasks

• GLUE Benchmark for natural language understanding

• BERT is better at language understanding



Variants of BERT Model

• RoBERTa (RoBERTa: A Robustly Optimized BERT Pretraining Approach. 
Liu et al. 2019)
• Training the model longer on more data with bigger batches

• Remove the next sentence prediction objective

• Dynamically change the [MASK] patterns in each epoch



Variants of BERT Model

• ELECTRA (ELECTRA: Pre-training Text Encoders as Discriminators 
Rather Than Generators. Clark et al. 2020)
• Replaced token detection by corrupting text sequences with an auxiliary MLM

• Works better than BERT because the input text for ELECTRA does not contain 
[MASK] tokens (no discrepancy between training and test data)



Content

• Self-Attention

• Transformer Architecture

• Different Pre-training Objectives
• Decoder-Only Models (GPT)

• Encoder-Only Models (BERT)

• Encoder-Decoder Models (T5, BART)



T5 Model

• How to predict a span of masked tokens within a sentence?

• BERT model requires the number of [MASK] token to be given in prior, 
while GPT models are causal left-to-right models

• T5: Text-to-Text Transfer Transformer (parameters: 60M~11B)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer 
learning with a unified text-to-text transformer. JMLR.



Training of T5 Model

• Pretraining: Mask out spans of texts; generate the original spans

• Fine-Tuning: Convert every task into a sequence-to-sequence
generation problem

• Text-to-Text: Uncertain number of tokens in the input, and uncertain 
number of tokens in the output



T5 Attention

• A “fully-visible” attention mechanism is placed at the input sequence.
• Input Sequence: 

• translate English to German : That is good . target : 

• Target Output: 
• Das ist gut .



BART Model

• BART: Denoising autoencoder for pretraining sequence-to-sequence 
models

• Pretraining: Apply a series of noising schemes (e.g., masks, deletions,
permutations…) to input sequences and train the model to recover
the original sequences

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising 
sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ACL.

BART architecture BART pretraining objectives



Performance Comparison

• Comparable to encoder models on language understanding tasks

• Better performance on language generation tasks



Next Class: Scaling up Language Models

• GPT-1 (2018): 12 layers, 117M parameters, trained in ~1 week

• GPT-2 (2019): 48 layers, 1.5B parameters, trained in ~1 month

• GPT-3 (2020): 96 layers, 175B parameters, trained in several months

GPT-5
(???)

2018 2019 2020

GPT-2
(1.5B)

GPT-3
(175B)

Model
Parameter

2023

GPT-1
(0.1B)

Large language 
models!

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf

GPT-4
(???)

2025

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2005.14165.pdf


Discussion Question

• There has been fewer successful attempts to scaling up BERT-based 
bidirectional models (e.g., 100x) than unidirectional models. Why 
does unidirectional model has better scaling performance than 
bidirectional models?


	Slide 1: CSE 561A: Large Language Models
	Slide 2: Course Reminder
	Slide 3: Content
	Slide 4: Recap: Context-Free Embedding
	Slide 5: Self-Attention: Intuition
	Slide 6: Self-Attention: Example
	Slide 7: Self-Attention: Linear Projections
	Slide 8: Self-Attention: Matrix Calculation
	Slide 9: Self-Attention Demo
	Slide 10: Multi-Head Attention
	Slide 11: Content
	Slide 12: Transformer: Overview
	Slide 13: Transformer Model Architecture
	Slide 14: Transformer Layer
	Slide 15: Feedforward Network (FFN)
	Slide 16: Residual Connections
	Slide 17: Stacked Transformer Layers
	Slide 18: Encoder vs. Decoder
	Slide 19: Different Attention Matrix
	Slide 20: Content
	Slide 21: Pretraining: Motivation
	Slide 22: Pretraining: Data
	Slide 23: Pretrain-Finetune Paradigm
	Slide 24: Overview of Pretraining
	Slide 25: Transformer Architectures
	Slide 26: Decoder Pretraining (GPT)
	Slide 27: Decoder Pretraining
	Slide 28: Usage of Decoder Models
	Slide 29: Content
	Slide 30: BERT Model Architecture
	Slide 31: Encoder Model Pre-training
	Slide 32: Next Sentence Prediction
	Slide 33: Usage of Encoder Models (I) 
	Slide 34: Usage of Encoder Models (II) 
	Slide 35: Comparison with GPT Model
	Slide 36: BERT vs. GPT on NLU tasks
	Slide 37: Variants of BERT Model
	Slide 38: Variants of BERT Model
	Slide 39: Content
	Slide 40: T5 Model
	Slide 41: Training of T5 Model
	Slide 42: T5 Attention
	Slide 43: BART Model
	Slide 44: Performance Comparison
	Slide 45: Next Class: Scaling up Language Models
	Slide 46: Discussion Question

