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Motivation & Introduction 

Large Language Models (LLMs) like GPT-3, PaLM, and ChatGPT can produce text that is highly 

fluent and coherent.

Such models can be misused in education, journalism, and social media — e.g., AI-written essays or 

fake news.

Humans perform only slightly better than random guessing when identifying AI-generated text.



Existing Methods & Limitation 

● Classifier-based Approaches

○ Prior works train separate classifiers using labeled data

● Limitations

○ These classifiers often overfit to certain topics or models and 

must be retrained for each new LLM.

● Zero-shot Baselines are Simplistic

○ Simple zero-shot methods (like average log-probability) ignore 

local structure of the probability function.



Key Hypothesis: Probability Curvature

● Negative Curvature for Model Text

● Human Text is More Stable

● DetectGPT Leverages This Property



DetectGPT Method Overview

● Perturb:Generate small paraphrases 

of the candidate text using a general 

model such as T5.

● Score: Compute the log-probabilities 

of the original and perturbed texts 

under the source model (e.g., GPT-3)

● Compare: If the original text’s log-

probability is much higher than the 

perturbed versions, it’s likely 

machine-generated..



Algorithm1



Experimental validation of hypothesis

● Evaluate DetectGPT on various LLMs 

(GPT-2, GPT-J, GPT-Neo series) and 

datasets (XSum, SQuAD, 

WritingPrompts, PubMed).

● Use AUROC to measure how well the 

method separates human vs 

machine-generated texts.

● Model-generated texts show larger 

log-probability drops after 

perturbation than human texts → 

clear negative curvature.



Quantitative results across models & datasets



Comparison with Supervised Detectors

Supervised machine-generated text 

detection models trained on large datasets 

of real and generated texts perform as 

well as or better than DetectGPT on in-

distribution (top row) text. However, zero-

shot methods work out-of-the-box for new 

domains (bottom row) such as PubMed 

medical texts and German news data from 

WMT16. For these domains, supervised 

detectors fail due to excessive distribution 

shift.



Comparison with Zero-Shot Baselines
We simulate human edits to 

machine-generated text by replacing 
varying fractions of model samples with 

T5-3B generated text (masking out random 

five word spans until r% of text is masked 

to simulate human edits to machine-

generated text). The four top-performing 

methods all generally degrade in 

performance with heavier revision, but 

DetectGPT is consistently most accurate. 
Experiment is conducted on the XSum 

dataset. 



Ablation Studies

DetectGPT performs best when scoring samples with 
the same model that generated them (diagonal).

But the column means suggest that some models (GPT-
Neo, GPT 2) may be better ‘scorers’ than others (GPT-J). 

Overall, this figure shows that DetectGPT performs best 

when it can directly access the generating model (white-
box), but it remains fairly robust and effective even when the 
model is unknown (black-box).



Key Takeaways

Conceptual Breakthrough

DetectGPT leverages the negative curvature property of LLMs for zero-shot detection.

Practical Advantages

No training data needed, no classifier, works with any white-box LLM

Empirical Success

Outperforms zero-shot and supervised baselines across datasets and domains.

Future Directions

Address black-box models and improve efficiency via Fast-DetectGPT.
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Motivation & Introduction 

● Explosion of LLM Generated Content: 
LLMs can write essays, news, and code 

indistinguishable from humans

● Detection is key to controlling 
misinformation, plagiarism, etc.

● Detection: Turing Test (TT) vs. 
Authorship Attribution (AA)

● GPT-who offers a simple solution based 

on Uniform Information Density (UID)



Background: UID

● Surprisal = “Unexpectedness” of a 

word in a given context

● High surprisal → rare / unpredictable 

word

● Low surprisal → common / expected 

word

● Humans distribute information 

evenly → stable surprisal



Method Pipeline



UID Feature Design

● Mean surprisal (μ): overall info level

● UID variance: global smoothness

● UID diff / diff²: local changes

● Min / Max UID spans (Newly Created Feature): extreme low/high-info regions



Datasets & Baselines & Results

● Datasets: TuringBench, GPA-Bench, ArguGPT, In-the-Wild

● Baselines: GLTR, ZeroGPT, DetectGPT, OpenAI’s detector, LongFormer-based 

detector, fine-tuned BERT



Results (continued)



Results (continued)

● Outperforms statistical detectors (GLTR, 
GPTZero, DetectGPT) by large margins

● Comparable to fine-tuned transformers 
on 2 of 4 benchmarks



UID Signatures of Authors

● Test whether UID patterns can distinguish humans from machines

● Examine if different LM families show unique UID “signatures”



Training & Inference Efficiency
● Measured training + inference time on 6 In-The-Wild (largest benchmark) testbeds

● GPT-who fastest — only one LM forward pass + logistic regression

● Competing methods are far slower due to LM fine-tuning (BERT) or multiple 
inference calls (DetectGPT) needed



Discussion

● Human text appears more non-uniform than machine text.

● Does not contradict UID theory: uniformity is relative to each author’s probability 
distribution.

● Goal was not to prove UID theory but to test its utility for detection.

● UID-based features still distinguish humans vs machines and across LM families, 
independent of theory alignment.



Conclusion & Limitations

● GPT-who: UID-based, domain-agnostic statistical detector

● Outperforms other statistical methods and nears fine-tuned models

● More efficient with no training due to its psycholinguistic basis

● Limitations: limited datasets; needs tests on more tasks like QA or summarization
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Why watermark?

• LLMs can automatically 
generate high-quality text.

• Write academic papers? 
Fabricate fake news? 
Forge content?

Problem 
Background:

• Could we have the model 
embed a hidden watermark 
within the text itself so that 
we can detect 

We hope 
that 

Detectable without 
access to model 
parameters or API

No retraining 
required to 
generate 
watermarked text

Detection possible 
from partial text

Watermark is hard 
to remove 

Statistically rigorous 
detection with p-
value 

Our goals



A language model is a function that predicts the probability of the next word.

Symbol Meaning Explanation

V Vocabulary The set of all available "tokens" (words 
or word pieces) for the model. Typically 
has **

T Generated Token 
Sequence Length

The number of tokens in a generated 
piece of text.

s(t) The t-th token For example, s(1)="The", s(2)="model", 
etc.

s(-Np)...s(-1) Prompt The part input by the user, e.g., 
"Explain the theory of".

s(0)...s(T) Model-generated 
Output Sequence

The content generated by the model based 
on the prompt.

f Language Model 
Function

The prediction function of the model, 
parameterized by a neural network.

logits Raw Output Score 
Vector

A vector of dimension

softmax Converts logits to a 
probability 
distribution

Obtains the generation probability for 
each word.



How Autoregressive Language Models Generate Text

Receive 
Input

Predict Next 
Token

Convert to 
Probabilities

Select the 
Next Word

Append and 
Repeat

f(s(-Np), ..., s(t-1)) → yields a set of 

logits.

"generate" → 0.6

"produce" → 0.3
"build" → 0.1

Multinomial sampling

Greedy decoding
Beam search

Watermarking techniques only tamper with the 

data during the 'sampling' stage:



Entropy

High Entropy: Many plausible 
continuations for a sentence.

• "Today I feel ..."

• Possible next tokens: "happy", "sad", 
"tired", "motivated"...

Low Entropy: Only one or a few 
highly probable continuations.

• "The capital of France is …"

• The almost certain next token: "Paris"

High-entropy sentences →Easy 

to watermark, easy to detect.

Low-entropy sentences → 

Difficult to watermark, 
challenging to detect.



Hard Red List

Apply the language model 
to prior tokens 

s^(−Np)...s^(t−1) to get a 
probability vector p^(t) 
over the vocabulary.

Compute a hash of token 
s ̂ (t−1), and use it to seed 

a random number 
generator.

Using this seed, randomly 
partition the vocabulary 

into a “green list” G and a 
“red list” R of equal size.

Sample s^(t) from G , 
never generating any 
token in the red list.

Process

• For each token, reconstruct the 

corresponding red/green list.
• Count the number of tokens 

falling into the green list within 

this text segment, denoted as 
|s|₍G₎.

• Theoretically:
• For natural text (unwatermarked): 

Each token has a 50% probability of 

falling into green → Expected value 
E(|s|₍G₎) = T/2.

• For watermarked text: 100% of 
tokens are in the green list.

Detection Methods



Soft Watermark

Apply the language model 
to prior tokens s (−Np)...s 
(t−1) to get a logit vector  l 

(t) over the vocabulary. 

Compute a hash of token 
s ( t−1), and use it to seed 

a random number 
generator. 

Using this random number 
generator, randomly 

par tition the vocabulary 
into a “green list” G of size 
γ|V |, and a “red list” R of 

size (1 − γ)|V |. 

Add δ to each green list 
logit. Apply the softmax 

operator to these modified 
logits to get a probability 

distribution over the 
vocabulary.

Sample the next token, s 
(t), using the watermarked 

distribution pˆ (t) .

Process Detection Methods

• We assume the null hypothesis 

H₀: The text is naturally written, without 
watermarks.
• Then we calculate the z-statistic:

• If the z-value is significantly 

greater than 0 (e.g. 𝑧>4), this 
indicates that the proportion of 
green words far exceeds that 

expected by chance. 



Analysis of the Soft Watermark
Spike entropy

𝑝 is the probability distribution output by 

the model, 𝑧 is a tuning parameter.

• When the distribution is highly 'peaked' (with 

most probability concentrated on a single 

word),𝑆 is small;

• When the distribution is 'smooth' (with 

probability distributed more evenly), 𝑆

is large.

Assume that during token generation, the language 

model:

• applies a bias δ to green-listed words (i.e. 𝛼 = 𝑒^𝛿),"

• with a green-list proportion of γ,

• an average spike entropy no less than 𝑆∗
The number of green list words in the generated text 

|𝑠|𝐺 satisfies:

When γ ≥ 0.5, a simpler upper bound 
may be employed:

• The higher the expected value (E) of the average green 

word count, the stronger the watermark and the easier it 

is to detect;

• The lower the variance (Var), the greater the stability of 

detection.



Analysis of the Soft Watermark
type-II error analysis to 

calculate the sensitivity 

•γ = 0.5, δ = 2

• Detection threshold z = 4 
(corresponding to a false 
alarm rate of 3×10⁻⁵)
• Generation length T = 200 
tokens

• Using the OPT-1.3B model
• Tested on the 
RealNewsLike subset of the 

C4 dataset

Metric Value Interpretation

Average spike 

entropy (S)
0.807 Text is fairly diverse

Expected green 

tokens (theory)
≥ 142.2 Predicted signal strength

Empirical mean 159.5
Watermark stronger in 

practice

Standard deviation 

(σ)
≤ 6.41 Stable across samples

Detection 

sensitivity
98.6% Almost all detected

Empirical detection 

rate

98.4% (multinomial), 

99.6% (beam search)
Very high accuracy

Experiment results



Private Watermark
pseudorandom function, PRF: FK (⋅)

The way to generate private watermark:

1. Select a random key K.

2. When generating each token, use 
the preceding h tokens as input to 
compute:𝐹𝐾(𝑠^(𝑡−ℎ),...,𝑠^(𝑡−1)) to 
obtain a pseudorandom output.

3. This output determines which 
tokens belong to the green list and 

which belong to the red list.

Improve: Robust Private Watermarking

Input prompt, set PRF, key K, 
parameter δ, window h;

For each step, generate:

• Compute logits;

• Sort in descending order of probability;

• Provisionally se lect the current most probable 
word 𝑠𝑡 and compute its hash;

• Pseudorandomly determine whether it belongs 
to the green or red list;

• If it falls into the red list and the logit gap is too 
large (below δ), skip  it and se lect the next 
candidate;

If the threshold δ is exceeded, retain 
the red token and proceed to the next 

step.



Experiments
• Can watermarks be accurately detected?

• Does the watermark compromise the quality of the text?

• What is the effect of different parameters on detection intensity?

Set up

Data:

• "News-like" subset 
from C4 (Colossal 
Clean Crawled 
Corpus).

• Each sample 
comprises two parts: 
prompt (input) + 
completion 

Generation 
method:

• Generated 200±5 
tokens using 
different decoding 
strategies:

• Multinomial 
sampling 

• Greedy decoding / 
Beam search (4 
beams, 8 beams)

• To prevent 
premature <EOS> 
output during beam 
search, the EOS 
token was masked 
to ensure 
consistent segment 
lengths.

Test Metrics:

• z-score: Detection 
statistic 

• Perplexity (PPL): 
Text fluency metric 

• ROC curve, AUC: 
Detection 
performance

• Type-I error (false 
positive)

• Type-II error (false 
negative)

Figure 2 — Trade-off between watermark strength and 

text quality

Results



Experiments

Figure 3 — Relationship between z-score and text length T

• The z-score increases monotonically with text length T.

• The theoretical prediction holds true: longer texts enable more stable 
detection of watermarks.

• Both δ and γ can be adjusted to regulate detection intensity.



Experiments

Figure 4 — ROC Curve and Detection Performance

• (a)(b) Linear coordinates, (c)(d) Logarithmic coordinates.

• When δ ≥ 5, the AUC approaches 1.0 → Detection is nearly perfect.
• Beam search again slightly outperforms random sampling.
• This indicates the statistical characteristics of the watermark signal 

are highly stable, making it resistant to misclassification or loss.



Experiments

Table 2 — Experimental Error Rate

• All experiments: FPR=0.0 → No human text was misclassified.

• When δ=2, FNR ≤ 1.6% (i.e., false negative rate below 2%).
• When δ≥5, TPR=1.0, FNR=0.0 → Complete detection success.
• Beam search yields results nearly identical to multinomial models, 

and even slightly superior.



Attacking the Watermark
Three major categories 

of attack

Insertion Attack

• The attacker introduces additional 
tokens into the text, such as symbols 
or random words.

Deletion Attack

• The attacker removes several tokens, 
particularly words from the green list, 
thereby diminishing the watermark 
signal.

Substitution Attack

• Attackers rewrite words using 
synonyms or paraphrases (e.g., 
"good" → "great").

T5 Span Replacement Attack

Goal:
Simulate an attacker automatically replacing portions of the original 

text using a weaker language model (T5-Large) to undermine the 

watermark.

Experimental Setup:
• Attack target: A watermarked OPT-1.3B model output (γ=0.5, δ=2.0).

• Attacker model: T5-Large.

• Attack methodology:

1. Tokenise the text;

2. Randomly select tokens to replace with <mask>;

3. Predict 20 candidates at that position using T5 (beam search=50);

4. Overwrite with the new word if replacement succeeds;

5. Continue until the replacement ratio reaches ε (attack budget), 

e.g. ε=0.1 indicates 10% modification.



Attacking the Watermark

Figure 6. ROC curves for watermark detection under attack

Result Analysis:

• ε = 0.1 → Virtually ineffective, with AUC declining 

by merely 0.01 (detection remains robust).

• ε = 0.3 → Watermarking significantly weakened, 

yet text perplexity PPL surged to threefold the 

original value.

• ε ≥ 0.5 → Although watermarking is nearly 

eliminated, sentences become severely distorted 

with abysmal quality.

Conclusion:

To genuinely remove the watermark, an attacker must 

rewrite over 30% of the content, incurring an extremely 

high cost, with the generated text quality demonstrably 

deteriorating.



Conclusion
1. Summary of Key Contributions
• Simple and user-friendly

• Theoretically provable

• Virtually no false positives

• Strong resistance to attacks

• High portability

2.Technical Highlight: Independence 

of the z-statistic
The z-statistic employed during testing 

relies solely on γ (the size of the green list) 

and the hash function, and is independent of 

δ (the logit bias).

3.Scalable Deployment Approach
• Be enabled only in specific contexts (e.g., when 

user behaviour is deemed suspicious);

• Assign different δ values for distinct tasks;

• Be utilised at the model API level to automatically 

detect whether "suspected abusive generation" has 

occurred.

4.Open Questions (Future Work)
• 1. More robust hashing rules: Does a 

theoretically optimal hashing scheme exist?

• 2. Short text detection: Can reliable detection be 

achieved using only partial text fragments?

• 3. More precise sensitivity bounds under large δ / 

small γ: Theoretical improvements remain 

possible.
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Motivation & Goal

● AI generated text is rapidly growing and 

threatens authenticity

● Existing detectors lack generalization 

and interpretability

● Need robust AI-Text detection 

framework for modern LLM 

● Final Goal is to detect whether text is 

human or ChatGPT generated



Related Work
1. Accuracy -How well can it distinguish LLM text from human text(Precision, Recall)?
2. Data Efficiency- How well does it learn from small data?
3. Generalizability- Does it work on unseen models?
4. Interpretability- Can the model’s decision be explained?

Statistical methods drop in accuracy as model size increases (88% → 74%)

● Small models(GPT-2 124M), accuracy = 88%
● Large models(GPT-2 1.5B),  accuracy = 74%

GLTR improves detection (54% → 72%) via token probability analysis but lacks learning.

Zero-shot approaches underperform, while fine-tuned LMs (e.g., RoBERTa) achieve ~90% accuracy.

Fine-tuned LM achieved = 90% accuracy 



Dataset Collection: OpenGPTText
● No public dataset systematically containing 

ChatGPT outputs existed

● The author built OpenGPTText, a pair of human-

written and ChatGPT-paraphrased samples

● Source: OpenWebText- web pages shared on 

Reddit, originally all human-written

● Process: Each paragraph rephrase through 

ChatGPT-3.5turbo with prompt: Rephrase the 

following paragraph by paragraph

● Final dataset: 29,395 text pairs



Data Cleaning 
● ChatGPT outputs often contained 

stylistic artifacts
○ Smart quotes(“”) instead of 

ASCII(“”)
○ Inconsistent newlines(2-6 line 

breaks) and extra spaces

● Normalize both corpora with 
identical preprocessing

○ OpenWebText-Final (Human)
○ OpenGPTText-Final (ChatGPT)

● PCA indicates tighter clustering and 
clearer separation after cleaning



Dataset Roadmap

OpenWebText

Data Cleaning

Paraphrasing by 
ChatGPT-3.5-turbo

OpenGPTText

Failed to 
Rephrase(Filtered out) Data Cleaning

OpenGPTText-Final
OpenWebTextFina

l



RoBERTa-Sentinel 

1. Token Embeddings(E1~En):
a. Each input word (Ex: This is GPT) is 

converted into numerical vectors
2. Frozen RoBERTa Encoder(12 Layers):

a. Pre-trained Transformer layers process the 
tokens to capture contextual meaning. 
These layers are frozen, so their 
parameters are not updated during training. 

3. [CLS] Token Representation:
a. The special [CLS] token summarizes the 

meaning of the entire sentence
4. Feature Flow(Dashed Arrow):

a. Information flows from RoBERTa to the 
MLP, but no gradient flows back

5. MLP Classifier (Trainable):
a. The [CLS] embedding is fed into a 2 layer 

MLP that predicts: P(Human) or P(ChatGPT)



T5-Sentinel

● Token Embeddings(E1~En):
○ Each input word is tokenized and embeded

● T5 Encoder(X6 blocks, Trainable):
○ Self-attention + feed forward layers build contextual 

representations of whole sentence 
○ Outputs a sequence of hidden states used by decoder

● Decoder Start & Masked Self-Attention
○ The decoder is primed with a <PAD>(start) token
○ Masked self attention lets the decoder look only at already 

generated positions

● Cross Attention to Encoder Outputs
○ The decoder attends to encoder hidden states to condition 

generation on the input text
○ This ties the prediction to the full sentence meaning

● Predict the Label Word
○ Positive -> ChatGPT generated
○ Negative-> Human written



Training and Evaluation

● Both models were trained on the OpenGPTText-Final 
dataset but with different training strategies and 
parameter scales which indicates how model size, 

learning rate and training scope affect performance 

and stability.

● RoBERTa-Sentinel trained much longer than T5 
because only the MLP classifier was learning 

● Higher learning rate in T5 helps the large model learn 
quickly without underfitting, a smaller learning rate 

RoBERTa prevents instability in smaller classifier head 



Results(F1 Score, False Positive Rate and False Negative Rate)

● Both T5-Sentinel and RoBERTa-Sentinel achieve excellent accuracy on the OpenGPTText datasets (before and after cleaning) but sho w 
poor performance on GPT2-Output due to its higher randomness and stylistic differences from ChatGPT text.

● Additionally, GPT2-Detector fails to generalize from GPT2-based detection to ChatGPT detection, showing limited cross-model transfer 

ability.



Results(AUC Value for each combination of data set and model)

● T5-Sentinel and RoBERTa-Sentinel achieve extremely high AUC scores (above 0.97) on the OpenGPTText datasets, 
demonstrating strong detection performance for ChatGPT-generated text.

● Both models perform poorly on the GPT2-Output dataset, indicating limited generalization, whereas GPT2-Detector 
performs well only on GPT2 outputs but fails to detect ChatGPT text effectively.



Results(ROC Curve)

● The blue curve, T5 Sential dominates all others with the highest recall and lowest error. 

● RoBERTa follows closely behind, while public detectors like ZeroGPT and OpenAI’s detector lag far 

below

● On GPT-2 output, all models drop in accuracy

● GPT-Sentinel is excellent in domain but not yet generalize well to unseen LLM

OpenGPT Text 
Final

OpenGPT Text GPT2-Output



Results(ROC Curve)

● T5-Sentinel and RoBERTa-Sentinel both achieve excellent performance on the OpenGPTText and OpenGPTText-Final 
datasets their ROC curves are nearly touching the top-left corner, showing high true positive rate (TPR) and low false 
positive rate (FPR).

● On the GPT2-Output dataset, however, both models perform poorly, with curves close to the diagonal line meaning their 
ability to detect GPT-2 generated text is weak.

● This demonstrates that ChatGPT-generated (paraphrased) text has distinct statistical and linguistic characteristics 
compared to GPT-2 text, leading to strong dataset specificity but limited generalization.

T5-Sentinel RoBERTa-Sentinel



Results(DET Curve)

● Starting from Left both Sentinel model perform strongly with very low errors, but there are more 

variation due to noise and artifacts before cleaning and for GPT2 it confirms limited cross model 

generalization 

● GPT-Sentinel excels in domain but remains model specific

OpenGPT Text 
Final

OpenGPT Text GPT2-Output



Confidence

● T5 Sentinel shows sharp 

confidence peaks near 0 and 1 

which is very decisive predictions

● Data cleaning increases 

confidence stability and reduce 

the ambiguity

● Overall, it confirms that cleaning 

and fine-tuning lead to a more 

trustworthy detection model

T5-Sentinel RoBERTa-Sentinel



Interpretability(PCA)

● To better understand how the models differentiate 
human vs ChatGPT-generated text, a PCA 
visualization was performed on the hidden 
representations of both models.

● RoBERTa-Sentinel: Hidden states were extracted 
from the last layer of the MLP.

● T5-Sentinel: Hidden states were taken from the 
final decoder block output.

● The PCA used test samples from the OpenGPTText-
Final dataset.

● Both models formed two distinct clusters one for 
human-written text and one for ChatGPT-
rephrased text.

● This clustering shows that the models learned 
implicit linguistic patterns that separate human 
and AI writing styles.

● T5-Sentinel’s clusters are more distinct, indicating 
stronger discriminative power than RoBERTa-
Sentinel.

RoBERTa-SentinelT5-Sentinel



Interpretability

● t-SNE visualize each text hidden 

representation in 2D

● T5-Sentinel forms two clear non 

overlapping cluster

● RoBERT-Sentinel shows partial 

overlap which shows weaker 

separation 

● It confirms that T5 learns deeper 

semantic distinctions, not just token 

patterns



Future work & Conclusion
Future work

● Current models are only trained in English so develop with different languages
● Plan to collect the diverse datasets to evaluate model accuracy across different 

textual contexts and task types
Conclusion

● Introduced OpenGPTText, a high quality dataset rephrased by ChatGPT for AI vs 
human

● Achieved over 97% accuracy on test using F1, AUC, and ROC metrics
● Conducted interpretability analysis(PCA & tSNE) to revealed clear separation 

between human and AI text
● Highlighted the potential for real world AI content detection



Thank You!
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