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Motivation & Introduction

Large Language Models (LLMs) like GPT-3, PaLM, and ChatGPT can produce text that is highly
fluent and coherent.

Such models can be misused in education, journalism, and social media — e.g., Al-written essays or
fake news.

Humans perform only slightly better than random guessing when identifying Al-generated text.




Existing Methods & Limitation

e C(lassifier-based Approaches

O Prior works train separate classifiers using labeled data
Limitations
o These classifiers often overfit to certain topics or models and
must be retrained for each new LLM.

® Zero-shot Baselines are Simplistic

o Simple zero-shot methods (like average log-probability) ignore
local structure of the probability function.




Key Hypothesis: Probability Curvature

Negative Curvature for Model Text
e Human Text is More Stable

® DetectGPT Leverages This Property

A _I‘('(l/

"VA' £ \ '\ - ) I('\.)
X%~ py (x) ' Phuman g
\ "

log py(x)

Log likelihood  Fake/real sample  Perturbed fake/real sample X




® Perturb:Generate small paraphrases

of the candidate text using a general
model such as T5.

e Score: Compute the log-probabilities
of the original and perturbed texts
under the source model (e.g., GPT-3)

e Compare: If the original text’s log-

probability is much higher than the

perturbed versions, it’s likely
machine-generated..

DetectGPT Method Overview

Candidate passage &I':
“Joe Biden recently made a move to the White House
that included bringing along his pet German Shepherd..."”

v
DetectGPT &
(1) Perturb v (2) Score (3) Compare
e o —eep pla)| |-l
: B P K
¢ N L5 g 50 2
x....--_,-;,.":..';-"" $2_"" GPT-3 —bp[.‘i‘z] N?” 1) =
%ﬁwﬂ' — p(Zn)
Yes No
v ¥
w T from GPT-3 Y x from other source




Algorithm1

Algorithm 1 DetectGPT model-generated text detection

I: Input: passage x, source model pg, perturbation function g,
number of perturbations k, decision threshold ¢
c & ~q(- | ), 1 € [1..K]
D g 22 logpa(E)
 dy  logpe(z) — [t .
© 62— L—il > . (log pe(zi) — ﬁ)‘z

2
3
4
5
6: if 9= > ¢ then
7
8
9

v T
return £t rue

- else
return false




Experimental validation of hypothesis

e Evaluate DetectGPT on various LLMs gpt2-x| EleutherAl/gpt-neo-2.78
(GPT-2, GPT-J, GPT-Neo series) and = odel
datasets (XSum, SQUAD,

WritingPrompts, PubMed).
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clear negative curvature.




Quantitative results across models & datasets
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Supervised machine-generated text
detection models trained on large datasets
of real and generated texts perform as
well as or better than DetectGPT on in-
distribution (top row) text. However, zero-
shot methods work out-of-the-box for new
domains (bottom row) such as PubMed
medical texts and German news data from
WMT16. For these domains, supervised
detectors fail due to excessive distribution
shift.

Comparison with Supervised Detectors
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Comparison with Zero-Shot Baselines

We simulate human edits to
machine-generated text by replacing —o= Rank o LogRank Entropy
varying fractions of model samples with o DeectGRT e Licsiiand

7
(=)

T5-3B generated text (masking out random 3 0.9

five word spans until r% of text is masked "3‘0‘8

to simulate human edits to machine- 5

generated text). The four top-performing § 0.7
Q

methods all generally degrade in

0.6
performance with heavier revision, but
DetectGPT is consistently most accurate. 000 004 008 012 016 020 024
Experiment is Conducted on the XSum Fraction of GPT-)J-generated news article re-written

dataset.




Ablation Studies

Scoring Model
GPT-] GPT-Neo GPT-2

INERS 0.85

{0.02)

0.81

Base Model
GPT-2 GPT-Neo GPT-]

DetectGPT performs best when scoring samples with
the same model that generated them (diagonal).

But the column means suggest that some models (GPT-
Neo, GPT 2) may be better ‘scorers’ than others (GPT-J).

Overall, this figure shows that DetectGPT performs best
when it can directly access the generating model (white-
box), but it remains fairly robust and effective even when the
model is unknown (black-box).




Key Takeaways

Conceptual Breakthrough

DetectGPT leverages the negative curvature property of LLMs for zero-shot detection.

Practical Advantages

No training data needed, no classifier, works with any white-box LLM
Empirical Success
Outperforms zero-shot and supervised baselines across datasets and domains.

Future Directions

Address black-box models and improve efficiency via Fast-DetectGPT.
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Motivation & Introduction

Explosion of LLM Generated Content:

LLMs can write essays, news, and code
indistinguishable from humans

e Detection is key to controlling
misinformation, plagiarism, etc.

e Detection: Turing Test (TT) vs.
Authorship Attribution (AA)

® GPT-who offers a simple solution based

on Uniform Information Density (UID)

Mean Surprisal

Billionaére investor

UID Score (variance)




Background: UID

"Every coin has two sides "and it S . I ”U d ” f

is also the case to the problem whether children should =

Fopreier ool oz ® urprisa nexpectedness” or a
.......... It is better o have

a child who is competitive and cooperative at the same time, word in a given context

rather than having him compete and cooperate at different times in his ife.

e High surprisal = rare / unpredictable
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e Low surprisal > common / expected
word

............. N e N e Humans distribute information

evenly - stable surprisal
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UID Feature Design

Mean surprisal (i): overall info level

e UID variance: global smoothness ly

e UID diff / diff%: local changes -1 =2

Min / Max UID spans (Newly Created Feature): extreme low/high-info regions




Datasets & Baselines & Results

e Datasets: TuringBench, GPA-Bench, ArguGPT, In-the-Wild
e Baselines: GLTR, ZeroGPT, DetectGPT, OpenAl’s detector, LongFormer-based
detector, fine-tuned BERT

Task Type  Domain  GPTZero  ZeroGPT  OpenAl Detector  DeectGPT  BERT  ITW  GPT-who
Cs (.30 0.67 081 .58 0.99 0.98 0.99
Task 1 PHX 0.25 .68 0,70 0.54 0.99 0.98 0.98
HSS 0,72 0.92 0.63 0.57 0.99 0.96 0.98
Cs 0.17 0.25 0.64 016 0.99 0.81 0.84
Task 2 PHX .06 0. 10 0.24 017 0.96 0.76 0.90
HS5 (.44 .62 0.27 020 0.97 0.29 0.80
Cs 0,02 0.03 0.06 0.03 097 038 0.63
Task 3 PHX 0,02 0.03 004 0.05 0.97 0.31 0.75
HSS 0.20 0.25 0.06 0.0 0.99 .08 0.62
Average Fl 0.24 0.40 038 0.26 0.98 062 0.83




Results (continued)

Human v. GROVER GTLR GPTZero  DetectGPT RoBERTa BERT ITW  Stylometry GPT-who

GPT-1 0.58 0.47 0.47 0.51 0.98 0.95 0.99

GPT-2_small 0.57 0.51 0.51 0.51 0.71 075 047 0.75 0.88
GPT-2_medium 0.56 0.49 0.50 0.52 0.75 065 047 0.72 0.87
GPT-2_large 0.55 0.46 0.49 0.51 0.79 073 046 0.72 0.88
GPT-2_xI 0.55 0.45 0.51 0.51 0.78 079 045 0.73 0.89
GPT-2_PyTorch 0.57 0.72 0.50 0.52 0.84 099 047 0.83 0.85
GPT-3 0.57 0.35 0.47 0.52 0.52 079 048 0.72 0.84
GROVER_base 0.58 0.39 0.52 0.51 0.99 098 049 0.76 081
GROVER _large 0.54 0.41 0.47 0.52 0.99 098 052 0.71 0.75
GROVER_mega 0.5 0.42 0.42 0.51 0.94 097 053 0.68 0.72
CTRL 0.49 0.88 0.67 0.67 1.00 L00 091 0.99 0.99
XLM 0.50 0.89 0.67 0.67 0.58 1L.00 092 0.96 0.99
XLNET_base 0.58 0.75 0.51 0.67 0.79 099 0384 0.95 0.98
XLNET _large 0.58 0.88 0.67 0.52 1.00 100 0.93 1.00 1.00
FAIR_wmt19 0.56 0.56 0.56 0.51 0.84 093 049 0.74 074
Fair_wmi20 0.58 0.49 0.50 0.51 0.45 047 047 0.73 1.00
TRANSFO_XL 0.58 0.35 0.49 0.52 0.96 097 081 0.79 0.79
PPLM_distil 0.59 0.64 0.52 0.67 0.90 088 051 0.92 0.95
PPLM_gpt2 0.58 0.68 0.51 0.51 0.90 089 049 0.88 0.89
Average FI 0.56 0.57 0.52 0.55 0.88 061  0.88 0.82 0.88




Results (continued)

GPT-who

E:

Detection Setting  Testbed Type GPTZere  GLTR  DetectGPT BERT 1

Domain-specific Model-specific 0,65 0.94 092 098 0.
Indistribution Cross-domains Model-specific 0.63 0.84 0.6 098 097 088
Domain-specific Cross-models 0.57 0.8 057 0.49 .87 0.86
Cross-domains Cross-models 0.57 0.74 057 0.49 0.78 0.86
__ Unseen Models 0.58 0.65 0.6 084 079 074
Out-of-distribution — ,  cen Domains 057 072 0.57 068 08 077
Average F1 0.60 0.78 0.64 074 086  0.84
Author Experts* Stylometry BERT GPT-who
text-babbage-001  0.47 045 084 085 e Outperforms statistical detectors (GLTR,
bext-cutie-001 047 045 083 0.4 GPTZero, DetectGPT) by large margins
text-davinci-003  0.66 0.59 095 077 bl i q £
gpt-3.5-turbo 0.63 069 096 084 e Comparable to fine-tuned transformers
gpt2-xl 0.37 049 095 091 on 2 of 4 benchmarks
Average F1 0.52 0.53 0.91 0.84




UID Signatures of Authors

e Test whether UID patterns can distinguish humans from machines

e Examine if different LM families show unique UID “signatures”
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Training & Inference Efficiency

Measured training + inference time on 6 In-The-Wild (largest benchmark) testbeds

GPT-who fastest — only one LM forward pass + logistic regression

Competing methods are far slower due to LM fine-tuning (BERT) or multiple

inference calls (DetectGPT) needed

Method One-Time Training Inference

DetectGPT >10 hours 60 sec
BERT ~1.5 hours 2 sec
Stylometry ~1.5 hours 2 sec

GPT-who 20 min 0.8 sec




Discussion

Human text appears more non-uniform than machine text.

e Does not contradict UID theory: uniformity is relative to each author’s probability
distribution.

e Goal was not to prove UID theory but to test its utility for detection.

o UID-based features still distinguish humans vs machines and across LM families,
independent of theory alignment.




Conclusion & Limitations

GPT-who: UID-based, domain-agnostic statistical detector
e Outperforms other statistical methods and nears fine-tuned models
® More efficient with no training due to its psycholinguistic basis

Limitations: limited datasets; needs tests on more tasks like QA or summarization




A Watermark for Large Language
Models
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Why watermark?

Our goals

No retraining
required to
generate
watermarked text

LLMs can automatically Deteotable without
generate high-quality 2% a:cz(s::toemvgde?u

Write academic papers? parameters or API
Fabricate fake news?
Forge content?

Detection possible Watermark is hard

from partial text to remove
Could we have the model
embed a hidden watermark
within the text itself so that

we can detect Statistically rigorous

detection with p-
value




A language model is a function that predicts the probability of the next word.

v Vocabulary The set of all available “tokens” (words
or word pieces) for the model. Typically
has sk

T Generated Token The number of tokens in a generated

Sequence Length piece of text.

s (t) The t-th token For example, s(1)="The”, s(2)="model”,
etc.

s(-Np)...s(-1) | Prompt The part input by the user, e.g.,
“Explain the theory of”.

s(0)...s(T) Model-generated The content generated by the model based

Output Sequence on the prompt.
f Language Model The prediction function of the model,
Function parameterized by a neural network.
logits Raw Output Score A vector of dimension
Vector
softmax Converts logits to a Obtains the generation probability for
probability each word.
distribution




How Autoregressive Language Models Generate Text

f(s(-Np), ..., s(t-1)) — yields a set of
logits.

Multinomial sampling
Greedy decoding
Beam search

"generate" — 0.6
"produce" — 0.3
"build" — 0.1

Watermarking techniques only tamper with the
data during the 'sampling' stage:




High Entropy: Many plausible

- . High-entropy sentences —Eas
continuations for a sentence. '9 Py —Easy

to watermark, easy to detect.
* "Today | feel ..."

» Possible next tokens: "happy", "sad",
"tired", "motivated"...

Low Entropy: Only one or a few

highly probable continuations. Low-entropy sentences —
: : Difficult to watermark,
* "The capital of France is ..." challenging to detect.

* The almost certain next token: "Paris"




Process

Apply the language model
to prior tokens
s*(-Np)...sMt-1) to get a
probability vector pA(t)
over the vocabulary.

Compute a hash of token
s M(t—1), and use it to seed
a random number
generator.

Using this seed, randomly
partition the vocabulary
into a “green list” G and a
“red list” R of equal size.

Sample s (t) from G,
never generating any
token in the red list.

Hard Red List

Detection Methods

For each token, reconstruct the
corresponding red/green list.

* Count the number of tokens
falling into the green list within
this text segment, denoted as
sGy.

* Theoretically:

* For natural text (unwatermarked):
Each token has a 50% probability of
falling into green — Expected value
E(|s|G)) = T/2.

* For watermarked text: 100% of
tokens are in the green list.

__ 2Aslo—T/2)

VT




Process

Apply the language model
to prior tokens s (-Np)...s s (t-1), and use it to seed
(t-1) to get alogit vector | a random number

(t) over the vocabulary. generator.

Compute a hash of token

Add & to each green list
logit. Apply the softmax
operator to these modified
logits to get a probability into a “green list” G of size
distribution over the y|V |, and a “red list” R of
vocabulary. size (1 -y)|V |

Using this random number
generator, randomly
partition the vocabulary

Sample the next token, s
(t), using the watermarked
distribution p~ (t).

Soft Watermark

Detection Methods

+ We assume the null hypothesis

Ho: The text is naturally written, without
watermarks.

* Then we calculate the z-statistic:

_ (Isle =~T)

» If the z-value is significantly
greater than O (e.g. z>4), this
indicates that the proportion of
green words far exceeds that
expected by chance.




Spike entropy
p.
S(p,z) = Z 1 +sz&-

k

p is the probability distribution output by
the model, z is a tuning parameter.

* When the distribution is highly 'peaked"' (with
most probability concentrated on a single
word),S is small;

* When the distribution is 'smooth' (with
probability distributed more evenly), S

is large.

Analysis of the Soft Watermark

Assume that during token generation, the language
model:

* applies a bias d to green-listed words (i.e. a = e"§),"
* with a green-list proportion of v,

* an average spike entropy no less than S

The number of green list words in the generated text
|s|G satisfies:

yaT .
: >
Ellsle] = 1+ (o — 1)y
yas" yas
WV <T 1-
ar(|sle) < 1+ (a— 1) ( 1+ (- l}’r)

When y = 0.5, a simpler upper bound Var{lslr;} < T’r{l —9)
may be employed: -

* The higher the expected value (E) of the average green
word count, the stronger the watermark and the easier it
is to detect;

* The lower the variance (Var), the greater the stability of
detection.




Analysis of the Soft Watermark

type-ll error analysis to
calculate the sensitivity

Experiment results

oy=058=2 Metric Value Interpretation
* Detection t_hreshold z=4 Average spike 0.807 e e iy dhvere
(corresponding to a false entropy (S)
alarm rate of 3x107°) EX

pected green . .
« Generation length T = 200 tokens (theory) Sl FEelBE Sl SiErgin
tokens

) Empirical 1 Watermark stronger in
« Using the OPT-1.3B model mpirical mean 59.5 practice

* Tested on the Standard deviation

RealNewsLike subset of the (©) <6.41 Stable across samples
C4 dataset _
Detection 98.6% Almost all detected
sensitivity

Empirical detection 98.4% (multinomial),

rate 99.6% (beam search) Very high accuracy



Private Watermark

pseudorandom function, PRF: FK (:)

The way to generate private watermark: - |Improve: Robust Private Watermarking

For each step, generate:
Compute logits;
Sort in descending order of probability;
Provisionally select the current most probable
Input prompt, Sfat PRF, key K, word st and compute its hash;
parameter 8, window h; Pseudorandomly determine whether it belongs
to the green or red list;
If it falls into the red list and the logit gap is too
large (below &), skip it and select the next
candidate;

1. Select a random key K.

2. When generating each token, use
the preceding h tokens as input to
compute:FK(s(t—h),...,sM(t—1)) to

obtain a pseudorandom output.

If the threshold & is exceeded, retain
the red token and proceed to the next
. . . step.
3. This output determines which
tokens belong to the green list and

which belong to the red list.




*"News-like" subset O
from C4 (Colossal
Clean Crawled
Corpus).

» Each sample
comprises two parts:
prompt (input) +
completion

Setup

ﬁ(z?heégflon Test Metrics:

Generated 200+5

tokens using

different decoding

strategies:

* Multinomial
sampling

*» Greedy decoding /
Beam search (4
beams, 8 beams)

* To prevent

premature <EOS>
output during beam
search, the EOS
token was masked
to ensure
consistent segment
lengths.

« z-score: Detection
statistic

« Perplexity (PPL):
Text fluency metric

*ROC curve, AUC:
Detection
performance

* Type-l error (false
positive)

* Type-ll error (false
negative)

Experiments

Can watermarks be accurately detected?
Does the watermark compromise the quality of the text?
What is the effect of different parameters on detection intensity?

L ]
x

iyl Mkl FIL (B

Results

il Mlanbel FPL (Reititid =+

Figure 2 — Trade-off between watermark strength and

text quality




Experiments
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(a) (b) (c)

Figure 3 — Relationship between z-score and text length T

* The z-score increases monotonically with text length T.

« The theoretical prediction holds true: longer texts enable more stable
detection of watermarks.

Both & and y can be adjusted to regulate detection intensity.




Experiments

“.

Figure 4 — ROC Curve and Detection Performance

* (a)(b) Linear coordinates, (c)(d) Logarithmic coordinates.
* When 6 = 5, the AUC approaches 1.0 — Detection is nearly perfect.
» Beam search again slightly outperforms random sampling.

» This indicates the statistical characteristics of the watermark signal
are highly stable, making it resistant to misclassification or loss.




Experiments

=40
sampling a + count FPR TNRE TPR FNR FPR TNE TPRE  FNR

Mm=N0em. Lo 050 506 0.0 1.0 0767 0233 0.0 1.0 0504 0496
mi-nom, L 025 06 0.0 Lo 0729 0271 0.0 1.0 0432 0518
=100, 200 050 07 0.0 1.0 0984 01016 (L0 1.0 0978  0.022
m-naem. 20 025 505 0.0 1.0 099 0006 0.0 1.0 0988 0012
-1, 0 050 S04 0.0 1.0 099 0.004 0.0 1.0 0992 0.008
-1, 500 0.25 503 0.0 1O LODD (0000 (L0 0998 0,002

1.0

8-beams L0y 0.50 495 0.0 1.0 0873 0127 0.0 1.0 0EI12 0188
#-beams L0 (.25 496 0.0 1.0 0819 0181 0.0 1.0 0770 0.230
8-beams 2.0 (.50 496 0.0 Lo 0992 0008 0.0 Lo 0984 0016
8-beams 2.0 0.25 496 0.0 1.0 09% 0006 0.0 1.0 099 0010
g-beams 5.0 0.50 496 0.0 L0 LoD 0,000 0.0 L0 1000 0000
#-beams 5.0 (.25 496 0.0 1O LOOD (000 (.0 1O L 00

Table 2 — Experimental Eror Rate

* All experiments: FPR=0.0 — No human text was misclassified.

* When 6=2, FNR < 1.6% (i.e., false negative rate below 2%).

* When 625, TPR=1.0, FNR=0.0 — Complete detection success.

» Beam search yields results nearly identical to multinomial models,
and even slightly superior.




Attacking the Watermark

T5 Span Replacement Attack

Three major categories
of attack Goal:

Simulate an attacker automatically replacing portions of the original
' - text using a weaker language model (T5-Large) to undermine the
* The attacker introduces additional
; watermark.
tokens into the text, such as symbols
or random words.

Experimental Setup:

» Attack target: A watermarked OPT-1.3B model output (y=0.5, 6=2.0).
* Attacker model: T5-Large.

» The attacker removes several tokens,

particularly words from the green list, * Attack methodology:
thereby diminishing the watermark 1. Tokenise the text;
signal. 2. Randomly select tokens to replace with <mask>;

3. Predict 20 candidates at that position using TS (beam search=50);

4. Overwrite with the new word if replacement succeeds;

5. Continue until the replacement ratio reaches ¢ (attack budget),
e.g. €=0.1 indicates 10% modification.

* Attackers rewrite words using
synonyms or paraphrases (e.g.,
"good" — "great").
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Figure 6. ROC curves for watermark detection under attack

Attacking the Watermark

Result Analysis:
* £ = 0.1 — Virtually ineffective, with AUC declining
by merely 0.01 (detection remains robust).

* £ = 0.3 —» Watermarking significantly weakened,
yet text perplexity PPL surged to threefold the
original value.

* £ 2 0.5 — Although watermarking is nearly
eliminated, sentences become severely distorted
with abysmal quality.

Conclusion:
To genuinely remove the watermark, an attacker must
rewrite over 30% of the content, incurring an extremely
high cost, with the generated text quality demonstrably
deteriorating.




Conclusion

1. Summary of Key Contributions
+ Simple and user-friendly

3.Scalable Deployment Approach
* Be enabled only in specific contexts (e.g., when

* Theoretically provable user behaviour is deemed suspicious);

« Virtually no false positives * Assign different d values for distinct tasks;

+ Strong resistance to attacks * Be utilised at the model API level to automatically

*  High portability detect whether "suspected abusive generation" has
occurred.

2.Technical Highlight: Independence

of the z-statistic 4.0pen Questions (Future Work)
The z-statistic employed during testing * 1.More robust hashing rules: Doesa
relies solely on y (the size of the green list) theoretically optimal hashing scheme exist?
and the hash function, and is independent of + 2. Short text detection: Can reliable detection be
O (the logit bias). achieved using only partial text fragments?

+ 3. More precise sensitivity bounds under large o /
small y: Theoretical improvements remain
possible.




GPT-Sentinel: Distinguishing Human and
ChatGPT Generated Content

Authors: Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li, Rita Singh, Bhiksha Raj (2023)
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Motivation & Goal

Al generated text is rapidly growing and
threatens authenticity

e Existing detectors lack generalization
and interpretability

e Need robust Al-Text detection
framework for modern LLM

e Final Goal is to detect whether text is

human or ChatGPT generated

ChatGPT Human




Related Work

Accuracy -How well can it distinguish LLM text from human text(Precision, Recall)?
Data Efficiency- How well does it learn from small data?

Generalizability- Does it work on unseen models?

Interpretability- Can the model’s decision be explained?

PwnNnpE

Statistical methods drop in accuracy as model size increases (88% = 74%)

® Small models(GPT-2 124M), accuracy = 88%
® Large models(GPT-2 1.5B), accuracy =74%

GLTR improves detection (54% —> 72%) via token probability analysis but lacks learning.
Zero-shot approaches underperform, while fine-tuned LMs (e.g., ROBERTa) achieve ~90% accuracy.

Fine-tuned LM achieved = 90% accuracy




Dataset Collection: OpenGPTText

Subset  OpenGPTText OpenWebText Failed toRephrase Percentage e No public dataset systematically containing
urlsf 00 3,888 301,500 N 0.99% ChatGPT outputs existed
urlsf 01 3.0 %09 U7 0 1.00% e The author built OpenGPTText, a pair of human-

urlsf 02 * %0 01 7 5> 0.53% written and ChatGPT-paraphrased samples
S N A wJ ,..‘ JL O

e Source: OpenWebText- web pages shared on
urlsf 03 3,801 390, 161 10 1.00%

Reddit, originally all human-written

urlsf 84 3,634 390,250 218 0.94% e Process: Each paragraph rephrase through
urlsf 05 3,602 380, 874 206 0.92% ChatGPT-3.5turbo with prompt: Rephrase the
urlsf 06 3,494 300,330 X 0.90% following paragraph by paragraph

urlsf 09 3,653 30,634 T 094% * Final dataset: 29,395 text pairs

Total 29,395 3,125,469 0.94%



Data Cleaning

ChatGPT outputs often contained

PCA projection o hiden state of roatirm.son A BOISCtO0 of Ndden state of stylistic artifacts
. y i - ot .
’RanmSemoelonOpenmbeeovemdm«unue " Sentinel on OpenGPTText before and after sanitize o Smart quotes(”") instead of
+ OpenWetTest-Ongina . . +  OpenGPTTRext-Originet “un
OpanWedText-Final OpenGPTiext Finat R ASCII ( )

L5 & e O  Inconsistent newlines(2-6 line
' : breaks) and extra spaces
- e Normalize both corpora with
' identical preprocessing
O  OpenWebText-Final (Human)
O  OpenGPTText-Final (ChatGPT)

e PCAindicates tighter clustering and
clearer separation after cleaning

10

oo




Dataset Roadmap

Paraphrasing by

ChatGPT-3.5-turbo

OpenGPTText
Failed to .
Rephrase(Filtered out) Data Cleanlng

y

OpenGPTText-Final
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P(Human)
PChatGPT)

RoBERTa-Sentinel
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1. [[]Token Embeddings(E1~En):
a. Each input word (Ex: This is GPT) is
converted into numerical vectors
2. O Frozen RoBERTa Encoder(12 Layers):
a. Pre-trained Transformer layers process the
tokens to capture contextual meaning.
These layers are frozen, so their
parameters are not updated during training.
3. | [CLS] Token Representation:
a. The special [CLS] token summarizes the
meaning of the entire sentence
4. L] Feature Flow(Dashed Arrow):
a. Information flows from RoBERTa to the
|:| MLP, but no gradient flows back
5. — MLP Classifier (Trainable):
a. The [CLS] embedding is fed into a 2 layer
MLP that predicts: P(Human) or P(ChatGPT)




T5-Sentinel

(p(chacet) = B . P(Human) = |

Ponsne”™

Next-word ——
Probability Distribution EI I .

'r __________ T; l?m:nl_cr-lil:\:‘, [_ Masked M ~'la'.'|""‘~"~mh [ :

I Feed forward Mu> St l [ 1

5 T = P! -

- Se¥.Attention ‘ i | Masked Multihead Attention | L

L e o i :
E £ v By B Ecran»

o [ ] Token Embeddings(E1~En):
o Each input word is tokenized and embeded
® [] T5 Encoder(X6 blocks, Trainable):
(¢} Self-attention + feed forward layers build contextual
representations of whole sentence
(¢} Outputs a sequence of hidden states used by decoder
o [l Decoder Start & Masked Self-Attention
(¢} The decoder is primed with a <PAD>(start) token
o Masked self attention lets the decoder look only at already
generated positions
° H Cross Attention to Encoder Outputs
o The decoder attends to encoder hidden states to condition
generation on the input text
o This ties the prediction to the full sentence meaning
° | Predict the Label Word
(¢} Positive -> ChatGPT generated
o Negative-> Human written




Training and Evaluation

Both models were trained on the OpenGPTText-Final
dataset but with different training strategies and
Epoch J ) parameter scales which indicates how model size,
Batch Size 51 51 learning rate and training scope affect performance

Hyper-Parameters

Learning Rate and stability.

° RoBERTa-Sentinel trained much longer than T5
Weight Decay because only the MLP classifier was learning
Optimizer AdamW AdamW e Higherlearning ratein T5 helps the large model learn

quickly without underfitting, a smaller learning rate

Loss Function RoBERTa prevents instability in smaller classifier head

Scheduler osine annealing osine annealing
Data Set OpenGPTText-Final OpenGPTText-Final



Results(F1 Score, False Positive Rate and False Negative Rate)

OpenGPTText-Final OpenGPTText  GPT2-Output

F18 A
1 £ ENR L1 ) NR Fi EPR ENR 1 Score =
Fi kpR l”‘{ F_I"\ U § | F"\ N Tl)‘_:]!lFI)m\')
0.98 : 3 098 35 13
. AP P TP FP
094 90 21. 9 016 172 TPR = FPR= —
RoBERTa 034 90 32 08 216 13 016 172 836 T i
ZeroGPT
. 032 49 798 0.2¢ 852 | 136 440 TNR=——— FNR=——
OpenAl-Detector 032 49 798 0. : . = TN FP = VTP

GPT2 0.23

° Both T5-Sentinel and RoBERTa-Sentinel achieve excellent accuracy on the OpenGPTText datasets (before and after cleaning) but show
poor performance on GPT2-Output due to its higher randomness and stylistic differences from ChatGPT text.

° Additionally, GPT2-Detector fails to generalize from GPT2-based detection to ChatGPT detection, showing limited cross-model transfer

ability.



Model OpenGPTText-Final OpenGPTText GPT2-Output

T5-Sentinel 0.993

RoBERTa-Sentinel 0.986 0.42-

ZeroGPT 0.526
OpenAl-Detector

GPT2-Detector 610

e  T5-Sentinel and RoBERTa-Sentinel achieve extremely high AUC scores (above 0.97) on the OpenGPTText datasets,

0.992
0.976
0.555
0.752

n AN
0.600

demonstrating strong detection performance for ChatGPT-generated text.

e  Both models perform poorly on the GPT2-Output dataset, indicating limited generalization, whereas GPT2-Detector
performs well only on GPT2 outputs but fails to detect ChatGPT text effectively.

Results(AUC Value for each combination of data set and model)

N 770
U. fIJ

0.976



Results(ROC Curve)

G PT Text
Open X OpenGPT Text GPT2-Output
ltx(md’l:.:«lml iﬂmm TonuGrT ROC Curves of TS Sertinel. ROBERTS. Sentral. ZemuGrT ROC Curves of TS Sertinel. ROBERTS. Senteol. ZonGrT

GPT2-Oetector o0 OpenGPT Teat Finad Cpanal Detector and GPT2-Detectar on OpenG Pt OpenAsiDatector and GFT2-Detector on GPT2-Outpnr
N - — -
e

e The blue curve, T5 Sential dominates all others with the highest recall and lowest error.

e RoBERTa follows closely behind, while public detectors like ZeroGPT and OpenAl's detector lag far
below

On GPT-2 output, all models drop in accuracy

GPT-Sentinel is excellent in domain but not yet generalize well to unseen LLM




Results(ROC Curve)

T5-Sentinel
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e  T5-Sentinel and RoBERTa-Sentinel both achieve excellent performance on the OpenGPTText and OpenGPTText-Final
datasets their ROC curves are nearly touching the top-left corner, showing high true positive rate (TPR) and low false
positive rate (FPR).

®  Onthe GPT2-Output dataset, however, both models perform poorly, with curves close to the diagonal line meaning their
ability to detect GPT-2 generated text is weak.

e  This demonstrates that ChatGPT-generated (paraphrased) text has distinct statistical and linguistic characteristics

compared to GPT-2 text, leading to strong dataset specificity but limited generalization.




OpenGPT Text
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Results(DET Curve)

i

OpenGPT Text

DET Curvas of TS-Sentinel, ReSERTa-Sentingl, ZeroGPT
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Starting from Left both Sentinel model perform strongly with very low errors, but there are more

variation due to noise and artifacts before cleaning and for GPT2 it confirms limited cross model

generalization

GPT-Sentinel excels in domain but remains model specific




Confidence

T5-Sentinel RoBERTa-Sentinel

OpenGPTText sl OpenGFTText dsts set OipenGPTiext Final. OpenPTIert dota oe
4 - ] 23 nal, & ets .
w20 : = - e T5 Sentinel shows sharp
10 V s - . confidence peaks near 0 and 1
Sm i 0 % which is very decisive predictions
[ (]
3% : %m i e Datacleaningincreases
: | o ! o | .
1000 S = confidence stability and reduce
= | . " /N . the ambiguit
Operds#Tiest O Tien

Overall, it confirms that cleaning
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and fine-tuning lead to a more
trustworthy detection model




Interpretability(PCA)

T5-Sentinel RoBERTa-Sentinel

PCA projection of decoder hidden state
T5-Sentine! on OpenGPTText-Final

projection of hidden state of
OpenGPTText

To better understand how the models differentiate
human vs ChatGPT-generated text, a PCA
visualization was performed on the hidden
representations of both models.

RoBERTa-Sentinel: Hidden states were extracted
from the last layer of the MLP.

T5-Sentinel: Hidden states were taken from the
final decoder block output.

The PCA used test samples from the OpenGPTText-
Final dataset.

Both models formed two distinct clusters one for
human-written text and one for ChatGPT-
rephrased text.

This clustering shows that the models learned
implicit linguistic patterns that separate human
and Al writing styles.

T5-Sentinel’s clusters are more distinct, indicating
stronger discriminative power than RoBERTa-
Sentinel.




Interpretability

=20

-&0

t-SNE Piot on Hidden State of T5-Sentinel 1-SNE Plot on Hidden State of ROBERTa-Sentinel

on OpenGPTText-Final

t-SNE visualize each text hidden
representation in 2D

T5-Sentinel forms two clear non
overlapping cluster
RoBERT-Sentinel shows partial
overlap which shows weaker
separation

It confirms that T5 learns deeper
semantic distinctions, not just token
patterns




Future work & Conclusion

Future work

® Current models are only trained in English so develop with different languages

e Plan to collect the diverse datasets to evaluate model accuracy across different
textual contexts and task types

Conclusion

e Introduced OpenGPTText, a high quality dataset rephrased by ChatGPT for Al vs
human

e Achieved over 97% accuracy on test using F1, AUC, and ROC metrics

e Conducted interpretability analysis(PCA & tSNE) to revealed clear separation

between human and Al text
Highlighted the potential for real world Al content detection




Thank You!
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