
Detection of LLM
Generation

DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature: Jiaxi Xiong

GPT-who: An Information Density-based Machine-Generated Text Detector: Ryan Zhang

A Watermark for Large Language Models: Yiding Yang

GPT-Sentinel: Distinguishing Human and ChatGPT Generated Content: Andrew Oh

https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2301.10226
https://ar5iv.org/abs/2305.07969
https://ar5iv.org/abs/2305.07969
https://ar5iv.org/abs/2305.07969

DetectGPT: Zero-Shot Machine-Generated Text

Detection using Probability Curvature

Authors: Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, Chelsea Finn

Presented by: Jiaxi Xiong

https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305
https://ar5iv.org/abs/2301.11305

Motivation & Introduction

Large Language Models (LLMs) like GPT-3, PaLM, and ChatGPT can produce text that is highly

fluent and coherent.

Such models can be misused in education, journalism, and social media — e.g., AI-written essays or

fake news.

Humans perform only slightly better than random guessing when identifying AI-generated text.

Existing Methods & Limitation

● Classifier-based Approaches

○ Prior works train separate classifiers using labeled data

● Limitations

○ These classifiers often overfit to certain topics or models and

must be retrained for each new LLM.

● Zero-shot Baselines are Simplistic

○ Simple zero-shot methods (like average log-probability) ignore

local structure of the probability function.

Key Hypothesis: Probability Curvature

● Negative Curvature for Model Text

● Human Text is More Stable

● DetectGPT Leverages This Property

DetectGPT Method Overview

● Perturb:Generate small paraphrases

of the candidate text using a general

model such as T5.

● Score: Compute the log-probabilities

of the original and perturbed texts

under the source model (e.g., GPT-3)

● Compare: If the original text’s log-

probability is much higher than the

perturbed versions, it’s likely

machine-generated..

Algorithm1

Experimental validation of hypothesis

● Evaluate DetectGPT on various LLMs

(GPT-2, GPT-J, GPT-Neo series) and

datasets (XSum, SQuAD,

WritingPrompts, PubMed).

● Use AUROC to measure how well the

method separates human vs

machine-generated texts.

● Model-generated texts show larger

log-probability drops after

perturbation than human texts →

clear negative curvature.

Quantitative results across models & datasets

Comparison with Supervised Detectors

Supervised machine-generated text

detection models trained on large datasets

of real and generated texts perform as

well as or better than DetectGPT on in-

distribution (top row) text. However, zero-

shot methods work out-of-the-box for new

domains (bottom row) such as PubMed

medical texts and German news data from

WMT16. For these domains, supervised

detectors fail due to excessive distribution

shift.

Comparison with Zero-Shot Baselines
We simulate human edits to

machine-generated text by replacing
varying fractions of model samples with

T5-3B generated text (masking out random

five word spans until r% of text is masked

to simulate human edits to machine-

generated text). The four top-performing

methods all generally degrade in

performance with heavier revision, but

DetectGPT is consistently most accurate.
Experiment is conducted on the XSum

dataset.

Ablation Studies

DetectGPT performs best when scoring samples with
the same model that generated them (diagonal).

But the column means suggest that some models (GPT-
Neo, GPT 2) may be better ‘scorers’ than others (GPT-J).

Overall, this figure shows that DetectGPT performs best

when it can directly access the generating model (white-
box), but it remains fairly robust and effective even when the
model is unknown (black-box).

Key Takeaways

Conceptual Breakthrough

DetectGPT leverages the negative curvature property of LLMs for zero-shot detection.

Practical Advantages

No training data needed, no classifier, works with any white-box LLM

Empirical Success

Outperforms zero-shot and supervised baselines across datasets and domains.

Future Directions

Address black-box models and improve efficiency via Fast-DetectGPT.

GPT-who: An Information Density-based
Machine-Generated Text Detector

Authors: Saranya Venkatraman, Adaku Uchendu, Dongwon Lee

Presented by Ryan Zhang

https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202
https://ar5iv.org/abs/2310.06202

Motivation & Introduction

● Explosion of LLM Generated Content:
LLMs can write essays, news, and code

indistinguishable from humans

● Detection is key to controlling
misinformation, plagiarism, etc.

● Detection: Turing Test (TT) vs.
Authorship Attribution (AA)

● GPT-who offers a simple solution based

on Uniform Information Density (UID)

Background: UID

● Surprisal = “Unexpectedness” of a

word in a given context

● High surprisal → rare / unpredictable

word

● Low surprisal → common / expected

word

● Humans distribute information

evenly → stable surprisal

Method Pipeline

UID Feature Design

● Mean surprisal (μ): overall info level

● UID variance: global smoothness

● UID diff / diff²: local changes

● Min / Max UID spans (Newly Created Feature): extreme low/high-info regions

Datasets & Baselines & Results

● Datasets: TuringBench, GPA-Bench, ArguGPT, In-the-Wild

● Baselines: GLTR, ZeroGPT, DetectGPT, OpenAI’s detector, LongFormer-based

detector, fine-tuned BERT

Results (continued)

Results (continued)

● Outperforms statistical detectors (GLTR,
GPTZero, DetectGPT) by large margins

● Comparable to fine-tuned transformers
on 2 of 4 benchmarks

UID Signatures of Authors

● Test whether UID patterns can distinguish humans from machines

● Examine if different LM families show unique UID “signatures”

Training & Inference Efficiency
● Measured training + inference time on 6 In-The-Wild (largest benchmark) testbeds

● GPT-who fastest — only one LM forward pass + logistic regression

● Competing methods are far slower due to LM fine-tuning (BERT) or multiple
inference calls (DetectGPT) needed

Discussion

● Human text appears more non-uniform than machine text.

● Does not contradict UID theory: uniformity is relative to each author’s probability
distribution.

● Goal was not to prove UID theory but to test its utility for detection.

● UID-based features still distinguish humans vs machines and across LM families,
independent of theory alignment.

Conclusion & Limitations

● GPT-who: UID-based, domain-agnostic statistical detector

● Outperforms other statistical methods and nears fine-tuned models

● More efficient with no training due to its psycholinguistic basis

● Limitations: limited datasets; needs tests on more tasks like QA or summarization

A Watermark for Large Language
Models

Authors: John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian
Miers, Tom Goldstein

University of Maryland

Presented by: Yiding Yang

https://ar5iv.org/abs/2301.10226
https://ar5iv.org/abs/2301.10226

Why watermark?

• LLMs can automatically
generate high-quality text.

• Write academic papers?
Fabricate fake news?
Forge content?

Problem
Background:

• Could we have the model
embed a hidden watermark
within the text itself so that
we can detect

We hope
that

Detectable without
access to model
parameters or API

No retraining
required to
generate
watermarked text

Detection possible
from partial text

Watermark is hard
to remove

Statistically rigorous
detection with p-
value

Our goals

A language model is a function that predicts the probability of the next word.

Symbol Meaning Explanation

V Vocabulary The set of all available "tokens" (words
or word pieces) for the model. Typically
has **

T Generated Token
Sequence Length

The number of tokens in a generated
piece of text.

s(t) The t-th token For example, s(1)="The", s(2)="model",
etc.

s(-Np)...s(-1) Prompt The part input by the user, e.g.,
"Explain the theory of".

s(0)...s(T) Model-generated
Output Sequence

The content generated by the model based
on the prompt.

f Language Model
Function

The prediction function of the model,
parameterized by a neural network.

logits Raw Output Score
Vector

A vector of dimension

softmax Converts logits to a
probability
distribution

Obtains the generation probability for
each word.

How Autoregressive Language Models Generate Text

Receive
Input

Predict Next
Token

Convert to
Probabilities

Select the
Next Word

Append and
Repeat

f(s(-Np), ..., s(t-1)) → yields a set of

logits.

"generate" → 0.6

"produce" → 0.3
"build" → 0.1

Multinomial sampling

Greedy decoding
Beam search

Watermarking techniques only tamper with the

data during the 'sampling' stage:

Entropy

High Entropy: Many plausible
continuations for a sentence.

• "Today I feel ..."

• Possible next tokens: "happy", "sad",
"tired", "motivated"...

Low Entropy: Only one or a few
highly probable continuations.

• "The capital of France is …"

• The almost certain next token: "Paris"

High-entropy sentences →Easy

to watermark, easy to detect.

Low-entropy sentences →

Difficult to watermark,
challenging to detect.

Hard Red List

Apply the language model
to prior tokens

s^(−Np)...s^(t−1) to get a
probability vector p^(t)
over the vocabulary.

Compute a hash of token
s ̂ (t−1), and use it to seed

a random number
generator.

Using this seed, randomly
partition the vocabulary

into a “green list” G and a
“red list” R of equal size.

Sample s^(t) from G ,
never generating any
token in the red list.

Process

• For each token, reconstruct the

corresponding red/green list.
• Count the number of tokens

falling into the green list within

this text segment, denoted as
|s|₍G₎.

• Theoretically:
• For natural text (unwatermarked):

Each token has a 50% probability of

falling into green → Expected value
E(|s|₍G₎) = T/2.

• For watermarked text: 100% of
tokens are in the green list.

Detection Methods

Soft Watermark

Apply the language model
to prior tokens s (−Np)...s
(t−1) to get a logit vector l

(t) over the vocabulary.

Compute a hash of token
s (t−1), and use it to seed

a random number
generator.

Using this random number
generator, randomly

par tition the vocabulary
into a “green list” G of size
γ|V |, and a “red list” R of

size (1 − γ)|V |.

Add δ to each green list
logit. Apply the softmax

operator to these modified
logits to get a probability

distribution over the
vocabulary.

Sample the next token, s
(t), using the watermarked

distribution pˆ (t) .

Process Detection Methods

• We assume the null hypothesis

H₀: The text is naturally written, without
watermarks.
• Then we calculate the z-statistic:

• If the z-value is significantly

greater than 0 (e.g. 𝑧>4), this
indicates that the proportion of
green words far exceeds that

expected by chance.

Analysis of the Soft Watermark
Spike entropy

𝑝 is the probability distribution output by

the model, 𝑧 is a tuning parameter.

• When the distribution is highly 'peaked' (with

most probability concentrated on a single

word),𝑆 is small;

• When the distribution is 'smooth' (with

probability distributed more evenly), 𝑆

is large.

Assume that during token generation, the language

model:

• applies a bias δ to green-listed words (i.e. 𝛼 = 𝑒^𝛿),"

• with a green-list proportion of γ,

• an average spike entropy no less than 𝑆∗
The number of green list words in the generated text

|𝑠|𝐺 satisfies:

When γ ≥ 0.5, a simpler upper bound
may be employed:

• The higher the expected value (E) of the average green

word count, the stronger the watermark and the easier it

is to detect;

• The lower the variance (Var), the greater the stability of

detection.

Analysis of the Soft Watermark
type-II error analysis to

calculate the sensitivity

•γ = 0.5, δ = 2

• Detection threshold z = 4
(corresponding to a false
alarm rate of 3×10⁻⁵)
• Generation length T = 200
tokens

• Using the OPT-1.3B model
• Tested on the
RealNewsLike subset of the

C4 dataset

Metric Value Interpretation

Average spike

entropy (S)
0.807 Text is fairly diverse

Expected green

tokens (theory)
≥ 142.2 Predicted signal strength

Empirical mean 159.5
Watermark stronger in

practice

Standard deviation

(σ)
≤ 6.41 Stable across samples

Detection

sensitivity
98.6% Almost all detected

Empirical detection

rate

98.4% (multinomial),

99.6% (beam search)
Very high accuracy

Experiment results

Private Watermark
pseudorandom function, PRF: FK (⋅)

The way to generate private watermark:

1. Select a random key K.

2. When generating each token, use
the preceding h tokens as input to
compute:𝐹𝐾(𝑠^(𝑡−ℎ),...,𝑠^(𝑡−1)) to
obtain a pseudorandom output.

3. This output determines which
tokens belong to the green list and

which belong to the red list.

Improve: Robust Private Watermarking

Input prompt, set PRF, key K,
parameter δ, window h;

For each step, generate:

• Compute logits;

• Sort in descending order of probability;

• Provisionally se lect the current most probable
word 𝑠𝑡 and compute its hash;

• Pseudorandomly determine whether it belongs
to the green or red list;

• If it falls into the red list and the logit gap is too
large (below δ), skip it and se lect the next
candidate;

If the threshold δ is exceeded, retain
the red token and proceed to the next

step.

Experiments
• Can watermarks be accurately detected?

• Does the watermark compromise the quality of the text?

• What is the effect of different parameters on detection intensity?

Set up

Data:

• "News-like" subset
from C4 (Colossal
Clean Crawled
Corpus).

• Each sample
comprises two parts:
prompt (input) +
completion

Generation
method:

• Generated 200±5
tokens using
different decoding
strategies:

• Multinomial
sampling

• Greedy decoding /
Beam search (4
beams, 8 beams)

• To prevent
premature <EOS>
output during beam
search, the EOS
token was masked
to ensure
consistent segment
lengths.

Test Metrics:

• z-score: Detection
statistic

• Perplexity (PPL):
Text fluency metric

• ROC curve, AUC:
Detection
performance

• Type-I error (false
positive)

• Type-II error (false
negative)

Figure 2 — Trade-off between watermark strength and

text quality

Results

Experiments

Figure 3 — Relationship between z-score and text length T

• The z-score increases monotonically with text length T.

• The theoretical prediction holds true: longer texts enable more stable
detection of watermarks.

• Both δ and γ can be adjusted to regulate detection intensity.

Experiments

Figure 4 — ROC Curve and Detection Performance

• (a)(b) Linear coordinates, (c)(d) Logarithmic coordinates.

• When δ ≥ 5, the AUC approaches 1.0 → Detection is nearly perfect.
• Beam search again slightly outperforms random sampling.
• This indicates the statistical characteristics of the watermark signal

are highly stable, making it resistant to misclassification or loss.

Experiments

Table 2 — Experimental Error Rate

• All experiments: FPR=0.0 → No human text was misclassified.

• When δ=2, FNR ≤ 1.6% (i.e., false negative rate below 2%).
• When δ≥5, TPR=1.0, FNR=0.0 → Complete detection success.
• Beam search yields results nearly identical to multinomial models,

and even slightly superior.

Attacking the Watermark
Three major categories

of attack

Insertion Attack

• The attacker introduces additional
tokens into the text, such as symbols
or random words.

Deletion Attack

• The attacker removes several tokens,
particularly words from the green list,
thereby diminishing the watermark
signal.

Substitution Attack

• Attackers rewrite words using
synonyms or paraphrases (e.g.,
"good" → "great").

T5 Span Replacement Attack

Goal:
Simulate an attacker automatically replacing portions of the original

text using a weaker language model (T5-Large) to undermine the

watermark.

Experimental Setup:
• Attack target: A watermarked OPT-1.3B model output (γ=0.5, δ=2.0).

• Attacker model: T5-Large.

• Attack methodology:

1. Tokenise the text;

2. Randomly select tokens to replace with <mask>;

3. Predict 20 candidates at that position using T5 (beam search=50);

4. Overwrite with the new word if replacement succeeds;

5. Continue until the replacement ratio reaches ε (attack budget),

e.g. ε=0.1 indicates 10% modification.

Attacking the Watermark

Figure 6. ROC curves for watermark detection under attack

Result Analysis:

• ε = 0.1 → Virtually ineffective, with AUC declining

by merely 0.01 (detection remains robust).

• ε = 0.3 → Watermarking significantly weakened,

yet text perplexity PPL surged to threefold the

original value.

• ε ≥ 0.5 → Although watermarking is nearly

eliminated, sentences become severely distorted

with abysmal quality.

Conclusion:

To genuinely remove the watermark, an attacker must

rewrite over 30% of the content, incurring an extremely

high cost, with the generated text quality demonstrably

deteriorating.

Conclusion
1. Summary of Key Contributions
• Simple and user-friendly

• Theoretically provable

• Virtually no false positives

• Strong resistance to attacks

• High portability

2.Technical Highlight: Independence

of the z-statistic
The z-statistic employed during testing

relies solely on γ (the size of the green list)

and the hash function, and is independent of

δ (the logit bias).

3.Scalable Deployment Approach
• Be enabled only in specific contexts (e.g., when

user behaviour is deemed suspicious);

• Assign different δ values for distinct tasks;

• Be utilised at the model API level to automatically

detect whether "suspected abusive generation" has

occurred.

4.Open Questions (Future Work)
• 1. More robust hashing rules: Does a

theoretically optimal hashing scheme exist?

• 2. Short text detection: Can reliable detection be

achieved using only partial text fragments?

• 3. More precise sensitivity bounds under large δ /

small γ: Theoretical improvements remain

possible.

GPT-Sentinel: Distinguishing Human and
ChatGPT Generated Content

Authors: Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li, Rita Singh, Bhiksha Raj (2023)

Present by Andrew Oh

https://ar5iv.org/abs/2305.07969
https://ar5iv.org/abs/2305.07969
https://ar5iv.org/abs/2305.07969
https://ar5iv.org/abs/2305.07969

Context

● Introduction & Motivation

● Related Work

● About Dataset

● RoBERTa-Sentinel

● T5-Sentinel

● Training and Evaluation

● Results

● Confidence

● Interpretability

● Future work & Conclusion

Motivation & Goal

● AI generated text is rapidly growing and

threatens authenticity

● Existing detectors lack generalization

and interpretability

● Need robust AI-Text detection

framework for modern LLM

● Final Goal is to detect whether text is

human or ChatGPT generated

Related Work
1. Accuracy -How well can it distinguish LLM text from human text(Precision, Recall)?
2. Data Efficiency- How well does it learn from small data?
3. Generalizability- Does it work on unseen models?
4. Interpretability- Can the model’s decision be explained?

Statistical methods drop in accuracy as model size increases (88% → 74%)

● Small models(GPT-2 124M), accuracy = 88%
● Large models(GPT-2 1.5B), accuracy = 74%

GLTR improves detection (54% → 72%) via token probability analysis but lacks learning.

Zero-shot approaches underperform, while fine-tuned LMs (e.g., RoBERTa) achieve ~90% accuracy.

Fine-tuned LM achieved = 90% accuracy

Dataset Collection: OpenGPTText
● No public dataset systematically containing

ChatGPT outputs existed

● The author built OpenGPTText, a pair of human-

written and ChatGPT-paraphrased samples

● Source: OpenWebText- web pages shared on

Reddit, originally all human-written

● Process: Each paragraph rephrase through

ChatGPT-3.5turbo with prompt: Rephrase the

following paragraph by paragraph

● Final dataset: 29,395 text pairs

Data Cleaning
● ChatGPT outputs often contained

stylistic artifacts
○ Smart quotes(“”) instead of

ASCII(“”)
○ Inconsistent newlines(2-6 line

breaks) and extra spaces

● Normalize both corpora with
identical preprocessing

○ OpenWebText-Final (Human)
○ OpenGPTText-Final (ChatGPT)

● PCA indicates tighter clustering and
clearer separation after cleaning

Dataset Roadmap

OpenWebText

Data Cleaning

Paraphrasing by
ChatGPT-3.5-turbo

OpenGPTText

Failed to
Rephrase(Filtered out) Data Cleaning

OpenGPTText-Final
OpenWebTextFina

l

RoBERTa-Sentinel

1. Token Embeddings(E1~En):
a. Each input word (Ex: This is GPT) is

converted into numerical vectors
2. Frozen RoBERTa Encoder(12 Layers):

a. Pre-trained Transformer layers process the
tokens to capture contextual meaning.
These layers are frozen, so their
parameters are not updated during training.

3. [CLS] Token Representation:
a. The special [CLS] token summarizes the

meaning of the entire sentence
4. Feature Flow(Dashed Arrow):

a. Information flows from RoBERTa to the
MLP, but no gradient flows back

5. MLP Classifier (Trainable):
a. The [CLS] embedding is fed into a 2 layer

MLP that predicts: P(Human) or P(ChatGPT)

T5-Sentinel

● Token Embeddings(E1~En):
○ Each input word is tokenized and embeded

● T5 Encoder(X6 blocks, Trainable):
○ Self-attention + feed forward layers build contextual

representations of whole sentence
○ Outputs a sequence of hidden states used by decoder

● Decoder Start & Masked Self-Attention
○ The decoder is primed with a <PAD>(start) token
○ Masked self attention lets the decoder look only at already

generated positions

● Cross Attention to Encoder Outputs
○ The decoder attends to encoder hidden states to condition

generation on the input text
○ This ties the prediction to the full sentence meaning

● Predict the Label Word
○ Positive -> ChatGPT generated
○ Negative-> Human written

Training and Evaluation

● Both models were trained on the OpenGPTText-Final
dataset but with different training strategies and
parameter scales which indicates how model size,

learning rate and training scope affect performance

and stability.

● RoBERTa-Sentinel trained much longer than T5
because only the MLP classifier was learning

● Higher learning rate in T5 helps the large model learn
quickly without underfitting, a smaller learning rate

RoBERTa prevents instability in smaller classifier head

Results(F1 Score, False Positive Rate and False Negative Rate)

● Both T5-Sentinel and RoBERTa-Sentinel achieve excellent accuracy on the OpenGPTText datasets (before and after cleaning) but sho w
poor performance on GPT2-Output due to its higher randomness and stylistic differences from ChatGPT text.

● Additionally, GPT2-Detector fails to generalize from GPT2-based detection to ChatGPT detection, showing limited cross-model transfer

ability.

Results(AUC Value for each combination of data set and model)

● T5-Sentinel and RoBERTa-Sentinel achieve extremely high AUC scores (above 0.97) on the OpenGPTText datasets,
demonstrating strong detection performance for ChatGPT-generated text.

● Both models perform poorly on the GPT2-Output dataset, indicating limited generalization, whereas GPT2-Detector
performs well only on GPT2 outputs but fails to detect ChatGPT text effectively.

Results(ROC Curve)

● The blue curve, T5 Sential dominates all others with the highest recall and lowest error.

● RoBERTa follows closely behind, while public detectors like ZeroGPT and OpenAI’s detector lag far

below

● On GPT-2 output, all models drop in accuracy

● GPT-Sentinel is excellent in domain but not yet generalize well to unseen LLM

OpenGPT Text
Final

OpenGPT Text GPT2-Output

Results(ROC Curve)

● T5-Sentinel and RoBERTa-Sentinel both achieve excellent performance on the OpenGPTText and OpenGPTText-Final
datasets their ROC curves are nearly touching the top-left corner, showing high true positive rate (TPR) and low false
positive rate (FPR).

● On the GPT2-Output dataset, however, both models perform poorly, with curves close to the diagonal line meaning their
ability to detect GPT-2 generated text is weak.

● This demonstrates that ChatGPT-generated (paraphrased) text has distinct statistical and linguistic characteristics
compared to GPT-2 text, leading to strong dataset specificity but limited generalization.

T5-Sentinel RoBERTa-Sentinel

Results(DET Curve)

● Starting from Left both Sentinel model perform strongly with very low errors, but there are more

variation due to noise and artifacts before cleaning and for GPT2 it confirms limited cross model

generalization

● GPT-Sentinel excels in domain but remains model specific

OpenGPT Text
Final

OpenGPT Text GPT2-Output

Confidence

● T5 Sentinel shows sharp

confidence peaks near 0 and 1

which is very decisive predictions

● Data cleaning increases

confidence stability and reduce

the ambiguity

● Overall, it confirms that cleaning

and fine-tuning lead to a more

trustworthy detection model

T5-Sentinel RoBERTa-Sentinel

Interpretability(PCA)

● To better understand how the models differentiate
human vs ChatGPT-generated text, a PCA
visualization was performed on the hidden
representations of both models.

● RoBERTa-Sentinel: Hidden states were extracted
from the last layer of the MLP.

● T5-Sentinel: Hidden states were taken from the
final decoder block output.

● The PCA used test samples from the OpenGPTText-
Final dataset.

● Both models formed two distinct clusters one for
human-written text and one for ChatGPT-
rephrased text.

● This clustering shows that the models learned
implicit linguistic patterns that separate human
and AI writing styles.

● T5-Sentinel’s clusters are more distinct, indicating
stronger discriminative power than RoBERTa-
Sentinel.

RoBERTa-SentinelT5-Sentinel

Interpretability

● t-SNE visualize each text hidden

representation in 2D

● T5-Sentinel forms two clear non

overlapping cluster

● RoBERT-Sentinel shows partial

overlap which shows weaker

separation

● It confirms that T5 learns deeper

semantic distinctions, not just token

patterns

Future work & Conclusion
Future work

● Current models are only trained in English so develop with different languages
● Plan to collect the diverse datasets to evaluate model accuracy across different

textual contexts and task types
Conclusion

● Introduced OpenGPTText, a high quality dataset rephrased by ChatGPT for AI vs
human

● Achieved over 97% accuracy on test using F1, AUC, and ROC metrics
● Conducted interpretability analysis(PCA & tSNE) to revealed clear separation

between human and AI text
● Highlighted the potential for real world AI content detection

Thank You!

	Slide 1: Detection of LLM Generation
	Slide 2: DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature Authors: Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, Chelsea Finn Presented by: Jiaxi Xiong
	Slide 3: Motivation & Introduction
	Slide 4: Existing Methods & Limitation
	Slide 5: Key Hypothesis: Probability Curvature
	Slide 6: DetectGPT Method Overview
	Slide 7: Algorithm1
	Slide 8: Experimental validation of hypothesis
	Slide 9: Quantitative results across models & datasets
	Slide 10: Comparison with Supervised Detectors
	Slide 11: Comparison with Zero-Shot Baselines
	Slide 12: Ablation Studies
	Slide 13: Key Takeaways
	Slide 14: GPT-who: An Information Density-based Machine-Generated Text Detector Authors: Saranya Venkatraman, Adaku Uchendu, Dongwon Lee Presented by Ryan Zhang
	Slide 15: Motivation & Introduction
	Slide 16: Background: UID
	Slide 17: Method Pipeline
	Slide 18: UID Feature Design
	Slide 19: Datasets & Baselines & Results
	Slide 20: Results (continued)
	Slide 21: Results (continued)
	Slide 22: UID Signatures of Authors
	Slide 23: Training & Inference Efficiency
	Slide 24: Discussion
	Slide 25: Conclusion & Limitations
	Slide 26: A Watermark for Large Language Models Authors: John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, Tom Goldstein University of Maryland Presented by: Yiding Yang
	Slide 27: Why watermark?
	Slide 28: A language model is a function that predicts the probability of the next word.
	Slide 29: How Autoregressive Language Models Generate Text
	Slide 30: Entropy
	Slide 31: Hard Red List
	Slide 32: Soft Watermark
	Slide 33: Analysis of the Soft Watermark
	Slide 34: Analysis of the Soft Watermark
	Slide 35: Private Watermark
	Slide 36: Experiments
	Slide 37: Experiments
	Slide 38: Experiments
	Slide 39: Experiments
	Slide 40: Attacking the Watermark
	Slide 41: Attacking the Watermark
	Slide 42: Conclusion
	Slide 43: GPT-Sentinel: Distinguishing Human and ChatGPT Generated Content Authors: Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li, Rita Singh, Bhiksha Raj (2023) Present by Andrew Oh
	Slide 44: Context
	Slide 45: Motivation & Goal
	Slide 46: Related Work
	Slide 47: Dataset Collection: OpenGPTText
	Slide 48: Data Cleaning
	Slide 49: Dataset Roadmap
	Slide 50: RoBERTa-Sentinel
	Slide 51: T5-Sentinel
	Slide 52: Training and Evaluation
	Slide 53: Results(F1 Score, False Positive Rate and False Negative Rate)
	Slide 54: Results(AUC Value for each combination of data set and model)
	Slide 55: Results(ROC Curve)
	Slide 56: Results(ROC Curve)
	Slide 57: Results(DET Curve)
	Slide 58: Confidence
	Slide 59: Interpretability(PCA)
	Slide 60: Interpretability
	Slide 61: Future work & Conclusion
	Slide 62

