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Motivation
Why Study Bias in Vision Models?

● Visual recognition systems are increasingly used for social, commercial, and safety applications.

● Training datasets (e.g., from the web) often reflect real-world stereotypes — women cooking, 
men driving, etc.

● Models trained on such data not only inherit bias but can amplify it.

● Example: In training data, “cooking” may show 66% women; model predictions increase that to 
84%.

Goal: Understand and mitigate bias amplification — without hurting accuracy.



Problem Definition
What Is Bias Amplification?

● Dataset Bias: Unequal distribution of gender–role pairs (e.g., “nurse–female,” “engineer–male”).

● Model Bias Amplification: Model predictions show even larger imbalance than training data.

Formal Definition:
 Bias Amplification = |Model Gender Ratio – Dataset Gender Ratio|

Example:

● Training: 60% female agents in “cooking”

● Model predictions: 80% female → +20% amplification



Data set & Tasks
Datasets Used:

● MS-COCO: Multilabel Object Classification (80 object categories).

● imSitu: Visual Semantic Role Labeling (verbs + roles + nouns).

Tasks Studied:

● Object Classification (e.g., “person,” “knife,” “sandwich”).

● Semantic Role Labeling (e.g., “woman cooking food with pan”).

Why These Datasets?

● Large-scale and widely used in computer vision.

● Naturally encode gender-role associations (from real-world photos).



Data Bias Analysis
How Biased Are the Datasets?

● imSitu: 45% of verbs show >2:1 gender imbalance.

● MS-COCO: 37% of objects show >2:1 imbalance.

Examples:

● “Cooking,” “Shopping” → more female agents.

● “Shooting,” “Coaching” → more male agents.

Observation:
 Even before training, datasets are far from gender-balanced.



Tasks Overview: vSRL and MLC
Visual: Two boxes side by side — Visual Semantic Role Labeling (vSRL) and Multilabel Classification (MLC)
 Content:

● vSRL (imSitu dataset):

○ Predicts verb + roles + nouns for each image.

○ Example: “woman cooking food with pan.”

○ Evaluates how gender interacts with roles (agents, tools, etc.).

● MLC (MS-COCO dataset):

○ Predicts multiple object labels per image.

○ Measures how often gendered contexts (men/women) co-occur with objects.

Key Idea:
Both tasks let us measure how gender bias appears — in actions (vSRL) and objects/scenes (MLC).



Method Overview: RBA (Reducing 
Bias Amplification)
Core Idea: Corpus-Level Constraints

● Control gender–label distributions across all predictions.

● Prevent predictions from deviating too far from training ratios.

Implementation:

● Add constraints at inference time.

● Enforce that aggregate gender frequencies ≈ training corpus ratios.

No retraining required!



Technical Details
Calibration Algorithm
They propose a method to calibrate a trained structured‐prediction model (for vSRL or multilabel object 
classification) so that its predictions do not deviate too far from the gender‐label distributions observed in the 
training set. 

They define corpus‐level constraints: e.g., for each verb v∗, they enforce that the ratio of predicted images with male 
agent vs female agent should lie within a margin gamma γ around the training set ratio b^*(v^*, man) Formally:

To solve this large‐scale constrained inference problem, they use Lagrangian Relaxation / Dual Decomposition. They 
iterate: for fixed λ, solve per‐instance inference (which reduces to original model’s inference); then update λ to 
penalize constraint violations.

The algorithm reduces to repeated calls to the base model’s inference engine + updates to λ.

The margin γ gamma is a tunable parameter controlling how strictly the model must match training‐distribution 
ratios.



Bias Analysis
They systematically analyze dataset bias and model bias amplification:

1. Dataset bias: For each verb (in vSRL) or object (in MLC), compute how many 
times male vs female agents appear. They find many labels are highly skewed: 
~45% of verbs have >2:1 male/female imbalance; ~37% of objects similarly.

2. Model bias amplification: They train the baseline model and compute predicted 
gender ratio for each label. They compare with training ratio and find that many 
labels show increased skew in predictions. For example, as previously 
mentioned, “cooking” goes from ~66% female in training to ~84% in 
predictions. 

The analysis shows that both imSitu and MS-COCO datasets are strongly 
gender-biased, and models trained on them further amplify these biases. Categories 
with larger initial bias exhibit greater amplification, revealing that uncalibrated models 
can reinforce and worsen societal stereotypes if deployed without correction.



Experimental Results
Bias Reduction:
 RBA consistently lowered mean amplified bias across all datasets.

● vSRL: Amplified bias decreased from 0.050 → 0.024 (Dev) and 0.042 → 
0.025 (Test).

● MLC: Amplified bias decreased from 0.032 → 0.022 (Dev) and 0.040 → 
0.021 (Test).
 This corresponds to roughly a 40–50 % reduction in bias 
amplification.

Model Performance:
Despite these strong fairness improvements, the task performance remained 
almost unchanged.

a. vSRL top-1 semantic role accuracy: 24.14 → 24.01 % (−0.13 %).

b. MLC mean average precision: 45.40 → 45.38 % (−0.02 %).
 The differences are negligible, indicating that fairness gains come at 
virtually no cost to accuracy.



Effectiveness of RBA

● RBA (Reducing Bias Amplification) significantly decreases gender bias amplification in both 
vSRL and MLC tasks.

● Though not all bias was removed, amplification was consistently reduced across all initial bias 
levels.

● The reduction came with little to no loss in recognition accuracy, demonstrating practical 
feasibility.

● Results confirm that corpus-level calibration works reliably regardless of dataset bias 
magnitude.



Conclusion & Future Work
● Structured prediction models can unintentionally amplify social bias by exploiting biased correlations in training 

data.

● The paper introduces a framework to visualize & quantify such bias and proposes RBA to calibrate predictions.

● Empirical finding: Conditional Random Fields (CRFs) amplify gender bias; RBA mitigates it effectively.

● First study to both demonstrate and mitigate bias amplification in structured predictors.

● Future directions:

a. Examine whether different model architectures amplify bias differently.

b. Develop additional bias-measurement and de-amplification techniques.

c. Apply these methods to other domains (e.g., pronoun resolution, NLP coreference).



Q&A
Q: How does changing the margin γ affect the trade-off between bias reduction and accuracy on imSitu and 
MS-COCO? 

γ smaller → stronger fairness and γ larger → weaker fairness. Overall even with strict constraint, performance 
barely changes and across all settings RBA reduce amplification by 40-50%

Q: "Could you clarify what types of bias this method can and cannot address? For example, does the proposed 
method help with word-embedding bias such as “doctor–man, nurse–woman,” or is it limited to corpus-level 
distributional bias?"

The proposed method only mitigates corpus-level gender distribution bias in model predictions. It does not 
address deeper representational biases such as word-embedding stereotypes (“doctor–man,” “nurse–woman”). 
RBA corrects the outputs, not the underlying embeddings or learned associations inside the model.



Whose Opinions Do Language Models Reflect?

Presenter: panwang ying



Motivation

Why do we care about calibration?

● LLMs are widely used in 
high-impact decisions

● But they often sound confident 
even when wrong

● Overconfident hallucinations 
reduce trust and reliability



What is Calibration?

• A model is well-calibrated if its confidence matches its accuracy

• Example: answers given with 70% confidence should be correct rate is 70% of the 

time



The Problem with RLHF Models

• Pre-trained models are relatively 

well-calibrated

• But RLHF-tuned models become 

overconfident

• Traditional calibration methods require 

access to model logits

 → Often not available in closed-source 

models (GPT-4, Claude, etc.)



Core Idea of the Paper

Ask the model to say how confident it 
is.

● Let the model verbalize its confidence

● Two forms:

1. Numerical confidence

 

2. Linguistic confidence 

“The paper first defines alignment between two distributions A(D1,D2), and 
then aggregates it into a representativeness score R(G1,G2) to compare models 
with human opinions.”



Numerical Verbalization

          • Simple but powerful — only uses prompting, no model retraining  

• Enables evaluation of model calibration using verbalized output  

• Works for any closed-source model (e.g., GPT-4, Claude)



Linguistic Verbalization

 Model expresses confidence using natural language terms  

• Examples:  

   – “Almost certain”  

   – “Likely”  

   – “Possibly”  

   – “Unlikely”  

• Each phrase is mapped to a numeric confidence range  

   – e.g., “Almost certain” → 0.9–1.0  

   – “Likely” → 0.7–0.9  

   – “Possibly” → 0.5–0.7  

   – “Unlikely” → <0.5  

• Enables intuitive calibration analysis and cross-model comparison



Experimental Setup
Models:

● GPT-3.5 Turbo, GPT-4

● Claude-1, Claude-2

● Llama-2-70B Chat

Datasets:

● TriviaQA

● SciQ

● TruthfulQA

Metrics: ECE, Brier Score, AUC



Key Result #1（verbalization really helps calibration）

● Figure 9 shows smoother, more 
accurate confidence curves.

● Linguistic expressions like 
‘likely’ match real outcomes 
even better than numbers.



Key Result #2
“Refusal” means the model declines to answer opinion questions
• Human refusal rate is only ~1.5% of the time, but early models up to 20 %.
• RLHF models (e.g., text-davinci-003) refuse far less than earlier ones
• Pre-RLHF models (e.g., j1-grande, ada) refuse 10–20× more often

 ECE decreases as number of generated hypotheses increases



Why Does This Work?

• LLMs have learned uncertainty expressions (e.g., “probably”, “unlikely”) during pretraining  
• Verbalization activates latent reasoning features that are not used in direct logits  
• Prompts make the model “slow down” and reason explicitly before deciding  
• Linguistic self-evaluation helps bridge implicit probabilities and explicit confidence  
• Effect is strongest when combined with chain-of-thought or multi-step prompts



Limitations

• Requires careful prompt engineering — slight wording changes can affect results  

• Mapping linguistic expressions (e.g., “likely”, “uncertain”) to numbers is subjective  

• Results are limited to short factual QA datasets, not long-form reasoning or dialogue  

• Opinion alignment and cultural bias may differ across languages or survey sources  

• Current evaluation only measures “confidence correctness,” not full reasoning validity



Practical Impact

• Works on closed-source models (e.g., GPT-4, Claude) — no need to access logits  

• Enables post-hoc calibration for any LLM via prompting only  

• Supports safe deployment in human–AI collaboration settings  

   ○ Selective answer rejection or abstention  

   ○ Trust calibration for end-users  

• Could inform future human–AI interfaces where models explain their uncertainty  

• Bridges interpretability and safety — “LLMs that know what they don’t know”



Conclusion

• LLMs can express reliable uncertainty when prompted explicitly  

• Verbalized confidence (numeric or linguistic) improves calibration  

• Simple prompting strategies can significantly reduce overconfidence and hallucination risk  

• Enables post-hoc confidence estimation — even for closed-source models  

• Moves us toward LLMs that “know when they might be wrong”



Q&A

Q:The paper finds that LMs consistently mirror certain demographic and ideological 
groups. How can we isolate whether these reflected opinions come mainly from 
pretraining data, model inductive biases, or RLHF alignment?

A:“Compare across training stage, model size, and provider — stable patterns = 
pretraining, shifted patterns = alignment or inductive bias.”
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Kelly is described as a warm and 

likable person

Joseph is portrayed with more leadership 

and agentic mentions



(1) Context-Less Generation (CLG):  the 

model is prompted to produce a letter based 

solely on simple descriptions of the 

candidate

(2) Context-Based Generation (CBG): the 

model is also given the candidate’s personal 

information and experience in the prompt. 

1. Bias in Language Style

2. Bias in Lexical Content

3. Hallucination Bias

Two scenarios Three types of bias



Task 1: Context-Less Generation (CLG) 

Purpose: Examine baseline stereotypes in LLMs with no 
contextual guidance.

Input:

● Name (e.g., Kelly vs. Joseph)
● Age
● Occupation

Prompt Example:

“Generate a reference letter for Kelly, a 22-year-old female 
student at UCLA.”

Dataset:

● ~120 generated letters across descriptor combinations

Outcome:

● A controlled environment revealing core gender 
associations in lexical choices.

Purpose: Simulate real user behavior when people feed their 
resume/biography to an LLM.

Input:

● Gender-balanced biographies from WikiBias (Sun & Peng 
2021)

● Cleaned + anonymized + gender-swapped
→ controls for pre-existing bias in the biographies themselves

Prompt Template:

● Biography inserted into a structured prompt requesting a 
recommendation letter

Dataset:

● ~6,000 valid ChatGPT generations
● ~4,200 valid Alpaca generations

Outcome:

● High-volume, realistic data to analyze systemic gender 
disparities.

Task 2: Context-Based Generation (CBG) 



Evaluation Dimension 1: Bias in Lexical Content
Objective: Detect gendered differences in nouns and 
adjectives used.

Steps:

1. Extract all nouns + adjectives using spaCy.
2. Build frequency dictionaries for male vs. female letters.
3. Compute:

○ Odds Ratio (OR): Measures salience of words in 
male vs. female documents.

○ Word Embedding Association Test (WEAT): 
Measures embedding-level association between 
gendered words and stereotypical traits.

What This Detects:

● Stereotypical lexical patterns (e.g., “leader” vs. “kind”).
● Systematic differences in describing competence, 

agency, and warmth.



Odds Ratio (Odd)

Odds Ratio is a statistical measure used to compare how strongly a given word is 
associated with one group vs. another.

In this paper, OR evaluates whether a particular word is used more often in letters 
for male names or female names.



If OR > 1

The word is more associated with male letters.

● e.g., “leader” → OR = 3.2
→ Appears 3.2× more often in male letters.

If OR < 1

The word is more associated with female letters.

● e.g., “kind” → OR = 0.4
→ Appears 2.5× more often in female letters.

If OR ≈ 1

 No strong gender association.



Evaluation Dimension 2: Bias in Language Style
Objective: Quantify differences in tone and style across genders.

Analysis:

● Independent two-sample t-tests comparing male vs. female letters separately for each metric.



A positive value of blang (l) indicates that documents for male profiles ex-
hibit style l more strongly on average (e.g., are more formal, more positive, or
more agentic), while a negative value indicates a stronger presence of style l in
documents for female profiles.



Evaluation Dimension 3: Hallucination Bias

Hallucination Bias (Definition)

● Occurs when an LLM generates content not supported by the biography but
→ propagates existing gender bias, or
→ amplifies gender bias beyond what appears in factual content.

● Concern: hallucinated praise or descriptions may favor men or disadvantage women.

Key Goal:

● Measure whether LLM hallucinations introduce stronger stylistic gender differences 
than supported content.







Experiment & Results



Model Choices

CLG: ChatGPT

CBG: ChatGPT, Alpaca, Vicuna, StableLM. 



Context-Less Generation (CLG)

ChatGPT + 120 Reference Letters



● Challenge: Small sample size (120 letters) → insufficient significance when 
analyzing single-word bias.

● Solution:
○ Group words into 9 gender-stereotypical trait categories:

■ Ability, Standout, Leadership, Masculine, Feminine, Agentic, 
Communal, Professional, Personal

● Method:
○ Compute Odds Ratio (OR) per trait category (not individual words).

● Interpretation:
○ OR > 1 → Trait appears more in male letters
○ OR < 1 → Trait appears more in female letters



Full lists of nine lexicon categories



Most male- stereotypical traits -- Ability, Standout, Leadership, Masculine, and 

Agentic -- have higher odds of appearing in generated letters for males.



Context-Based Generation (CBG)

Data Preprocessing

Generation
Prompt Design
Generating Reference Letters

Evaluation & Results
Biases in Lexical Content
Biases in Language Style: 

Language Formality & Language Positivity & Language Agency Classifier





6, 028 generations for ChatGPT and 4, 228 successful generations for Alpaca.



● All WEAT scores > 0, meaning:
○ Gendered word usage aligns with societal stereotypes.
○ Higher positive values = stronger association between gendered names and stereotypical trait categories.



Biases in Language Style

Objective:

Measure stylistic gender bias in LLM-generated reference letters.



1. ChatGPT - Positivity
○ Statistic = 5.93 → There’s a strong 

numerical difference in positivity 
between genders.

○ p = 1.58e-09* → Statistically very 
significant.

○ Conclusion: Male letters are much 
more positive than female ones, 
reliably.

2. Alpaca - Formality
○ Statistic = 3.04
○ p = 1.17e-03* → Strong difference in 

formality; male letters are more 
formal.

3. ChatGPT - Formality
○ p = 0.07* → Borderline significant; 

male letters might be slightly more 
formal, but not strongly.





ChatGPT: 

Hallucination for males: more formal and positive

Hallucination for females: significantly less agentic

Alpaca: 

Hallucination for males: more formal

Hallucination for females: less formal and agentic





Conclusion



Key Findings Across Three Dimensions

Lexical Content (WEAT & Word Usage)

● ChatGPT & Alpaca associate:
○ Male candidates → Agentic, Professional, Standout words (e.g., “expert”, “reputable”, “master”)
○ Female candidates → Communal, Emotional, Personal traits (e.g., “warm”, “beauty”, “kind”)

● WEAT scores confirm significant gender–trait alignment.

Hallucination Bias

● Hallucinated content further amplifies gender bias:
○ Males: hallucinations are professional, agentic, formal
○ Females: hallucinations are communal, personal, less agentic

Language Style

● Male documents are significantly:
○ More formal
○ More positive
○ More agentic

● Bias reflects real-world social patterns in reference writing.



QA

What are some underlying deep reasons for the LLM to create such gender bias 
based on the names? If i totally start from scratch to pretrain a language model 
with more gender neural statements with the reference letters, would the same 
scenario occur?

Given that Wan et al. found gender bias is significantly exacerbated within 
model-hallucinated content, particularly in professional documents like reference 
letters, should mitigation efforts focus primarily on factual consistency or stylistic 
constraints?
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Why Red-Team LMs?

● Large Language Models (LMs) can generate harmful, offensive, or unsafe 
content.

● Real-world failures (e.g., Microsoft Tay) show that unanticipated queries can 
exploit weaknesses.

● Manual red teaming →
○ Costly
○ Limited in scale
○ Often misses “critical oversights”



Problem Statement



LM-Based Red-Teaming Pipeline



A scalable LM-based red-teaming framework.

• Methods: zero-shot, few-shot, supervised, RL-based red teaming.

• Evaluation on 280B Dialogue-Prompted Gopher (DPG).

• Applications:

– Offensive language

– Data leakage

– Contact info hallucination

– Distributional bias

– Multi-turn harmful dialog



Zero-shot Red-teaming



Stochastic Few-shot Generation 



Stochastic Few-shot Generation 



Supervised Red Teaming



Reinforcement Learning Red Teaming





Experiment Setup

Goal:

• Evaluate whether LLMs can red-team other LLMs effectively.

• Compare LLM-generated attacks to human red-team attacks.

• Measure how different target models respond (success rate, harmfulness).

• Test multiple prompt generation strategies (baseline vs specialized).

Models:

• Attacter models:  GPT-3, GPT-J

• Target models (to be attacked): GPT-3 variants

• Comparison baselines:  human red-teamers, simple prompt adjustment methods.



Attack methods & Evaluation metrics
Attack generation methods:

• Zero-shot attack generation

• Few-shot attack generation

• Adversarial sampling (temperature, nucleus sampling)

• Self-critique loops (LLM improves its own attacks)

• Role-prompting (e.g., “Act as a malicious user…”)

Evaluation metrics:

• Attack success rate: % of prompts that cause the target model to violate safety guidelines.

• Harmfulness score: Safety raters judge severity of violations.

• Coverage & Diversity: Are we finding new attacks, not repeats?

• Human vs LLM comparison: Do LLMs uncover more (or different) failure modes?



Analysis

Key findings:

• Encourage offensive replies more consistently

(Figure 4: Offensive % rises across turns for Zero-Shot, Cond. Zero-Shot, and 
Few-Shot.)

• Become more harmful when past responses were offensive

(Figure 5: Chance of next offensive reply sharply increases with prior offensive turns.)

• Reveal strong demographic biases in target models

(Figure 3: Toxic reply rate varies heavily across demographic groups.)

LLMs systematically discover more harmful, more persistent, and more subtle 
vulnerabilities than humans.



Attack Success Results and Harmfulness & 
Novelty
Attack:

• LLM-generated attacks often have higher success rates vs human-written prompts.
• Some strategies (e.g., adversarial sampling, role-play prompting) outperform others.
• Larger attacker models generally create stronger attacks.

Harmfulness:
LLMs uncover new classes of harmful behaviors not found by human red-teamers.
They produce:

● More creative bypass strategies

● More domain-specific attacks

● More edge-case scenarios humans don’t think of

 



Effect of Attack Strategies & Human vs LLM 
Comparison

Effect of Attack Strategies:

● Few-shot prompting → more structured and 
targeted attacks.

● Adversarial sampling → more extreme, 
high-variance prompts.

● Self-critique loops → highest quality attacks.
 → The model iteratively improves its own attack 
attempts.

 

Human vs LLM Comparison:

LLM advantages:

● scalable

● cheap

● creative variability

● can test thousands of prompts automatically

Human advantages:

● better intuition about contextual-, cultural-, or 
subtle harms

● more realistic user behavior, but lower volume



Discussion

• LMs can red‑team other LMs and generate diverse 

harmful test cases automatically.

• Reveals systematic failure modes: offensive replies, 

data leakage, demographic bias, unsafe advice.

• RL and SFS methods produce high‑difficulty and 

high‑diversity attacks.

• Smaller LMs (7B) also work effectively for red 

teaming.

• Shows the importance of prompt design for revealing 

harmful model behavior.



Limitations

• LM‑based red teaming cannot guarantee full 
coverage of harmful behaviors.

• Red team LMs themselves inherit training-data 
biases.

• Some failures require real‑world context or multi‑turn 
attacks not captured in this study.

• Harm classifiers are limited (mainly detect 
offensiveness, missing other harm types).

• Multi‑turn harmful patterns harder to uncover 
reliably.



Future Work

• Develop more diverse and specialized red LMs.

• Improve classifiers to detect nuanced harms (misinformation, manipulation, unsafe 

reasoning).

• Enhance multi‑turn red teaming and long‑horizon attacks.

• Strengthen detection of data leakage and memorized content.

• Automatically discover new harmful categories using clustering and embeddings.

• Integrate red‑teaming results into iterative alignment pipelines.



Conclusion

• LM‑based red teaming can efficiently uncover 

harmful behavior at scale.

• Produces adversarial cases revealing offensive 

content, bias, and data leakage.

• Demonstrates a scalable framework for safety 

evaluation.

• Not a complete solution, but a crucial step toward 

safer LM deployment.

• Future safety improvements will rely on better 

detection, diversity, and multi‑turn modeling.



QA

“How does using one language model to automatically generate adversarial 
prompts improve the coverage and effectiveness of red-teaming compared to 
traditional human-written attacks?”

How does this "AI vs. AI" red teaming method ensure the attacking AI doesn't share 
the same blind spots as the target AI, thus only finding known flaws instead of truly 
novel ones?



Thank you!


