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Reminder

* For waitlist students: if it is your turn to get in, you will receive a
notification/offer in Workday (not in Email). Please accept that that
offer in 72 hours.

* The first student presentation lecture is on next Tuesday (Sept.9t")

* Presenters (on Sept.9%" ) please send your slides to me (cc the TAs)
before Friday 12:00PM (Sept. 5t)

* First Assignment (preview question) will be due on Sept.8t
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Pretraining - Finetuning Paradigm

* Pretraining: trained with pretext tasks on large-scale text corpora

* Fine-tuning (continue training): adjust the pretrained model’s parameters
with fine-tuning data

* Fine-tuning data can have different forms:
* Task-specific labeled data (e.g., sentiment classification, named entity recognition)

e (Multi-turn) dialogue data (i.e., instruction tuning)

Pretraining Data

Lots of text; learn Not many labels;
general things! adapt to the task!




Decoder Pretraining (GPT)

* Decoder architecture is the prominent choice in large language models
Pretraining decoders are first introduced in GPT (generative pretraining) models

Recall the language modeling task: Model pg (W, |w;..—1), the probability distribution
over words given their past contexts.

Follow the standard language modeling (cross-entropy) objective
goes to make tasty tea END K

[1] Radford, A., Narasimhan, K., Salimans, T., &
Iroh goes to make tasty tea Sutskever, 1. (2018). Improving language understanding
by generative pre-training. OpenAl blog.




Encoder Pretraining: BERT

* BERT pretrains encoder models with bidirectionality

 Masked language modeling (MLM): With 15% words randomly masked or
corrupted, the model learns bidirectional contextual information to predict the

masked words

J

long thanks the
CE Loss
LM Head with Softmax
over Vocabulary
z} 234 zs4 Za) zy zg}
[ Bidirectional Transformer Encoder
@ :r-O----: : r-----—: @ @)
Token + ® +® ®|+ | +@ ! @ @ @ [ @ @ @
Positional @ : [0 I : + : + + ot ot
Embeddings i/ P2 /| X I p5 PG p7 P8
So :[mask] : and :[mask] : for all apricot fish
So | long I and ithanks | for all the fish

BERT: https://arxiv.org/pdf/1810.04805.pdf



https://arxiv.org/pdf/1810.04805.pdf

Limitations of the Fine-tuning Paradigm

Traditional fine-tuning (not used for GPT-3)

* Requires a large number of labeled Fine-tuning

The model is trained via repeated gradient updates using a

training examples for the down-stream e corpus of exampie tasks
taSk sea otter => loutre de mer example #1

* Hard to generalize to new tasks

 Computationally expensive when
language models scale up

plush giraffe => girafe peluche example #N

cheese => prompt
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A Plethora of Large Language Models

* Emerging large language models
assisting our daily activities

. Automation /[ |

Real-world
Applications
of LLMs

rrrrrrrrrrrrrrr

Preventin
Generation




Next Class: Scaling up Language Models

e GPT-1 (2018): 12 layers, 117M parameters, trained in ~1 week
 GPT-2 (2019): 48 layers, 1.5B parameters, trained in ~1 month
 GPT-3 (2020): 96 layers, 175B parameters, trained in several months

; GPT-5
@ K (2?)
GPT-4 0.”
@ @ — - Large language
GPT-3 o*
_ ~ models!

Model
Parametet

GPT-1 GPT-2 (7s8)  _L.et"
(0.1B) (se) et
2018 2019 2020 2023 2025

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf



https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2005.14165.pdf

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
OpenAl

https://arxiv.org/pdf/2005.14165



https://arxiv.org/pdf/2005.14165

Scaling up GPT Models — Pre-Training Data

 GPT-3 is trained on ~300B tokens, compared to GPT-2 with ~40B

tokens.
Quantity Weight in Epochs elapsed when

Dataset (tokens) training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9

Booksl 12 billion 8% 1.9

Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 3.4

* Training objective remains the same:

Lim = — Z logp(z; | ©i k..., Ti 1)
i



Scaling up GPT Models — Architecture

Model Name Nparams Mayers @model Theads @head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10=4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 10~
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 1074
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-36.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~4

GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~




GPT-3 Architecture Improvement

* Sparse attention for longer context window: 1024 — 2048

1

[

Dense Attention: Sparse Attention:
Tokens attend to Tokens attend to
every previous sliding window
tokens

* This allows the local context and global information to propagate more
efficiently




Validation Set Performance

* Performance on validation set (cross entropy loss on standard
language modeling task) follows a power-law trend with respect to
the amount of computation in training

1

10
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Emergent Ability

* Larger models develop emergent abilities

 Skills or capabilities that were not explicitly learned but arise as a result of
model capacity

e Larger models demonstrate surprising abilities in challenging tasks even when
they were not explicitly trained for them

* Emergent capabilities typically become noticeable only when the

model size reaches a certain threshold (cannot be predicted by small
model’s performance)

Emergent Abilities of Large Language Models: https://arxiv.org/pdf/2206.07682



https://arxiv.org/pdf/2206.07682

Emergent Ability: In-Context Learning

* In-context learning is a type of few-shot learning

* User provides a few examples of input-output pairs in the prompt
* The model uses given examples to predict the output for new, similar inputs

* First studied in the GPT-3 paper (Language Models are Few-Shot
Learners: https://arxiv.org/pdf/2005.14165)

* No model parameter updates

Few-shot
Z h One-shot In addition to the task description, the model sees a few
ero-shot s . . .
In addition to the task description, the model sees a single examples of the task. No gradient updates are performed.
The model predicts the answer given only a natural language example of the task. No gradient updates are performed.
description of the task. No gradient updates are performed. _ o
Translate English to French: task description
Translate English to French: task description
) ) _ sea otter => loutre de mer examples
Translate English to French: task description
sea otter => loutre de mer example . L
] peppermint => menthe poivrée
cheese => prompt
cheese =»> prompt

plush girafe == girafe peluche

cheese => prompt


https://arxiv.org/pdf/2005.14165

In-context learning with Different Labels

Circulation revenue has increased by 5%
in Finland. // Positive

Panostaja did not disclose the purchase
price. // Neutral

Paying off the national debt will be
extremely painful. // Negative

The company anticipated its operating
profit to improve. //

Circulation revenue has increased by
5% in Finland. // Finance

They defeated ... in the NFC
Championship Game. // Sports

Apple ... development of in-house
chips. // Tech

The company anticipated its operating
profit to improve. //



Performance vs. Model Scale

* Models exhibit random performance until a certain scale, after which
performance significantly increases

—e— LaMDA —=— GPT-3 —4— Gopher —&— Chinchilla
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Tasks:

Arithmetic: addition, subtraction,
multiplication

Transliteration

Recover a word from its scrambled letters
Persian question answering

Question answering (truthfully)
Grounded conceptual mappings
Multi-task understanding (math, history,
law, ...)

Contextualized semantic understanding

Figure source: https://arxiv.org/pdf/2206.07682



https://arxiv.org/pdf/2206.07682

Scaling Laws of LLMs

* (Pretrained) LLM performance is mainly determined by 3 factors
* Model size: the number of parameters
e Dataset size: the amount of training data
 Compute: the amount of floating point operations (FLOPs) used for training

 Scaling up LLMs involves scaling up the 3 factors

 Add more parameters (adding more layers or having more model dimensions
or both)

e Add more data
 Train for more iterations

* Scaling laws: study the correlation between the cross-entropy
language modeling loss and the above three factors




Scaling Laws of LLMs

* Performance has a power-law relationship with each of the three
scale factors (model size, dataset size, compute) when not
bottlenecked by the other two

7 4.2
6 —— L=(D/5.4-1013)70095 | 5.6 —— L=(N/8.8-1013)-0.076
3.9
4.8
: 4.0
9S4
E 3.3 39
F 3
3.0
2.4
L = (Cminf2.3+108)0.050
2 . . : . 2.7 . . . : ;
i0-® 107 105 10°* 10°! 10! 108 109 105 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Paper: https://arxiv.org/pdf/2001.08361



https://arxiv.org/pdf/2001.08361

Evaluation on Question Answering Tasks

* Open-domain setting: offers external sources including the final
answer

* GPT-3 answers questions without looking at the sources
* RAG: Retrieval-Augmented Generation

Setting NaturalQS WebQS TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP20] 4.5 45.5 68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
T5-11B (Fine-tuned, Closed-Book) 34.5 37.4 50.1
GPT-3 Zero-Shot 14.6 14.4 64.3
GPT-3 One-Shot 23.0 25.3 68.0

GPT-3 Few-Shot 29.9 41.5 71.2




Evaluation on Reasoning Tasks

Setting CoQA DROP QuAC SQuADv2 RACE-h RACE-m
Fine-tuned SOTA 90.7¢° 89.1° 74.4° 93.0¢ 90.0° 93.1°
GPT-3 Zero-Shot  81.5 23.6 41.5 59.5 45.5 58.4
GPT-3 One-Shot  84.0 34.3 43.3 65.4 45.9 57.4
GPT-3 Few-Shot  85.0 36.5 44.3 69.8 46.8 58.1

e GPT-3 achieves lower score than fine-tuned models.

* Reasoning process is commonly not explicitly stated in texts, so GPT-3
benefits less from the pre-training stage. (We will discuss solutions to
this next class!)




Limitations of GPT-3

 Computationally expensive
* Lack of reasoning ability

e Closed-source model ~




Content

* Recap: Pre-training and Fine-tuning

e Scaling up Language Models

* Emergent Abilities: In-context learning

* Open weight model version: The Llama series

* What Makes In-Context Learning Work?: Empirical Analysis
* Many-Shot In-Context Learning




An Open-Source Model: Llama 2

LiLaMma 2: Open Foundation and Fine-Tuned Chat Models

Hugo Touvron* Louis Martin' Kevin Stonef
Peter Albert Amjad Almahairi Yasmine Babaei Nikolay Bashlykov Soumya Batra

Prajjwal Bhargava Shruti Bhosale Dan Bikel Lukas Blecher Cristian Canton Ferrer Moya Chen

Guillem Cucurull David Esiobu Jude Fernandes Jeremy Fu Wenyin Fu Brian Fuller
Cynthia Gao Vedanuj Goswami Naman Goyal Anthony Hartshorn Saghar Hosseini Rui Hou

Hakan Inan Marcin Kardas Viktor Kerkez Madian Khabsa Isabel Kloumann Artem Korenev
Punit Singh Koura Marie-Anne Lachaux Thibaut Lavril Jenya Lee Diana Liskovich
Yinghai Lu Yuning Mao Xavier Martinet Todor Mihaylov Pushkar Mishra
Igor Molybog Yixin Nie Andrew Poulton Jeremy Reizenstein Rashi Rungta Kalyan Saladi
Alan Schelten Ruan Silva Eric Michael Smith Ranjan Subramanian Xiaoqing Ellen Tan Binh Tang

Ross Taylor Adina Williams Jian Xiang Kuan Puxin Xu Zheng Yan Iliyan Zarov Yuchen Zhang

Angela Fan Melanie Kambadur Sharan Narang Aurelien Rodriguez Robert Stojnic

Sergey Edunov Thomas Scialom*

GenAl, Meta

https://arxiv.org/pdf/2307.09288
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https://arxiv.org/pdf/2307.09288

Main Contribution

* Llama 2 was the first open-sourced model that matches closed
sourced models’ performance.

* Llama 2 is available in multiple sizes: 7B, 13B, and 708B.




Llama 2 Improvement: Rotary Position
Embedding

e Absolute positional
encoding is simple, but may
not generalize well in longer
sequences

* Integrate relative position
between tokens in the self-
attention matrix

Query / Key Position Position Encoded Query / Key

RoFormer: Enhanced Transformer with Rotary Position Embedding. Su et al, 2021.
https://arxiv.org/abs/2104.09864
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Llama 2 Improvement: Grouped-Query Attention

* Multi-query attention has different key and value heads across all
guery heads.

* Grouped-query attention instead shares single key and value heads
for each group of query heads.

Multi-head Grouped-query

Values

I ' ' ' ' ' S SN B SN

I ' ' ' ' ' P oo . ro

I ' ' ' ' 1 i ] v . v ‘ g
I ' ' ' ' ' . . ' v . v ‘ '
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}
}
}
}
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}
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Llama 2 Performance

* Llama 2 model is not as good as proprietary models, but still very
competitive (as a pre-trained only model)

Benchmark (shots) GPT-3.5 GPT-4 PalM PalM-2-L. Liamaz2
MMLU (5-shot) 70.0 86.4 69.3 78.3 68.9
TriviaQA (1-shot) — — 81.4 86.1 85.0
Natural Questions (1-shot) - . 29.3 37.5 33.0
GSMBS8K (8-shot) 57.1 92.0 56.5 80.7 56.8
HumanEval (0-shot) 48.1 67.0 26.2 29.9

BIG-Bench Hard (3-shot) — — 52.3 65.7 51.2
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What makes in-context learning work?

* Which part of in-context learning makes it work?
* Experiment 1: replace gold labels with random labels

(X, y) -2 (X, y’)

Demonstrations  pic1yipyiion of inputs Label space
Circulation revenue has increased by 5% in Finland. \n Positive
Format
Panostaja did not disclose the purchase price. \n Neutral (Th e use
Paying off the national debt will be extremely painful. \n Negative of pairs)
Test example Input-label mapping
The acquisition will have an immediate positive impact. \n ?

Rethinking the Role of Demonstrations: what makes in-context learning work? Min et al. 2022.
https://arxiv.org/abs/2202.12837
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Experiment 1: Replace Gold Labels with Random
Labels

(Format ' Input distribution v" Label space v Input-label mapping V")

5/emooi:i labels Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n positive
g Panostaja did not disclose the purchase price. \n neutral
Demos (Format v Input distribution v' Label space v Input-label mapping X)

Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n neutral

w/ random labels Panostaja did not disclose the purchase price. \n negative




Experiment 1: Replace Gold Labels with Random
Labels

 Random labels only slightly hurt the performance (less than 5%)
* The model can recover the expected input labels

60 Classification
I No Demos Demos w/ gold labels #% Demos w/ random labels
55
- 50
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— 45
o
240
=]
235
30
2 Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel
GPT-2 GPT-2 MetalCL MetalCL GPT] GPT] fairseq 6.7B  fairseq 6.7B  fairseq 13B  fairseq 13B GPT-3 GPT-3
70 Multi-choice
o I No Demos Demos w/ gold labels B9 Demos w/ random labels
s 60
Ess
o
5 50
%]
[+
<45
40
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Experiment 2: Change Portion of Correct Labels

* Using wrong label demos is much better than no demos at all

* Using correct label demos improve the performance

G5

_ GO M 100% correct M 75% correct 20% correct 25% correct (% correct No Demos
=+ 65
.50
]
E 45
= 40
i
_§ a5

25/

MetalCL (Classification) GPT-] (Classification) MetalCL (Multi-choice) GPT-] (Multi-choice)

Figure 4: Results with varying number of correct labels in the demonstrations. Channel and Direct used for
classification and multi-choice, respectively. Performance with no demonstrations (blue) is reported as a reference.




Experiment 3: Varying Numbers of Examples

* A small number of examples can already improve the performance

* Larger number of examples may result in performance convergence
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Experiment 4: Input Text Distribution

* Change the input example questions x4, x5, ..., X} to randomly
sampled k sentences from external corpus, paired with random labels

(Format v Input distribution v' Label space v Input-label mapping v")

g/em;l; labels Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n positive
& Panostaja did not disclose the purchase price. \n neutral
00D Demos (Format v Input distribution X Label space v" Input-label mapping X)

w/ random labels

Colour-printed lithograph. Very good condition. Image size: 15 x 23 1/2 inches. \n neutral
Many accompanying marketing claims of cannabis products are often well-meaning. \n negative




Experiment 4: Input Text Distribution

* Change the input example questions x4, x5, ..., X} to randomly
sampled k sentences from external corpus, paired with random labels

e Significantly hurts the performance

* Model predicting texts conditioned on original input text is closer to
the language modeling task

a0 Classification

$55

=50

m 45

S a0 FLIM

%35 Gold labels A

S Random labels K
25 00D + Random labels v v X X

Direct MetalCL Channel MetalCL Direct GPT+J Channel GPT-] No demonstrations XX XX

60 Multi-choice

i F: Format

= ;.ﬂ L: Label space

s I: Input distribution

€ 10 M: Input-Label Mapping

= |

935

<< 30
25

Direct MetalCL Channel MetalCL Direct GPT-] Channel GPT]




Experiment 5: Impact of the Input Format

* Observation: Keeping the format of input-label pairs is the key.

(Format v Input distribution v' Label space v Input-label mapping v")

g/em:i:i labels Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n positive
& Panostaja did not disclose the purchase price. \n neutral
Demos (Format v Input distribution v' Label space X Input-label mapping X)

Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n unanimity

w/ random English words Panostaja did not disclose the purchase price. \n wave

(Format X Input distribution v Label space X Input-label mapping X)

Demos Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008.
w/o labels . 1 : :
Panostaja did not disclose the purchase price.
Demos (Format X Input distribution X Label space v' Input-label mapping X)
positive
labels only

neutral




Experiment 5: Impact of the Input Format

60
=33

< 50
245
= 40
O 35

<t 30

25-

Classification

Direct MetalCL Channel MetalCL Direct GPT-] Channel GPT-]
Multi-choice

Direct MetalCL Channel MetalCL Direct GPT-] Channel GPT-]

FLI M
Gold labels A
I Random labels Vv X
OOD + Random labels v v X X
B Random labelsonly X v X X
Random English words v X + X
B No labels XX /7 X
Il No demonstrations XX x X
F: Format
L: Label space

I: Input distribution
M: Input-Label Mapping

* Observation: Keeping the format of input-label pairs is the key.
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Performance with More Examples?
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Many-Shot In-Context Learning. https://arxiv.org/pdf/2404.11018
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How Many Examples are Enough?

* The optimal number of examples varies across different tasks.

Many-shot ICL: Machine Translation Many-shot ICL: Summarization
PEGASUS (Fine-tuned on XSum)
—_ English -» Bemba
S\: 45 EngIISh - Kurdish _I| 30 mT5 (Fine-tuned on XLSum)
H O
+ L "7 Google Translate (SOTA) =5
UNC 40 8 o5
6 35 NLLB (SOTA) J(dn_’J
et
@ = 20 GEM-XSum
—— XLSum (Transfer)
30
20 21 22 23 24 25 26 27 28 29 210 21 23 25 27 29

Number of Shots (K) Number of Shots (K)




Many-Shot ICL vs. Supervised Fine-Tuning

e Supervised Fine-Tuning: larger training-time computation
 Many-Shot ICL: larger test-time computation

Base Model W Supervised FT Many-Shot ICL
— English - Bemba English —» Kurdish
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40 ™M ~ N
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Does Repeated Examples Matter?

* With the same total number of examples, repeating examples could
result in lower accuracy than using unigue examples.

* Many-shot ICL mainly benefits from new information.

Distinct examples
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Does Re-Ordering Examples Matter?

* Each colored data point represents a different random ordering of 50
in-context examples provided to Gemini 1.5 Pro.

* Yes, the order significantly impacts model performance!

MATH: 50-shot Ordering Sensitivity
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Takeaways

* Language models can be scaled up by increasing model size and
training data, and performance follows the power-law relationship.

e Larger models develop emergent abilities that small models do not
exhibit, such as in-context learning.

* In-Context Learning (ICL) is mostly impacted by input-output format
and text distribution, and less by label accuracy.

* Increasing examples in ICL may improve performance, but the optimal

number of examples vary; model performance is sensitive to the
order of examples.



Next Class

* Post-training

* Stage 1: Instruction Tuning
* More training examples
* More complex tasks

* Train the model to be flexible to
adapt to different kinds of task
instructions

Task Instruction

_l Definition !

“... Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance
contains the small-talk strategy, otherwise output ‘No’. Small-talk is
a cooperative negotiation strategy. It is used for discussing topics
apart from the negotiation, to build a rapport with the opponent.”

,(;{ Positive Examples ]

* Input: “Context: ... ‘That's fantastic, I'm glad we came to
something we both agree with.” Utterance: ‘Me too. I hope you
have a wonderful camping trip.””

* Qutput: “Yes”

* Explanation: “The participant engages in small talk when wishing

L their opponent to have a wonderful trip.”

’E[ Negative Examples ] &

* Input: “Context: ... ‘Sounds good, I need food the most, what is
your most needed item?!” Utterance: ‘My item is food too’.”

* Qutput: “Yes”

» Explanation: “The utterance only takes the negotiation forward

and there 1s no side talk. Hence, the correct answer is ‘No’.”

Evaluation Instances

Tk-Instruct i
¢ Input: “Context: ... ‘I am excited to spend time

with everyone from camp!’ Utterance: ‘That’s

awesome! I really love being out here with my

son. Do you think you could spare some food?’
* Expected Qutput: “Yes”

.
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