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Content

1.

2.

Discovery: We can unlock reasoning by prompting models to “show
their work” (Chain-of-Thought).

Robustness: We can make this reasoning more reliable by exploring
multiple reasoning paths and finding a consensus (Self-
Consistency).

Agency: We can go a step further and have the model critique and
improve its own work in a loop (Self-Refine).

Meta-Analysis: All these methods fall under the umbrella of “test-
time compute.” How does spending more compute at inference
compare to simply training a bigger model? (Scaling LLM Test-Time

Compute).



Content

1. Discovery: We can unlock reasoning by prompting models to “show
their work” (Chain-of-Thought).



Chain-of-Thought Prompting
Elicits Reasoning in Large
Language Models

Jason Wei et al. (2022)



The Challenge: Complex Reasoning in a Single
Step

Why did it fail? Standard Prompting
. Model Input
 The model likely latched onto the
numbers (23 20 6) and performed 3 Q: Roger has 5 tennis balls. He buys 2 more cans of
g P . tennis balls. Each can has 3 tennis balls. How many
plausible but incorrect operation (e.g., tennis balls does he have now?
23-20=13; 23 + (6-something) = 277 |
Or just 20+6+initial confusion = 27). A: The answer is 11.
e |t tried to solve a multi-step problem Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples

(subtract, then add) in a single, do they have?

intuitive leap.

* This approach is not robust and has a
flat scaling curve—making the model Model Output
bigger doesn’t reliably fix this kind of

A: The answer is 27.
error. x



Prior Solutions and Limitations

* Method 1: Finetuning with Rationales

* Train a model on a large dataset of problems and human-written
explanations.

e Limitation: Requires creating massive, expensive, and high-quality datasets.

* Method 2: Standard Few-Shot Prompting

* Give a few questions - Answer examples in the prompt.
e Limitation: As we saw, this doesn’t work well for reasoning tasks.



The Solution: Chain-of-Thought Prompting

* It’s a few-shot prompting

technigue where the exemplars
given to the model don’t just
show the final answer but also

include the intermediate

reasoning steps used to get

there.
e Show the process.

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3+ 6 =9. The
answeris 9. o/



Why Might CoT Work?

* Decomposition: Allows the model to break a multi-step problem into
smaller, manageable steps.

* Allocation of Computation: The model can spend more “thought”
(i.e., generate more tokens) on more complex problems.

* Interpretability: Provides a window into the model’s “thought
process,” allowing for debugging.

* Generality: Applicable to any task that can be solved via language.



Experimental Setup

* Arithmetic: GSM8K, SVAMP, etc. (Math problems)

« Commonsense: StrategyQA, CSQA (Everyday logic)

e Symbolic: Last Letter Concatenation, Coin Flip (Abstract manipulation)
* Models: GPT-3, LaMDA, PaLM, UL2 20B, Codex

 Method: Few-shot prompting (e.g., 8 exemplars)



Key Result #1: Gains in Arithmetic Reasoning

—— Standard prompting

* A CoT-prompted model can %
outperform a specially finetuned : J
mOdel. ’ 04 8 137 04 7 175 8 62 540

Model scale (# parameters in billions)

* The huge performance gap ~o- ol hougt prompig
between standard prompting LA T PaM
(black) and CoT prompting (blue) ;:62 /
for large models. i J

* For PaLM 540B on GSMBK, w0
performance jumps from 17.9% - J ﬁ
to 56.9%. *inl A




Key Result

Ability of Scale

* For smaller models (under ~100B parameters),

CoT provides no benefit.

Question

Tracy used a piece of wire 4
feet long to support tomato
plants in the garden. The
wire was cut into pieces 6
inches long. How many
pieces did she obtain?

Question

Tom's ship can travel at 10
miles per hour. He is sailing
from 1 to 4 PM. He then
travels back at a rate of 6
mph. How long does it take
him to get back?

62B Model Output

She cut the wire into 6 inch pieces.

This means she got4 * 6 =24
pieces. The answer is 24.

62B Model Output

He travels from 1 to 4 PM. That
means he travels for 3 hours. He
travels back at 6 mph. That means
he travels for 3 * 6 = 18 miles. The
answer is 18.

540B Model Output

The wire was 4 feet long. This
means it was 4 * 12 = 48 inches
long. It was cut into pieces 6 inches
long. This means she obtained 48 /
6 = 8 pieces. The answer is 8.
(Correct)

540B Model Output

He travels at 10 mph from 1 to 4
PM. This means he travels 3 hours.
3 hours at 10 mph means he travels
3 * 10 = 30 miles. He then travels
back at 6 mph. This means he
travels 6 miles per hour. He has to
travel 30 miles, so it takes him 30/ 6
=5 hours. The answer is 5.
(Correct)
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2: Reasoning is an Emergent

—— Standard prompting
—&— Chain-of-thought prompting
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Ablation Studies

* Equation only: Just providing the
math equation isn't enough. The
natural language steps are key.

 Variable compute only (...): It's
not just about letting the model
“think longer.” The content of
the thoughts matters.

* Reasoning after answer: The
reasoning must happen before
the answer to guide the model.

[] Standard prompting

N Equation only

Variable compute only
Reasoning after answer

B Chain-of-thought prompting

60
40

20

N o1 =
1L\
o LOSZE NAL:

LaMDA PalL.M

GSMBSK solve rate (%)

Figure 5: Ablation study for dif-
ferent variations of prompting us-
ing LaMDA 137B and PalLLM 540B.
Results for other datasets are given
in Appendix Table 6 and Table 7.



Robustness Analysis

 Question: Is CoT sensitive to the
prompt?

* Different Annotators: Works even
when different people write the
reasoning steps.

* Different Exemplars: Works with
different examples, even from
other datasets.

 Different Order: Relatively robust
to the order of examples in the
prompt.

[] Standard prompting

B Chain-of-thought prompting

- different annotator (B)

- different annotator (C)

- intentionally concise style

- exemplars from GSM8K («)
- exemplars from GSM8K (3)
- exemplars from GSM8K ()

60

BEZNEEN
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—
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—
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at
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Figure 6: Chain-of-thought prompting
has variance for different prompt exam-
ples (as expected) but outperforms stan-
dard prompting for various annotators as
well as for different exemplars.



Generalizing to Other Tasks

balls does he have now?

Q: Roger has 5 tennis balls. He buys
2 more cans of tennis balls. Each can

has 3 tennis balls. How many tennis

- The answer is 11.

SRR

Q: How many keystrokes are needed
to type the numbers from 1 to 5007
Answer Choices: (a) 1156 (b) 1392 (c|
(d) 1562 (e) 1788

) 1480

answer is (

.}

Q: Sammy wanted to go to where the
people were. Where might he go?
Options: (a) race track (b) populated areas
(c) desert (d) apartment (e) roadblock

So the answer is (b).

J

Q: Yes or no: Would a pear sink in
water?

answer is no.

N

-

A:
So the

AN

-

Q: The concert was scheduled to be
on 06/01/1943, but was delayed by
one day to today. What is the date 10
days ago in MM/DD/YYYY?

So the answer is 05/23/1943.

F

Is the following sentence
plausible? "Joao Moutinho caught the
screen pass in the NFC
championship.”

answer is no.

Human: How would you bring me
something that isn't a fruit?

Plan: 1. find(energy bar) 2.
pick(energy bar) 3. find(user) 4.
Qlut(energy bar) 5. done().

J

/_

Q: Take the last letters of the words
in “Lady Gaga” and concatenate
them.

answer is ya.

- AN

/Q—\

A coin is heads up. Maybelle flips

the coin. Shalonda does not flip the
coin. Is the coin still heads up?

J

is no.




Generalizing to Other Tasks

CSQA StrategyQA Date Sports SayCan
100 M _____ 80 100 100
Rk --- 30 60 F 30 —e— Standard prompting
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Model scale (# parameters in billions)

* Increased commonsense reasoning abilities



Generalizing to Other Tasks

—— Standard prompting

* Increased symbolic reasoning 6 Chain-of-thought prompting
tliti Letter Concat: 2 Letter Concat: 4
a b | I It | e S (in domain) (O0OD)
100

75
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Model scale (# parameters in billions)



Why will smaller models not work?

* Generation of Il
* Failure on Simp

* Inherently Wea

ogical Chains of Thought
e Symbolic Tasks

ker Arithmetic Abilities

* Inability to Produce Parsable Answers

* “In summary, the success of chain-of-thought reasoning as a result of
model scale is a complicated phenomenon that likely involves a
variety of emergent abilities (semantic understanding, symbol
mapping, staying on topic, arithmetic ability, faithfulness, etc).”



Limitations and Future Work

* Fallible Reasoning: The generated chain of thought is not guaranteed
to be factually or logically correct.

* Scale Requirement: This powerful technique is currently only
accessible for massive, computationally expensive models.

* New Lower Bound: Standard prompting should be seen as a lower
bound on LLM capabilities. How we interact with models can unlock
latent abilities.

e Zero-shot CoT (e.g., just adding “Let’s think step by step”).
* Automating CoT generation.
* Inducing reasoning in smaller, more efficient models.



Conclusion

1. Chain-of-Thought prompting is a simple method to unlock complex
reasoning in LLMs.

2. It works by showing the model how to reason step-by-step in few-
shot examples.

3. This ability is an emergent property of model scale.

CoT establishes new state-of-the-art results on reasoning
benchmarks, even outperforming finetuned models.



Beyond Conclusion

* Chain-of-Thought doesn’t prove that LLMs “reason” in the conscious,
abstract, human sense.

* It demonstrates that they can move beyond simple input-output
pattern matching to imitate a reasoning process.

* This procedural imitation is so effective that it becomes a powerful
tool for solving complex problems.

* Constraining the solution space increases the chance of a correct
answer.



Content

2. Robustness: We can make this reasoning more reliable by exploring
multiple reasoning paths and finding a consensus (Self-
Consistency).



Self-Consistency Improves Chain
of Thought Reasoning in
Language Models

Xuezhi Wang et al. (2023)



Self-consistency method

Greedy decode
This means she uses 3 + 4 = 7 eggs every day.

Chain-of-thought Language She sells the remainder for $2 per egg, so in .
prompting model total she sells 7 * $2 = $14 per day. The answer is $14. ]
The answer is $14.
Self-consistency Sample a diverse set of Marginalize out reasoning paths
reasoning paths , to aggregate final answers

F_EE BN BN BN =Bn =B B e 02020 l

~
ﬂ): If there are 3 cars in the parking \ She has 16 - 3 -4 =9 eggs I \
lot and 2 more cars arrive, how many left. So she makes $2 * 9 = | The answer is $18.
cars are in the parking lot? $18 per day. I ) \
A: There are 3 cars in the parking lot i ~ \

already. 2 more arrive. Now there are

. This means she she sells the
3+ 2 =5cars. The answer is 5. S

remainder for $2 * (16 - 4 - 3)  The answer is $26.
= $26 per day. !

Q: Janet’s ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How
much does she make every day?

A Y

Language
model

| J

She eats 3 for breakfast, so |
she has 16 - 3 =13 left. Then |
she bakes muffins, so she I The answer is $18.
has 13 - 4 = 9 eggs left. So

she has9eggs * $2=$18. |

The answer is $18. ]




Question

* They explore multiple reasoning paths to select the most common

answer and improve QA accuracy. T

ney mention that this results in a

large computational cost as most of the benefit comes from 5-10

replicates. Could a more restrictive
here to improve compute cost?

* NO, the way to generate is multiple
answer are similar, more distinct, m

peam search approach be used

answers, no matter how these
ore accurate.

* How can it be ensured that the different reasoning paths identified by
self-consistency represent diverse methodologies, as opposed to
various restatements of a uniform reasoning method?

* This is Generative large models, Logical large model, we don’t know.



The self-consistency method three steps

* Prompt a language model using chain-of-thought (CoT) prompting

* Replace the “greedy decode” in CoT prompting by sampling from the
language model’s decoder to generate a diverse set of reasoning
paths

 Marginalize out the reasoning paths and aggregate by choosing the
most consistent answer in the final answer set



Question

e Could only reasoning paths sufficiently dissimilar from the other
paths be included in the final aggregation step?

* No, all the result will be sum, no matter how they same both result or
token set.



Different answer aggregation strategies

Greedy decode

Weighted avg
(unnormalized)
Weighted avg
(normalized)
Weighted sum
(unnormalized)
Weighted sum
(normalized)
Unweighted
sum (majority
vote)

56.3+0.0

22.1+£0.0

59.9+0.0

74.1+£0.0

74.4+£0.1

90.5+0.0

59.7+0.0

92.2+0.0

99.3+0.0

99.3+0.0

35.8+0.0

15.7 £ 0.0

38.2+0.0

48.0+0.0

48.3+0.5

79.0

73.0+0.0

40.5+0.0

76.2+0.0

86.8 £0.0

86.6 £0.1

79.0

74.8£0.0

52.1+0.0

76.2+£0.0

80.7£0.0

80.7+0.1

85.2

82.3+0.0

51.7+0.0

83.5%+0.0

88.7+0.0

88.7+0.1



Question

* Self-consistency improves LLMs' reasoning accuracy be sampling
multiple reasoning paths and aggerating the answers. And in the
paper, they show that this strategy can improve the performance on
multiple benchmarks. The first thing that | have not fully captured is,
what does "weighted average" in Section 2 mean?

* See, next. weights come from the conditional probability of each
generated output



Normalized weighted processing

K
1
p(r;, a;|prompt, question) = exp (E z log P(t; |prompt, question, t4, ..., tk—l))
k=1

°T; An additional latent variable
*a; The generated answers
*logp() The log probability

K Total number of tokens

o k k-th token



Question:

* For self-consistency, why the conditional probability of the response
is a suitable way to evaluate?

* response (i.e. series of tokens) is actually a conditional probability
chain (How to generate a large language model)

* quality of the response = the product of the conditional probabilities
of each token, larger, more "trusted”

* Underflow, solve Log Addition; long sentence log smaller, solve
Normalization; last solve log, use exp.



Tasks and datasets

e Arithmetic reasoning:

* Math Word Problem Repository(AddSub, MultiArith, ASDiv)
 AQUA-RAT (GSM8K, SVAMP)

* Commonsense reasoning:
* CommonsenseQA
* StrategyQA
* Al2 Reasoning Challenge (ARC)

* Symbolic Reasoning:

* Last letter concatenation
* Coinflip



Language models and prompts

o high & high

* 20-billion parameters ts-to-targets compion | compton) | compen

* 2GPT3 on zero-shot = “Autoregressive’
models

e compute-friendly e

(extreme denoising)

o U L 2 X-denoiser X-denoiser X-denocisar
(long spans & (long spans & {short spans
Learning Pa

radigms

~

Finetuning

In-context

il

Decoder-only Learning
PrefixLM P
< ero-
R-denoiser
e
(short spans & low corruption) Q Language \
Generation
-~
G
“\‘ Language
S-denciser Unclerztancing
(sequential denoising / prefix
language modeling) Knowladge
\ / Ground
Mixture-of-Denoi e}
IXTure-or-venolsers \ _/‘

Task Paradigms



Language models and prompts

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)

* GPT-3
Zero-shot Fine-tuning

The model predicts the answer given only a natural language The model is trained via repeated gradient updates using a
° 1 75 b i I I i n p a ra m ete rs description of the task. No gradient updates are performed. large corpus of example tasks.
Translate English to French: task description sea otter => loutre de mer example #1
cheese =>

* two public engines
e code-davinci-001

In addition to the task description, the model sees a single

[ ] CO d e - d avi n C i _O O 2 example of the task. No gradient updates are performed.

Translate English to French: task des
sea otter => loutre de mer example
plush giraffe => girafe peluche example #N
cheese => prompt
Few-shot
cheese => prompt

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt



Language models and prompts

* LaMDA-137B

137-billion parameters
dense left-to-right
decoder-only

pre-trained web documents

“When was the Eiffel
Tower built?"

LaMDA to user: Hi, how can I
help you today? <EOS> [...] user
to LaMDA: When was the Eiffel
Tower built? <EOS>

LaMDA to user: Hi, how can I help
you today? <EO0S> [..

user to LaMDA: When was the
Eiffel Tower built? <EO0S>
LaMDA-Base to LaMDA-Research: It
was constructed in 1887. <E0S>

LaMDA to user: Hi, how can I help
you today? <E0S> [...]

user to LaMDA: When was the
Eiffel Tower built? <EOS>
LaMDA-Base to LaMDA-Research: It
was constructed in 1887. <E0S>
LaMDA-Research to TS: Eiffel
Tower construction date <E0S>
TS to LaMDA-Research: Eiffel
Tower / construction started: 28
January 1887 <EO0S>

LaMDA-Research

LaMDA to user: Hi, how can I help you
today? <EO0S> [...]

user to LaMDA: When was the Eiffel Tower
built? <E0S> LaMDA-Base to LaMDA-Research:
It was constructed in 1887. <E0S>
LaMDA-Research to TS: Eiffel Tower
construction date <EOS>

TS to LaMDA-Research: Eiffel Tower /
construction started: 28 January 1887 <E0S>
LaMDA-Research to TS: Eiffel Tower
completed when <FOS>

TS to LaMDA-Research: Eiffel Tower / date
opened: 31 March 1889 <EO0S>

| It was constructed in 1887.

TS, Eiffel Tower
S AC

ffel Tower
pleted when

Eiffel Tower / construction
started: 28 Jaruary 1887

Eiffel Tower / date
opened: 31 March 1889

——| LaMDA-Research

User,

Work started on it in
January 1887, and it was opened in

March 1889.

Response to user

“Work started on it in January 1887,
and it was opened in March 1889."



Language models and prompts

* PaLM-5408B

540-billion parameters

dense left-to-right
decoder-only

pre-trained 780 billion tokens

Model Summary

Model Architecture

aneters.  Transformer

Dense decoder-only model with 540 billion pa

mocel architecture with variants to speed up training and inference. For
det see Model Architecture (Section 2).
Input(s) | The model takes text as input.
Output(s) | The model generates text as output.
Usage
Appli The primary use is research on language models, including: research

on NLP applications like machine translation and question answering,
advancing fairness and safety research, and understanding limi

current LLMs.

ations of

Within Google, PaLM is being used for research on a variety of open-
ended text and code generation tasks, including reasoning (Section 6.3)
and code synthesis and understanding (Section 6.4).

Evaluation Dataset

We evaluate the PaLM family of models on a wide variety of tasks.
Specifically, we evaluate the models on English Natural Language Process-
ing (NLP) tasks (Section 6.1), tasks from BIG-bench (BIG-bench collab-
oration, 2021), res ; (Section 6.3), code completion tasks (Sec-
tion 6.4), multilingual gene n and question answering tasks (Sec-
tion 6.6), translation tasks (Section 6.5), and bias and toxicity bench-
marks (Rudinger et al., 2018; Gehman et al., 2020).

Known Caveats

sopher (Rae et al., 2021) describes safety benefits and safety risks associ-
ated with large language models, including PaLM. These risks include
uses of langnage models for language generation in harmful or deceitful

PaLM should not be used for downstream applications without a priot
ment and mitigation of the safety and fairn
to the downstream application. In particular, we recommend focusing
mitigation efforts at the downstream application level rather than at the

as

ss concerns specific

s-tuning Dataset

We include finetuning results on SuperGLUE (?), tasks from
GEM (Gehrmann et al., 2021), and TyDiQA (Clark et al., 2020). We
also finetune on a code dataset and share results on the finetuned model
on code synthesis tasks.

Evaluation Results

pretrained level.
System Type
System Description | T s a standalone model.
Upstream Dependencies | None.
Downstream Dependencies | None.

Implementation Frameworks

Hardware & Software: Training

Hardware: TPU vd (Jouppi et al., 2020).

Software: THX (thx, 2021), JAX (Bradbury et al, 2018), Path-
ways (Barham et al., 2022).

For de

s, see Training I

ructure (Section 4).

Benchmark Information

e Fewshot: English Natural Language Processing (NLP) tasks (Sec-
tion 6.1), BIG-bench (Section 6.2), Reasoning (Section 6.
Code (Section 6.4), GEM (Section € Translation (Section
Multi-lingual Question Answering (Section 6.7)

 Finetuning: SuperGLUE (Section 6.1.2), GEM (Section 6.6), Ty-
DIiQA (Section 6

& Responsible Al: Co-occurrence, Winogender (Section 10.1.1), Real-
Toxicity (Section 10.2).

e Data contamination (Section 8)

Evaluation Results

Reported in Ev

ation (Section 6)

Model Usage & Limitations

Hardware & Software: Deployment

Hardware: TPU v4 (Jouppi et al., 2020).

Software: THX (t5x, 2021).

Sensitive Use

pdel should not be
ases, €., peners

PaLM is capable of open-ended text generation. T|
used for any of the unacceptable language model use
of toxic speech.

Compute Requirements

Reported in Compute Usage (Section B).

Model Characteristics

Known Limitations

PalM is desi
outside of
for dowr

ned for resea The model has not been tested in settings
arch that can affect performa and it should not be used
eam applications without further analysis on factors in the
proposed downstream application.

ce,

Medel Initialization

T'he model is trained from a random initialization.

Ethical Considerations & Risks

Reported in Ethical Considerations (Section 11}

Model Status

This

a static model trained on an offline dataset

Model Stats

The largest PaLM model has 540 billion se parameters. We have also

trained 8 billion and 62 billion parameter models.

Data Overview

Training Dataset

See Datasheet (Appendix D) for the description of datasets used to train

Pal.M.




Sampling scheme

e UL2-20B & LaMDA-137B
e temperature sampling
e T=0.5
* Top k (k = 40)
* PaLM-5408B
e T=0.7
e k=40
* GPT-3
e T=0.3
e without k



Arithmetic reasoning accuracy

UL2-20B

LaMDA-137B

PaLM-540B

GPT-3Code-
davinci-001

GPT-3Code-
davinci-002

Previous SoTA
CoT-prompting
Self-consistency
CoT-prompting
Self-consistency
CoT-prompting
Self-consistency
CoT-prompting
Self-consistency
CoT-prompting

Self-consistency

94.92
18.2

24.8 (+6.6)
52.9

63.5 (+10.6)
91.9

93.7 (+1.8)
57.2

67.8 (+10.6)
89.4

91.6 (+2.2)

60.5°

10.7

15.0 (+4.3)
51.8

75.7 (+23.9)
94.7

99.3 (+4.6)
59.5

82.7 (+23.2)
96.2

100.0 (+3.8)

75.3b

16.9

21.5 (+4.6)
49.0

58.2 (+9.2)
74.0

81.9 (+7.9)
52.7

61.9 (+9.2)
80.1

87.8 (+7.6)

37.9¢

23.6

26.9 (+3.3)
17.7

26.8 (+9.1)
35.8

48.3 (+12.5)
18.9

25.6 (+6.7)
39.8

52.0 (+12.2)

57.44

12.6

19.4 (+6.8)
38.9

53.3 (+14.4)
79.0

86.6 (+7.6)
39.8

54.5 (+14.7)
75.8

86.8 (+11.0)

35¢ /558
4.1

7.3 (+3.2)
17.1

27.7 (+10.6)
56.5

74.4 (+17.9)
14.6

23.4 (+8.8)
60.1

78.0 (+17.9)



Question

 Under what conditions is self-consistent majority voting most
effective?

* ASDiv question, GPT-3Code-davinci-002 : 100 Accuracy



GSM8K

~
W,

)

~
v O

Greedy Decode (Single-path)
+ Self Consistency (Multi-path)

a o
o

Question

Accuracy (%

Y
o wv

0 S 10 15 20 25 30 35 40
#Sampled Reasoning Chains

* In the paper, the authors show that self-consistency significantly
improves performance on math word problems like GSM8K. Why is

this type of task particularly suitable for demonstrating the benefits
of self-consistency?

e Author :In Table 9, we further show that self-consistency is quite
robust to different sets of input prompts. We manually wrote 3
different sets of chain-of-thought as prompts to the model. Across all
sets of prompts, self-consistency yields consistent gains over the
original CoT approach.

* Robust, More redundant information, more tokens, see the
Temperature sampling.

CoT (Wei et al, 2022)

Self-consistency




Arithmetic reasoning accuracy

T e csan | sustegyas e Lo

UL2-20B

LaMDA
-137B

PaLM
-540B

GPT-3
Code-davinci
-001

GPT-3
Code-davinci
-002

Previous SoTA
CoT-prompting
Self-consistency
CoT-prompting
Self-consistency
CoT-prompting
Self-consistency
CoT-prompting

Self-consistency

CoT-prompting

Self-consistency

91.2¢
51.4
55.7 (+4.3)
57.9
63.1 (+5.2)
79.0
80.7 (+1.7)
46.6

54.9 (+8.3)
79.0
81.5 (+2.5)

73.6°
53.3
54.9 (+1.6)
65.4
67.8 (+2.4)
75.3
81.6 (+6.3)
56.7

61.7 (+5.0)
73.4
79.8 (+6.4)

86.4¢
61.6
69.8 (+8.2)
75.3
79.3 (+4.0)
95.3
96.4 (+1.1)
63.1

72.1 (+9.0)
94.0
96.0 (+2.0)

75.0¢
42.9
49.5 (+6.8)
55.1
59.8 (+4.7)
85.2
88.7 (+3.5)
43.1

53.7 (+10.6)
83.6
87.5 (+3.9)

0.0

0.0 (+0.0)
8.2

8.2 (+0.0)
65.8

70.8 (+5.0)
7.8

10.0 (+2.2)
70.4
73.4 (+3.0)

50.4
50.5 (+0.1)
72.4
73.5 (+1.1)
88.2
91.2 (+3.0)
71.4

75.9 (+4.5)
99.0
99.5 (+0.5)



Question

* Another thing | am interested in is, what is the relationship between
the base model's capability and the improvement that Self-
consistency can bring? If the base model is weak or a problem is too
hard, can self-consistency actually improve the performance?

* No, although the base performance not well, self-consistency could
still have improve.



Self-Consistency Helps Chain-of-Thought

e | e e

Standard-
prompting (no-  69.1/55.8/55.8 85.8 84.8 71.3 27.1/36.8
rationale)
CoT-
prompting (Wei  68.8/58.9/60.6 81.0 79.1 74.2 28.9/39.8
et al., 2022)
Self-consistency 78.5/64.5/63.4 88.4 86.3 78.4 33.8/44.6
Cause: CoT forces a “chain of reasoning”
Reason: introduce errors or noise

Result: worse than a direct answer


https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib58

Self-consistency VS Sample-and-Rank

GPT-3 code-davinci-001
. 24 GSMBK MultiArith

1. Multiple sequences are 522 <80

sampled from the decoder 31 370

E 16 #/‘r___,.——g——————'%l mEH}

2. Ranked ac’cordlng to each 89 0 /

sequence’s log probability 0 5 1015 20 25 30 35 40
Result: As the number of samples

Accur

0 5 10 15 20 25 30 35 40

#Sampled Reasoning Paths #5ampled Reasoning Paths

ARC (Challenge)

increases, Sample-and-rank is £ 50

. > 45 —p

IndeEd better than greedy gm} #’mnwihﬂulti path)
. . H 33 - sample & Rank (Multi-path)

The improvement is much smaller < Greedy Decode (sngle pt

than SEIf—ConSiStency 0 5 10 15 20 25 30 35 40

#Sampled Reasoning Paths



Self-consistency VS Beam Search

Beam size / Self-
consistency paths

Beam search
decoding (top
beam)

AQuA

MultiArith

Self-consistency
using beam
search

Self-consistency
using sampling

Beam search
decoding (top
beam)

Self-consistency
using beam
search

Self-consistency
using sampling

23.6

19.7 £ 2.5

10.7

10.7

9.5+1.2

19.8+0.3

24.912.6

12.0

11.8£0.0

11.3+1.2

21.2 £ 0.7

25.3+1.8

11.3

11.4+£0.1

12.3+0.8

246 £0.4

26.7%+1.0

11.0

12.3+0.1

13.7+0.9

24.2 £ 0.5

26.91+0.5

10.5

10.8+0.1

14.7 £ 0.3



Self-consistency VS Beam Search

* The number of beams increases accuracy, even decreases

e Beam search tends to be deterministic
* Generated paths lack diversity

* Beam search as a sampling method
* Result better than only beam search

* Self-consistency using sampling still the best

* Diversity is key. Beam search lacks diversity
* Limits SC effectiveness

* Random sampling leads to more dispersed paths, which makes voting
more reliable.



Self-consistency VS Sample-and-Rank

CoT (Wei et al.,
2022)

Ensemble (3 sets
of prompts)

Ensemble (40
prompt 19.2 £ 0.1 60.9 + 0.2 42.7 £0.1 76.9 + 0.1 57.0+0.1
permutations)

17.1 51.8 38.9 75.3 55.1

18.6 £ 0.5 57.1+0.7 42.1+0.6 76.6 £0.1 57.0+0.2

Self-Consistency
(40 sampled 27.7 £ 0.2 75.7 £ 0.3 53.31+0.2 79.31+0.3 59.8 £ 0.2
paths)


https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib58

Self-consistency VS Sample-and-Rank

* Prompt ensemble: changing the prompt

* A little diversity is added
e Still essentially limited to the greedy decoding
e Effectis limited

 Self-consistency: GOOD! GOOD! GOOD!
A little diversity is added

* Self-ensemble > self-ensemble, change prompt, change model



Robust: Sampling Strategies and Scaling

— 75 —&— 5Self Consistency
—=— Greedy Decode

1 2 5 10 20 50100200
Model size (#param in billions)

0 5 10 15 20 25 30 35 40 ~
#Sampled Reasoning Paths

T=0.7, k=40
T=0.5, k=40
T=0.3, k=40
T=0.7, k=20
T=0.7, no top k
p=0.95

p=0.9

Greedy Decode



Robust: Imperfect Prompts & zero-shot CoT

Prompt with imperfect chain-of-thought 14.9

+ Self-consistency (40 paths) 23.4
LaMDA-1378B

Prompt with equations 5.0

+ Self-consistency (40 paths) 6.5

Zero-shot CoT (Kojima et al., 2022) 43.0
PaLM-540B

+ Self-consistency (40 paths) 69.2


https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib33

Conclusion

» Simple and effective

* Significantly improving the accuracy of arithmetic and common-sense
reasoning

* Higher computational cost: multiple reasoning paths
e 5-10 paths

* Use Self-consistency to generate high-quality supervised data styles
* Fine-tune: single-shot inference can also be more accurate

* Improve the quality of reasoning chains
* Avoid “nonsense” reasoning



Question

 How do you use your self-consistency method towards open ended
guestions?

* | also think they should have investigated the time-cost of self-
consistency vs chain of thought.



Content

3. Agency: We can go a step further and have the model critique and
improve its own work in a loop (Self-Refine).



SELF-REFINE: Iterative
Refinement with Self-Feedback

Aman Madaan et al. (2023)



The Problem

LLMs often don't produce the best output on their first try.

* Generating optimal responses for complex tasks is difficult.
* Examples: Writing engaging dialogue, optimizing code, and creative writing.

* Traditional improvement methods are expensive and complex.
* Require large supervised training datasets.

* Involve extra training phases or reinforcement learning (RL).
* Need costly human annotations or reward models.

Question: Can we improve an LLM's output without extra training or
data?



The Core Idea: Learn from Humans

Humans improve their work through iterative refinement.

1. Draft: Create an initial version (e.g., write an email, code a
function).

2. Feedback: Review the draft and identify areas for improvement
(“This sounds rude,” “This code is inefficient”).

3. Refine: Edit the draft based on the feedback.
4. Repeat: Continue the cycle until the work is satisfactory.

The main idea: Can we make an LLM follow this same process, using
itself for feedback and refinement?



Introducing SELF-REFINE

A simple, training-free approach
to improve LLM outputs.

One Model, Three Roles: The
same LLM is used as the

1. Generator: Creates the initial
output.

2. Feedback Provider: Critiques
Its own output.

3. Refiner: Improves the output
based on its own feedback.

Key Advantages:

* No supervised training data
needed.

* No reinforcement learning.
* No additional models required.

* Works “out-of-the-box” with
capable LLMs (like GPT-3.5 and
GPT-4).



How SELF-REFINE Works

L\

Feedback Refine

\@/ Model ‘M \@/

Use M to get feedback on its own output Use ‘M to refine its previous output, given its feedback



How SELF-REFINE Works

The process is a simple, iterative loop guided by few-shot prompts.

1.
2.

Generate: The LLM creates an initial output for a given input.

Feedback: The LLM is prompted to provide specific and actionable
feedback on that output.

Refine: The LLM receives the original input, its previous output, and
the new feedback, and generates an improved version.

Iterate: The Feedback - Refine loop repeats until a stopping
condition is met (e.g., max iterations, or the model says “no more
changes needed”).



The Algorithm in Action

Example: Code Optimization 3. Feedback (fbo): "This code is

1. Input: “Generate sumof1, ..., slow as it uses brute force. A

N” better approach is to use the
formula ... (n(n+1))/2."

2. Initial Generation :
[¥o) 4. Refine (y4):

def sum(n) :
res = 0
for 1 in range (n+l):
res += 1
return res

def sum faster (n):
return (n * (n+l)) // 2



Evaluation Setup

Goal: Does SELF-REFINE actually  Math Reasoning

iorgger?_\{iﬂt??e performance of strong . cantiment Revers§l

Models Used: . Acroner\ Generatlon.

+ GPT-3.5 (text-davinci-003) * Constrained Generation

* ChatGPT (gpt-3.5-turbo) Metrics:

.« GPT-4 * Task-specific automated metrics

(e.g., solve rate for math).
* Codex (for code tasks)  Human preference (A/B testing).

Diverse Tasks (7 Total): » GPT-4 as a proxy for human
* Dialogue Response Generation preference.

* Code Optimization & Readability



Key Results

SELF-REFINE consistently improves Reis Base GPT-4 | GPT-4 + SELF- | Improvement
REFINE
performance across all tasks and

Sentiment 3.8% 36.2% +32.4%
mOdels' Reversal
Average improvement is ~20% Dialogue 25.4% 74.6% +49.2%
(absolute) across all tasks. FEpeTEE

Code 27.3% 36.0% +8.7%

Optimization

Constrained 15.0% 45.0% +30.0%
Generation



Analysis: What Makes It Work?

1. Feedback Quality is Crucial

1. Specific, actionable feedback (e.g., “Avoid repeated calculations in the for
loop”) works best.

2. Generic feedback (e.g., “Improve the efficiency”) is less helpful.
3. No feedback (just iterating) performs the worst.

2. Multiple Iterations Help
1. Performance generally increases with each FEEDBACK-REFINE cycle.

2. Most gains are seen in the first 1-2 iterations, with diminishing returns after
that.



Analysis: Key Questions

Is this just better than generating multiple samples?

* Yes. A single, refined output from SELF-REFINE is consistently preferred by
humans over all outputs from generating multiple (k=4) initial samples.

* This shows the value is in the refinement process, not just more attempts.
Does it work with weaker models?

* Not as well. The approach relies on the base LLM being strong enough to
both provide useful feedback and follow refinement instructions.

* Experiments with Vicuna-13B showed it struggled to follow the
feedback/refine prompts consistently.



Limitations

* Requires a Capable Base LLM: The method’s success is dependent on
the underlying model's instruction-following and reasoning abilities.

* Closed-Source Models: The best results are demonstrated on
powerful but proprietary models like GPT-4, making reproducibility a
challenge.

* English-Only: All experiments were conducted in English.
Performance in other languages is unknown.



Conclusion & Takeaways

SELF-REFINE is a simple and powerful method to improve LLM outputs at
test-time.

* |t operationalizes the human creative process of iterative refinement for
LLMs.

* |t requires no additional training, data, or models, making it highly
accessible.

* The results show that even state-of-the-art models like GPT-4 are not at
their performance ceiling and can be improved with the right prompting
strategy.

* This opens up possibilities for more reliable and higher-quality generation
across many complex tasks.



Content

4. Meta-Analysis: All these methods fall under the umbrella of “test-

time compute.” How does spending more compute at inference
compare to simply training a bigger model? (Scaling LLM Test-Time

Compute).



Scaling LLM Test-Time Compute
Optimally can be More Effective
than Scaling Model Parameters

Charlie Snell et al. (2024)



Thinking Longer or Being Smarter

* Humans think longer on hard problems. Can LLMs do the same?

* Core Question: If an LLM has a fixed but non-trivial amount of extra
compute at inference time, how can it best use that compute to
improve its answer?



Why Does This Matter?

* Efficiency: Can we get better performance without training even
bigger models?

* Accessibility: Enable smaller, on-device models to achieve the
performance of larger, datacenter-scale models.

 Self-Improvement: A path towards agents that can improve their own
outputs without constant human supervision.



A Unified Framework: Proposer & Verifier

Self-Revision

-

Prompt

System

DN

Search with a
Process Reward
Model

_——

Proposer (LLM)
— | Generates potential
answers

Verifier (Reward model)
Select the best answer

N

Output




III

The “Compute-Optimal” Strategy

The Main Finding: The optimal way

to allocate test-time compute

depends critically on the prompt's
difficulty. ® — sesorn e

® Compute Optimal
Strategy:

* Estimate the difficulty of a prompt
(e.g., using verifier scores on initial
samples).

* Based on difficulty, choose the best 2
strategy (e.g., beam search vs. 2 » 2 Y
Best-of-N, or sequential vs. parallel G eseralion: Budget
revisions).

Compute Optimal Revisions

40

35

30

MATH Accuracy (%)



Experimental Setup

* Datasets

* high-school competition-level math problems
e 12k train and 500 test questions

* Models
e PaLM 2-S*
e LLM
e good at Math



Why Process Verifiers

Which answers are correct?
Which steps went wrong?

Without any signal:
* Best-of-N
* Random sampling

Reward Model (ORM):

* Only focus on the final answer
* Not resistant to deviations: result is right, but the process is all wrong
* Tree search/beam search needs to decide the way midway

Process Verifiers:
* Each process success probability: Like value function in RL
* Early Stopping, guide, and Score-weighted voting



Process Verifiers (PRM) Training

* First use GPT4 PRM training data, but easy to exploit
* Do a supervised PRM
* Monte Carlo rollout



Answer aggregation

1. Aggregate each individual answer’s per-step scores
e Use the last step as the full answer score
* Step-wise aggregation

2. Aggregate across answers to determine the best answer
e correctness scores of all correct answers
* |Inter-answer aggregation



earch Methods

Best-of-N Beam Search Lookahead Search
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Search Methods

* Best-of-N samples N full answers and then selects the best answer
according to the PRM final score.

 Beam search samples N candidates at each step, and selects the top
M according to the PRM to continue the search from.

* |ooka
looka
searc

nead-search extends each step in beam-search to utilize a k-step
head while assessing which steps to retain and continue the

n from. Thus, lookahead-search needs more computation.



Search Methods Performance

MATH Test Accuracy (%)
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Comparing PRM Search Methods

== Best-of-N Weighted
=@= Majority

a@= Beam; M := sqrt(N)
a@» Beam; M:=4
«=@= 1 Step Lookahead; M := sqrt(N)
=@= 3 Step Lookahead; M := sqrt(N)
«({»= 3 Step Lookahead; M := 4
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Search Methods Performance

* Low generation budgets
 Beam search performs best

* Budgets improve
 Below the best-of-N baseline

 Easier problems (bins 1 and 2)
* Best-of-N
* Beam search over-optimization

 Medium difficulty problems (bins 3 and 4)

e Beam search better



Comparing search algorithms

* Maximum budget 256
e Best-of-N
e Beam search

 Beam width set: VN; N is the generation budget
* Fixed beam width of 4

* Lookahead steps
e k=3, both settings 1) and 2)
* k=1, beam-search setting 1).



Comparing Compute-optimal Test-time

* Smaller budgets

Compute Optimal Search
* Beam search >> Best-of-N

\

e Larger budgets
e Beam search >> Best-of-N

W
o

* Lookahead search
* The worst overall performance

N
o

a@= Majority

=@= ORM Best-of-N Weighted

== PRM Best-of-N Weighted

=@= PRM Compute Optimal Oracle
PRM Compute Optimal Predicted

MATH Test Accuracy (%)
N
[9)]

* The best choice of search
strategy can vary drastically as a
function of this difficulty
statistic.

—
(&)}

-
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Generation Budget



Refining the Proposal Distribution

* Core Idea: Can we improve a model’s answer by letting it think
sequentially?

* Traditional Method (Parallel): “Best-of-N”"— Generate N independent
answers and pick the best one. This is like a broad, shallow search.

* This Paper's Method (Sequential): “Revisions”— Generate an answetr,
then generate a revision of that answer, and so on.

* Analogy: Instead of asking 16 different people for an answer
(parallel), you ask one person to spend 16 minutes refining their
single best answer (sequential).



The “Revision Model”: How It Works

Challenge: Standard LLMs are not good at self-correction on complex
reasoning tasks.

Solution: Finetuning a Specialist Model

* Data Generation: The authors created a special dataset by pairing a correct
answer with a sequence of up to four related but incorrect answers.

* Finetuning: They trained a PaLM 2-S* model on this data. The goal was to

teach it: “Given these previous incorrect attempts, produce the correct
answer.”

* Inference: At test time, the model can generate a chain of revisions, with
each new attempt informed by the previous one. As shown in the paper,
accuracy gradually improves with each revision step.



Key Finding: The Sequential vs. Parallel
Tradeoff

The Main Question: What's the best way to spend a fixed computing
budget?

* Purely Parallel? (e.g., 16 samples)

e Purely Sequential? (e.g., 1 chain of 16 revisions)

* A mix of both? (e.g., 4 parallel chains of 4 revisions each)
The Answer: It depends on the question's difficulty!

e Easy Questions: Benefit most from purely sequential revisions. The model’s

first guess is likely close, so refining it is the most efficient path to the
correct answer.

* Hard Questions: Benefit most from a hybrid approach. The model needs to
explore different high-level strategies (paraIIeIS)and also refine the
promising ones (sequential).



Key Finding: The Sequential vs. Parallel
Tradeoff

MATH Test Accuracy (%)
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Takeaway: “Compute-Optimal Revisions”

The Strategy:
1. First, estimate the difficulty of a given question.

2. Then, allocate the compute budget to the optimal sequential/parallel
ratio for that difficulty level.

The Result:

* This adaptive, “compute-optimal” strategy significantly outperforms the
standard parallel best-of-N baseline.

* |t can achieve the same or better accuracy while using up to 4x less test-
time compute.

Conclusion: How you use your inference compute matters. Adapting the
strategy to the problem's difficulty yields massive efficiency gains.



Pretraining vs. Test-Time Compute

The Ultimate Question: If you have more FLOPs (total computing
power), where should you spend them?

* Option A — Scale Pretraining: Use the FLOPs to train a bigger, more

powerful model from the start (e.g., moving from a 7B to a 100B
parameter model).

* Option B — Scale Test-Time Compute: Use a smaller model, but give it
more time and computation at inference to search, revise, and refine
its answers using the optimal strategies from the previous sections.



The “Exchange Rate”: When is it a Fair Trade?

The paper establishes a FLOPs-matched comparison.

It depends heavily on the ratio of inference tokens to pretraining
tokens (R).

* R << 1 (Low Inference Load): A research setting, where you generate
a few high-quality samples to improve the model.

* R >> 1 (High Inference Load): A production setting (like a chatbot),
where the model serves billions of requests.



Key Finding: There is No Single Best Answer

Comparing Test-time and Pretraining Compute
Revisions PRM Search
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Key Finding: There is No Single Best Answer

The analysis shows a clear tradeoft:
Test-Time Compute is Better When:

* The questions are easy or medium difficulty. A smaller model already
has the needed knowledge; it just needs time to "think."

* The inference load is low (R << 1).
Scaling the Pretrained Model is Better When:

* The questions are very challenging. The smaller model may lack the
core knowledge to solve the problem, no matter how much time it
gets.

* The inference load is high (R >> 1).



Conclusion & Overall Takeaways

1. Thinking Sequentially Matters: Iteratively revising answers is a
powerful way to use test-time compute, often outperforming

parallel sampling.

2. Adaptivity is Key: The best strategy for using test-time compute
depends on the problem’s difficulty. A “compute-optimal” approach
can be up to 4x more efficient.

3. It’s a Tradeoff: Test-time compute and pretraining compute are not
1-to-1 exchangeable.

4. Future Implication: This suggests a future where we might train
smaller, more efficient models and rely on intelligent, adaptive test-
time computation to achieve top-tier performance.



Q&A

Thank you for listening
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