
The Evolution of In-Context
Reasoning: From Chain-of-Thought
to Iterative Self-Improvement
Yuxuan Long, Longhan Lin & Taumas Yang

Content

1. Discovery: We can unlock reasoning by prompting models to “show
their work” (Chain-of-Thought).

2. Robustness: We can make this reasoning more reliable by exploring
multiple reasoning paths and finding a consensus (Self-
Consistency).

3. Agency: We can go a step further and have the model critique and
improve its own work in a loop (Self-Refine).

4. Meta-Analysis: All these methods fall under the umbrella of “test-
time compute.” How does spending more compute at inference
compare to simply training a bigger model? (Scaling LLM Test-Time
Compute).

Content

1. Discovery: We can unlock reasoning by prompting models to “show
their work” (Chain-of-Thought).

2. Robustness: We can make this reasoning more reliable by exploring
multiple reasoning paths and finding a consensus (Self-
Consistency).

3. Agency: We can go a step further and have the model critique and
improve its own work in a loop (Self-Refine).

4. Meta-Analysis: All these methods fall under the umbrella of “test-
time compute.” How does spending more compute at inference
compare to simply training a bigger model? (Scaling LLM Test-Time
Compute).

Chain-of-Thought Prompting
Elicits Reasoning in Large
Language Models
Jason Wei et al. (2022)

The Challenge: Complex Reasoning in a Single
Step
Why did it fail?

• The model likely latched onto the
numbers (23, 20, 6) and performed a
plausible but incorrect operation (e.g.,
23 - 20 = 3; 23 + (6-something) ≈ 27?
Or just 20+6+initial confusion ≈ 27).

• It tried to solve a multi-step problem
(subtract, then add) in a single,
intuitive leap.

• This approach is not robust and has a
flat scaling curve–making the model
bigger doesn’t reliably fix this kind of
error.

Prior Solutions and Limitations

• Method 1: Finetuning with Rationales
• Train a model on a large dataset of problems and human-written

explanations.

• Limitation: Requires creating massive, expensive, and high-quality datasets.

• Method 2: Standard Few-Shot Prompting
• Give a few questions → Answer examples in the prompt.

• Limitation: As we saw, this doesn’t work well for reasoning tasks.

The Solution: Chain-of-Thought Prompting

• It’s a few-shot prompting
technique where the exemplars
given to the model don’t just
show the final answer but also
include the intermediate
reasoning steps used to get
there.

• Show the process.

Why Might CoT Work?

• Decomposition: Allows the model to break a multi-step problem into
smaller, manageable steps.

• Allocation of Computation: The model can spend more “thought”
(i.e., generate more tokens) on more complex problems.

• Interpretability: Provides a window into the model’s “thought
process,” allowing for debugging.

• Generality: Applicable to any task that can be solved via language.

Experimental Setup

• Arithmetic: GSM8K, SVAMP, etc. (Math problems)

• Commonsense: StrategyQA, CSQA (Everyday logic)

• Symbolic: Last Letter Concatenation, Coin Flip (Abstract manipulation)

• Models: GPT-3, LaMDA, PaLM, UL2 20B, Codex

• Method: Few-shot prompting (e.g., 8 exemplars)

Key Result #1: Gains in Arithmetic Reasoning

• The huge performance gap
between standard prompting
(black) and CoT prompting (blue)
for large models.

• For PaLM 540B on GSM8K,
performance jumps from 17.9%
to 56.9%.

• A CoT-prompted model can
outperform a specially finetuned
model.

Key Result #2: Reasoning is an Emergent
Ability of Scale
• For smaller models (under ~100B parameters),

CoT provides no benefit.

Ablation Studies

• Equation only: Just providing the
math equation isn't enough. The
natural language steps are key.

• Variable compute only (...): It‘s
not just about letting the model
“think longer.” The content of
the thoughts matters.

• Reasoning after answer: The
reasoning must happen before
the answer to guide the model.

• Question: Is CoT sensitive to the
prompt?

• Different Annotators: Works even
when different people write the
reasoning steps.

• Different Exemplars: Works with
different examples, even from
other datasets.

• Different Order: Relatively robust
to the order of examples in the
prompt.

Robustness Analysis

Generalizing to Other Tasks

Generalizing to Other Tasks

• Increased commonsense reasoning abilities

Generalizing to Other Tasks

• Increased symbolic reasoning
abilities

Why will smaller models not work?

• Generation of Illogical Chains of Thought

• Failure on Simple Symbolic Tasks

• Inherently Weaker Arithmetic Abilities

• Inability to Produce Parsable Answers

• “In summary, the success of chain-of-thought reasoning as a result of
model scale is a complicated phenomenon that likely involves a
variety of emergent abilities (semantic understanding, symbol
mapping, staying on topic, arithmetic ability, faithfulness, etc).”

• Fallible Reasoning: The generated chain of thought is not guaranteed
to be factually or logically correct.

• Scale Requirement: This powerful technique is currently only
accessible for massive, computationally expensive models.

• New Lower Bound: Standard prompting should be seen as a lower
bound on LLM capabilities. How we interact with models can unlock
latent abilities.

• Zero-shot CoT (e.g., just adding “Let’s think step by step”).

• Automating CoT generation.

• Inducing reasoning in smaller, more efficient models.

Limitations and Future Work

Conclusion

1. Chain-of-Thought prompting is a simple method to unlock complex
reasoning in LLMs.

2. It works by showing the model how to reason step-by-step in few-
shot examples.

3. This ability is an emergent property of model scale.

4. CoT establishes new state-of-the-art results on reasoning
benchmarks, even outperforming finetuned models.

Beyond Conclusion

• Chain-of-Thought doesn’t prove that LLMs “reason” in the conscious,
abstract, human sense.

• It demonstrates that they can move beyond simple input-output
pattern matching to imitate a reasoning process.

• This procedural imitation is so effective that it becomes a powerful
tool for solving complex problems.

• Constraining the solution space increases the chance of a correct
answer.

Content

1. Discovery: We can unlock reasoning by prompting models to “show
their work” (Chain-of-Thought).

2. Robustness: We can make this reasoning more reliable by exploring
multiple reasoning paths and finding a consensus (Self-
Consistency).

3. Agency: We can go a step further and have the model critique and
improve its own work in a loop (Self-Refine).

4. Meta-Analysis: All these methods fall under the umbrella of “test-
time compute.” How does spending more compute at inference
compare to simply training a bigger model? (Scaling LLM Test-Time
Compute).

Self-Consistency Improves Chain
of Thought Reasoning in
Language Models
Xuezhi Wang et al. (2023)

Self-consistency method

Question

• They explore multiple reasoning paths to select the most common
answer and improve QA accuracy. They mention that this results in a
large computational cost as most of the benefit comes from 5-10
replicates. Could a more restrictive beam search approach be used
here to improve compute cost?

• NO, the way to generate is multiple answers, no matter how these
answer are similar, more distinct, more accurate.

• How can it be ensured that the different reasoning paths identified by
self-consistency represent diverse methodologies, as opposed to
various restatements of a uniform reasoning method?

• This is Generative large models, Logical large model, we don’t know.

The self-consistency method three steps

• Prompt a language model using chain-of-thought (CoT) prompting

• Replace the “greedy decode” in CoT prompting by sampling from the
language model’s decoder to generate a diverse set of reasoning
paths

• Marginalize out the reasoning paths and aggregate by choosing the
most consistent answer in the final answer set

Question

• Could only reasoning paths sufficiently dissimilar from the other
paths be included in the final aggregation step?

• No, all the result will be sum, no matter how they same both result or
token set.

Different answer aggregation strategies

GSM8K MultiArith AQuA SVAMP CSQA ARC-c

Greedy decode 56.5 94.7 35.8 79.0 79.0 85.2

Weighted avg
(unnormalized)

56.3 ± 0.0 90.5 ± 0.0 35.8 ± 0.0 73.0 ± 0.0 74.8 ± 0.0 82.3 ± 0.0

Weighted avg
(normalized)

22.1 ± 0.0 59.7 ± 0.0 15.7 ± 0.0 40.5 ± 0.0 52.1 ± 0.0 51.7 ± 0.0

Weighted sum
(unnormalized)

59.9 ± 0.0 92.2 ± 0.0 38.2 ± 0.0 76.2 ± 0.0 76.2 ± 0.0 83.5 ± 0.0

Weighted sum
(normalized)

74.1 ± 0.0 99.3 ± 0.0 48.0 ± 0.0 86.8 ± 0.0 80.7 ± 0.0 88.7 ± 0.0

Unweighted
sum (majority

vote)
74.4 ± 0.1 99.3 ± 0.0 48.3 ± 0.5 86.6 ± 0.1 80.7 ± 0.1 88.7 ± 0.1

Question

• Self-consistency improves LLMs' reasoning accuracy be sampling
multiple reasoning paths and aggerating the answers. And in the
paper, they show that this strategy can improve the performance on
multiple benchmarks. The first thing that I have not fully captured is,
what does "weighted average" in Section 2 mean?

• See, next. weights come from the conditional probability of each
generated output

Normalized weighted processing

• 𝒓𝑖 An additional latent variable

• 𝒂𝑖 The generated answers

• log 𝑝() The log probability

• 𝐾 Total number of tokens

• 𝑘 k-th token

𝑝 𝒓𝑖 , 𝒂𝑖 prompt, question = exp
1

𝐾
෍

𝑘=1

𝐾

log𝑃 𝑡𝑘 prompt, question, 𝑡1, … , 𝑡𝑘−1

Question:

• For self-consistency, why the conditional probability of the response
is a suitable way to evaluate?

• response (i.e. series of tokens) is actually a conditional probability
chain （How to generate a large language model）

• quality of the response = the product of the conditional probabilities
of each token, larger, more "trusted“

• Underflow, solve Log Addition; long sentence log smaller, solve
Normalization; last solve log, use exp.

Tasks and datasets

• Arithmetic reasoning:
• Math Word Problem Repository(AddSub, MultiArith, ASDiv)

• AQUA-RAT (GSM8K, SVAMP)

• Commonsense reasoning:
• CommonsenseQA

• StrategyQA

• AI2 Reasoning Challenge (ARC)

• Symbolic Reasoning:
• Last letter concatenation

• Coinflip

Language models and prompts

• UL2
• 20-billion parameters

• ≥ GPT3 on zero-shot

• compute-friendly

Language models and prompts

• GPT-3
• 175-billion parameters

• two public engines
• code-davinci-001

• code-davinci-002

Language models and prompts

• LaMDA-137B
• 137-billion parameters

• dense left-to-right

• decoder-only

• pre-trained web documents

Language models and prompts

• PaLM-540B
• 540-billion parameters

• dense left-to-right

• decoder-only

• pre-trained 780 billion tokens

Sampling scheme

• UL2-20B & LaMDA-137B
• temperature sampling

• T = 0.5

• Top k (k = 40)

• PaLM-540B
• T = 0.7

• k = 40

• GPT-3
• T = 0.3

• without k

Arithmetic reasoning accuracy

Method AddSub MultiArith ASDiv AQuA SVAMP GSM8K

Previous SoTA 94.9a 60.5a 75.3b 37.9c 57.4d 35e / 55g

UL2-20B
CoT-prompting 18.2 10.7 16.9 23.6 12.6 4.1

Self-consistency 24.8 (+6.6) 15.0 (+4.3) 21.5 (+4.6) 26.9 (+3.3) 19.4 (+6.8) 7.3 (+3.2)

LaMDA-137B
CoT-prompting 52.9 51.8 49.0 17.7 38.9 17.1

Self-consistency 63.5 (+10.6) 75.7 (+23.9) 58.2 (+9.2) 26.8 (+9.1) 53.3 (+14.4) 27.7 (+10.6)

PaLM-540B
CoT-prompting 91.9 94.7 74.0 35.8 79.0 56.5

Self-consistency 93.7 (+1.8) 99.3 (+4.6) 81.9 (+7.9) 48.3 (+12.5) 86.6 (+7.6) 74.4 (+17.9)

GPT-3Code-
davinci-001

CoT-prompting 57.2 59.5 52.7 18.9 39.8 14.6

Self-consistency 67.8 (+10.6) 82.7 (+23.2) 61.9 (+9.2) 25.6 (+6.7) 54.5 (+14.7) 23.4 (+8.8)

GPT-3Code-
davinci-002

CoT-prompting 89.4 96.2 80.1 39.8 75.8 60.1

Self-consistency 91.6 (+2.2) 100.0 (+3.8) 87.8 (+7.6) 52.0 (+12.2) 86.8 (+11.0) 78.0 (+17.9)

Question

• Under what conditions is self-consistent majority voting most
effective?

• ASDiv question, GPT-3Code-davinci-002 : 100 Accuracy

Question

• In the paper, the authors show that self-consistency significantly
improves performance on math word problems like GSM8K. Why is
this type of task particularly suitable for demonstrating the benefits
of self-consistency?

• Author :In Table 9, we further show that self-consistency is quite
robust to different sets of input prompts. We manually wrote 3
different sets of chain-of-thought as prompts to the model. Across all
sets of prompts, self-consistency yields consistent gains over the
original CoT approach.

• Robust, More redundant information, more tokens, see the
Temperature sampling.

Arithmetic reasoning accuracy

Method CSQA StrategyQA ARC-e ARC-c Letter (4) Coinflip (4)

Previous SoTA 91.2𝑎 73.6𝑏 86.4𝑐 75.0𝑐 N/A N/A

UL2-20B CoT-prompting 51.4 53.3 61.6 42.9 0.0 50.4

Self-consistency 55.7 (+4.3) 54.9 (+1.6) 69.8 (+8.2) 49.5 (+6.8) 0.0 (+0.0) 50.5 (+0.1)

LaMDA
-137B

CoT-prompting 57.9 65.4 75.3 55.1 8.2 72.4

Self-consistency 63.1 (+5.2) 67.8 (+2.4) 79.3 (+4.0) 59.8 (+4.7) 8.2 (+0.0) 73.5 (+1.1)

PaLM
-540B

CoT-prompting 79.0 75.3 95.3 85.2 65.8 88.2

Self-consistency 80.7 (+1.7) 81.6 (+6.3) 96.4 (+1.1) 88.7 (+3.5) 70.8 (+5.0) 91.2 (+3.0)

GPT-3
Code-davinci

-001

CoT-prompting 46.6 56.7 63.1 43.1 7.8 71.4

Self-consistency 54.9 (+8.3) 61.7 (+5.0) 72.1 (+9.0) 53.7 (+10.6) 10.0 (+2.2) 75.9 (+4.5)

GPT-3
Code-davinci

-002

CoT-prompting 79.0 73.4 94.0 83.6 70.4 99.0

Self-consistency 81.5 (+2.5) 79.8 (+6.4) 96.0 (+2.0) 87.5 (+3.9) 73.4 (+3.0) 99.5 (+0.5)

Question

• Another thing I am interested in is, what is the relationship between
the base model's capability and the improvement that Self-
consistency can bring? If the base model is weak or a problem is too
hard, can self-consistency actually improve the performance?

• No, although the base performance not well, self-consistency could
still have improve.

Self-Consistency Helps Chain-of-Thought

ANLI R1 / R2 / R3 e-SNLI RTE BoolQ
HotpotQA
(EM/F1)

Standard-
prompting (no-

rationale)
69.1 / 55.8 / 55.8 85.8 84.8 71.3 27.1 / 36.8

CoT-
prompting (Wei

et al., 2022)
68.8 / 58.9 / 60.6 81.0 79.1 74.2 28.9 / 39.8

Self-consistency 78.5 / 64.5 / 63.4 88.4 86.3 78.4 33.8 / 44.6

Cause: CoT forces a “chain of reasoning”
Reason: introduce errors or noise
Result: worse than a direct answer

https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib58

Self-consistency VS Sample-and-Rank

GPT-3 code-davinci-001

1. Multiple sequences are
sampled from the decoder

2. Ranked according to each
sequence’s log probability

Result: As the number of samples
increases, Sample-and-rank is
indeed better than greedy

The improvement is much smaller
than Self-consistency

Self-consistency VS Beam Search

Beam size / Self-
consistency paths

1 5 10 20 40

AQuA

Beam search
decoding (top
beam)

23.6 19.3 16.1 15.0 10.2

Self-consistency
using beam
search

23.6 19.8 ± 0.3 21.2 ± 0.7 24.6 ± 0.4 24.2 ± 0.5

Self-consistency
using sampling

19.7 ± 2.5 24.9 ± 2.6 25.3 ± 1.8 26.7 ± 1.0 26.9 ± 0.5

MultiArith

Beam search
decoding (top
beam)

10.7 12.0 11.3 11.0 10.5

Self-consistency
using beam
search

10.7 11.8 ± 0.0 11.4 ± 0.1 12.3 ± 0.1 10.8 ± 0.1

Self-consistency
using sampling

9.5 ± 1.2 11.3 ± 1.2 12.3 ± 0.8 13.7 ± 0.9 14.7 ± 0.3

Self-consistency VS Beam Search

• The number of beams increases accuracy, even decreases
• Beam search tends to be deterministic
• Generated paths lack diversity

• Beam search as a sampling method
• Result better than only beam search

• Self-consistency using sampling still the best

• Diversity is key. Beam search lacks diversity
• Limits SC effectiveness

• Random sampling leads to more dispersed paths, which makes voting
more reliable.

Self-consistency VS Sample-and-Rank

GSM8K MultiArith SVAMP ARC-e ARC-c

CoT (Wei et al.,
2022)

17.1 51.8 38.9 75.3 55.1

Ensemble (3 sets
of prompts)

18.6 ± 0.5 57.1 ± 0.7 42.1 ± 0.6 76.6 ± 0.1 57.0 ± 0.2

Ensemble (40
prompt
permutations)

19.2 ± 0.1 60.9 ± 0.2 42.7 ± 0.1 76.9 ± 0.1 57.0 ± 0.1

Self-Consistency
(40 sampled
paths)

27.7 ± 0.2 75.7 ± 0.3 53.3 ± 0.2 79.3 ± 0.3 59.8 ± 0.2

https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib58

Self-consistency VS Sample-and-Rank

• Prompt ensemble: changing the prompt
• A little diversity is added

• Still essentially limited to the greedy decoding

• Effect is limited

• Self-consistency: GOOD! GOOD! GOOD!
• A little diversity is added

• Self-ensemble ≥ self-ensemble, change prompt, change model

Robust: Sampling Strategies and Scaling

Robust: Imperfect Prompts & zero-shot CoT

Prompt with correct chain-of-thought 17.1

LaMDA-137B

Prompt with imperfect chain-of-thought 14.9

+ Self-consistency (40 paths) 23.4

Prompt with equations 5.0

+ Self-consistency (40 paths) 6.5

PaLM-540B
Zero-shot CoT (Kojima et al., 2022) 43.0

+ Self-consistency (40 paths) 69.2

https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib33

Conclusion

• Simple and effective
• Significantly improving the accuracy of arithmetic and common-sense

reasoning

• Higher computational cost: multiple reasoning paths
• 5–10 paths

• Use Self-consistency to generate high-quality supervised data styles
• Fine-tune: single-shot inference can also be more accurate

• Improve the quality of reasoning chains
• Avoid “nonsense” reasoning

Question

• How do you use your self-consistency method towards open ended
questions?

• I also think they should have investigated the time-cost of self-
consistency vs chain of thought.

Content

1. Discovery: We can unlock reasoning by prompting models to “show
their work” (Chain-of-Thought).

2. Robustness: We can make this reasoning more reliable by exploring
multiple reasoning paths and finding a consensus (Self-
Consistency).

3. Agency: We can go a step further and have the model critique and
improve its own work in a loop (Self-Refine).

4. Meta-Analysis: All these methods fall under the umbrella of “test-
time compute.” How does spending more compute at inference
compare to simply training a bigger model? (Scaling LLM Test-Time
Compute).

SELF-REFINE: Iterative
Refinement with Self-Feedback
Aman Madaan et al. (2023)

The Problem

LLMs often don't produce the best output on their first try.

• Generating optimal responses for complex tasks is difficult.
• Examples: Writing engaging dialogue, optimizing code, and creative writing.

• Traditional improvement methods are expensive and complex.
• Require large supervised training datasets.

• Involve extra training phases or reinforcement learning (RL).

• Need costly human annotations or reward models.

Question: Can we improve an LLM's output without extra training or
data?

The Core Idea: Learn from Humans

Humans improve their work through iterative refinement.

1. Draft: Create an initial version (e.g., write an email, code a
function).

2. Feedback: Review the draft and identify areas for improvement
(“This sounds rude,” “This code is inefficient”).

3. Refine: Edit the draft based on the feedback.

4. Repeat: Continue the cycle until the work is satisfactory.

The main idea: Can we make an LLM follow this same process, using
itself for feedback and refinement?

Introducing SELF-REFINE

A simple, training-free approach
to improve LLM outputs.

One Model, Three Roles: The
same LLM is used as the

1. Generator: Creates the initial
output.

2. Feedback Provider: Critiques
its own output.

3. Refiner: Improves the output
based on its own feedback.

Key Advantages:

• No supervised training data
needed.

• No reinforcement learning.

• No additional models required.

• Works “out-of-the-box” with
capable LLMs (like GPT-3.5 and
GPT-4).

How SELF-REFINE Works

How SELF-REFINE Works

The process is a simple, iterative loop guided by few-shot prompts.

1. Generate: The LLM creates an initial output for a given input.

2. Feedback: The LLM is prompted to provide specific and actionable
feedback on that output.

3. Refine: The LLM receives the original input, its previous output, and
the new feedback, and generates an improved version.

4. Iterate: The Feedback → Refine loop repeats until a stopping
condition is met (e.g., max iterations, or the model says “no more
changes needed”).

The Algorithm in Action

Example: Code Optimization

1. Input: “Generate sum of 1, ...,
N”

2. Initial Generation (y₀):

def sum(n):

 res = 0

 for i in range(n+1):

 res += i

 return res

3. Feedback (fb₀): "This code is
slow as it uses brute force. A
better approach is to use the
formula ... (n(n+1))/2."

4. Refine (y₁):

def sum_faster(n):

 return (n * (n+1)) // 2

Evaluation Setup

Goal: Does SELF-REFINE actually
improve the performance of strong
base LLMs?
Models Used:
• GPT-3.5 (text-davinci-003)
• ChatGPT (gpt-3.5-turbo)
• GPT-4
• Codex (for code tasks)
Diverse Tasks (7 Total):
• Dialogue Response Generation
• Code Optimization & Readability

• Math Reasoning
• Sentiment Reversal
• Acronym Generation
• Constrained Generation
Metrics:
• Task-specific automated metrics

(e.g., solve rate for math).
• Human preference (A/B testing).
• GPT-4 as a proxy for human

preference.

Key Results

SELF-REFINE consistently improves
performance across all tasks and
models.

Average improvement is ~20%
(absolute) across all tasks.

Task Base GPT-4 GPT-4 + SELF-
REFINE

Improvement

Sentiment
Reversal

3.8% 36.2% +32.4%

Dialogue
Response

25.4% 74.6% +49.2%

Code
Optimization

27.3% 36.0% +8.7%

Constrained
Generation

15.0% 45.0% +30.0%

Analysis: What Makes It Work?

1. Feedback Quality is Crucial
1. Specific, actionable feedback (e.g., “Avoid repeated calculations in the for

loop”) works best.

2. Generic feedback (e.g., “Improve the efficiency”) is less helpful.

3. No feedback (just iterating) performs the worst.

2. Multiple Iterations Help
1. Performance generally increases with each FEEDBACK-REFINE cycle.

2. Most gains are seen in the first 1-2 iterations, with diminishing returns after
that.

Analysis: Key Questions

Is this just better than generating multiple samples?

• Yes. A single, refined output from SELF-REFINE is consistently preferred by
humans over all outputs from generating multiple (k=4) initial samples.

• This shows the value is in the refinement process, not just more attempts.

Does it work with weaker models?

• Not as well. The approach relies on the base LLM being strong enough to
both provide useful feedback and follow refinement instructions.

• Experiments with Vicuna-13B showed it struggled to follow the
feedback/refine prompts consistently.

Limitations

• Requires a Capable Base LLM: The method’s success is dependent on
the underlying model's instruction-following and reasoning abilities.

• Closed-Source Models: The best results are demonstrated on
powerful but proprietary models like GPT-4, making reproducibility a
challenge.

• English-Only: All experiments were conducted in English.
Performance in other languages is unknown.

Conclusion & Takeaways

SELF-REFINE is a simple and powerful method to improve LLM outputs at
test-time.

• It operationalizes the human creative process of iterative refinement for
LLMs.

• It requires no additional training, data, or models, making it highly
accessible.

• The results show that even state-of-the-art models like GPT-4 are not at
their performance ceiling and can be improved with the right prompting
strategy.

• This opens up possibilities for more reliable and higher-quality generation
across many complex tasks.

Content

1. Discovery: We can unlock reasoning by prompting models to “show
their work” (Chain-of-Thought).

2. Robustness: We can make this reasoning more reliable by exploring
multiple reasoning paths and finding a consensus (Self-
Consistency).

3. Agency: We can go a step further and have the model critique and
improve its own work in a loop (Self-Refine).

4. Meta-Analysis: All these methods fall under the umbrella of “test-
time compute.” How does spending more compute at inference
compare to simply training a bigger model? (Scaling LLM Test-Time
Compute).

Scaling LLM Test-Time Compute
Optimally can be More Effective
than Scaling Model Parameters
Charlie Snell et al. (2024)

Thinking Longer or Being Smarter

• Humans think longer on hard problems. Can LLMs do the same?

• Core Question: If an LLM has a fixed but non-trivial amount of extra
compute at inference time, how can it best use that compute to
improve its answer?

• Efficiency: Can we get better performance without training even
bigger models?

• Accessibility: Enable smaller, on-device models to achieve the
performance of larger, datacenter-scale models.

• Self-Improvement: A path towards agents that can improve their own
outputs without constant human supervision.

Why Does This Matter?

A Unified Framework: Proposer & Verifier

Prompt

System

Proposer (LLM)
Generates potential
answers

Verifier (Reward model)
Select the best answer

Self-Revision

Output

Search with a
Process Reward
Model

The “Compute-Optimal” Strategy

The Main Finding: The optimal way
to allocate test-time compute
depends critically on the prompt's
difficulty.

Strategy:

• Estimate the difficulty of a prompt
(e.g., using verifier scores on initial
samples).

• Based on difficulty, choose the best
strategy (e.g., beam search vs.
Best-of-N, or sequential vs. parallel
revisions).

Experimental Setup

• Datasets
• high-school competition-level math problems

• 12k train and 500 test questions

• Models
• PaLM 2-S*

• LLM

• good at Math

Why Process Verifiers

• Which answers are correct?

• Which steps went wrong?

• Without any signal:
• Best-of-N
• Random sampling

• Reward Model (ORM):
• Only focus on the final answer
• Not resistant to deviations: result is right, but the process is all wrong
• Tree search/beam search needs to decide the way midway

• Process Verifiers:
• Each process success probability: Like value function in RL
• Early Stopping, guide, and Score-weighted voting

Process Verifiers (PRM) Training

• First use GPT4 PRM training data, but easy to exploit

• Do a supervised PRM

• Monte Carlo rollout

Answer aggregation

1. Aggregate each individual answer’s per-step scores
• Use the last step as the full answer score

• Step-wise aggregation

2. Aggregate across answers to determine the best answer
• correctness scores of all correct answers

• Inter-answer aggregation

Search Methods

Search Methods

• Best-of-N samples N full answers and then selects the best answer
according to the PRM final score.

• Beam search samples N candidates at each step, and selects the top
M according to the PRM to continue the search from.

• lookahead-search extends each step in beam-search to utilize a k-step
lookahead while assessing which steps to retain and continue the
search from. Thus, lookahead-search needs more computation.

Search Methods Performance

Search Methods Performance

• Low generation budgets
• Beam search performs best

• Budgets improve
• Below the best-of-N baseline

• Easier problems (bins 1 and 2)
• Best-of-N

• Beam search over-optimization

• Medium difficulty problems (bins 3 and 4)
• Beam search better

Comparing search algorithms

• Maximum budget 256

• Best-of-N

• Beam search
• Beam width set: 𝑁; N is the generation budget

• Fixed beam width of 4

• Lookahead steps
• k = 3, both settings 1) and 2)

• k = 1, beam-search setting 1).

Comparing Compute-optimal Test-time

• Smaller budgets
• Beam search >> Best-of-N

• Larger budgets
• Beam search >> Best-of-N

• Lookahead search
• The worst overall performance

• The best choice of search
strategy can vary drastically as a
function of this difficulty
statistic.

Refining the Proposal Distribution

• Core Idea: Can we improve a model’s answer by letting it think
sequentially?

• Traditional Method (Parallel): “Best-of-N”– Generate N independent
answers and pick the best one. This is like a broad, shallow search.

• This Paper's Method (Sequential): “Revisions”– Generate an answer,
then generate a revision of that answer, and so on.

• Analogy: Instead of asking 16 different people for an answer
(parallel), you ask one person to spend 16 minutes refining their
single best answer (sequential).

Challenge: Standard LLMs are not good at self-correction on complex
reasoning tasks.

Solution: Finetuning a Specialist Model

• Data Generation: The authors created a special dataset by pairing a correct
answer with a sequence of up to four related but incorrect answers.

• Finetuning: They trained a PaLM 2-S* model on this data. The goal was to
teach it: “Given these previous incorrect attempts, produce the correct
answer.”

• Inference: At test time, the model can generate a chain of revisions, with
each new attempt informed by the previous one. As shown in the paper,
accuracy gradually improves with each revision step.

The “Revision Model”: How It Works

Key Finding: The Sequential vs. Parallel
Tradeoff
The Main Question: What's the best way to spend a fixed computing
budget?
• Purely Parallel? (e.g., 16 samples)
• Purely Sequential? (e.g., 1 chain of 16 revisions)
• A mix of both? (e.g., 4 parallel chains of 4 revisions each)
The Answer: It depends on the question's difficulty!
• Easy Questions: Benefit most from purely sequential revisions. The model’s

first guess is likely close, so refining it is the most efficient path to the
correct answer.

• Hard Questions: Benefit most from a hybrid approach. The model needs to
explore different high-level strategies (parallel) and also refine the
promising ones (sequential).

Key Finding: The Sequential vs. Parallel
Tradeoff

Takeaway: “Compute-Optimal Revisions”

The Strategy:

1. First, estimate the difficulty of a given question.

2. Then, allocate the compute budget to the optimal sequential/parallel
ratio for that difficulty level.

The Result:

• This adaptive, “compute-optimal” strategy significantly outperforms the
standard parallel best-of-N baseline.

• It can achieve the same or better accuracy while using up to 4x less test-
time compute.

Conclusion: How you use your inference compute matters. Adapting the
strategy to the problem's difficulty yields massive efficiency gains.

The Ultimate Question: If you have more FLOPs (total computing
power), where should you spend them?

• Option A – Scale Pretraining: Use the FLOPs to train a bigger, more
powerful model from the start (e.g., moving from a 7B to a 100B
parameter model).

• Option B – Scale Test-Time Compute: Use a smaller model, but give it
more time and computation at inference to search, revise, and refine
its answers using the optimal strategies from the previous sections.

Pretraining vs. Test-Time Compute

The “Exchange Rate”: When is it a Fair Trade?

The paper establishes a FLOPs-matched comparison.

It depends heavily on the ratio of inference tokens to pretraining
tokens (R).

• R << 1 (Low Inference Load): A research setting, where you generate
a few high-quality samples to improve the model.

• R >> 1 (High Inference Load): A production setting (like a chatbot),
where the model serves billions of requests.

Key Finding: There is No Single Best Answer

Key Finding: There is No Single Best Answer

The analysis shows a clear tradeoff:

Test-Time Compute is Better When:

• The questions are easy or medium difficulty. A smaller model already
has the needed knowledge; it just needs time to "think."

• The inference load is low (R << 1).

Scaling the Pretrained Model is Better When:

• The questions are very challenging. The smaller model may lack the
core knowledge to solve the problem, no matter how much time it
gets.

• The inference load is high (R >> 1).

Conclusion & Overall Takeaways

1. Thinking Sequentially Matters: Iteratively revising answers is a
powerful way to use test-time compute, often outperforming
parallel sampling.

2. Adaptivity is Key: The best strategy for using test-time compute
depends on the problem’s difficulty. A “compute-optimal” approach
can be up to 4x more efficient.

3. It’s a Tradeoff: Test-time compute and pretraining compute are not
1-to-1 exchangeable.

4. Future Implication: This suggests a future where we might train
smaller, more efficient models and rely on intelligent, adaptive test-
time computation to achieve top-tier performance.

Q & A
Thank you for listening

	Title
	Slide 1: The Evolution of In-Context Reasoning: From Chain-of-Thought to Iterative Self-Improvement
	Slide 2: Content

	Chain of Thought
	Slide 3: Content
	Slide 4: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
	Slide 5: The Challenge: Complex Reasoning in a Single Step
	Slide 6: Prior Solutions and Limitations
	Slide 7: The Solution: Chain-of-Thought Prompting
	Slide 8: Why Might CoT Work?
	Slide 9: Experimental Setup
	Slide 10: Key Result #1: Gains in Arithmetic Reasoning
	Slide 11: Key Result #2: Reasoning is an Emergent Ability of Scale
	Slide 12: Ablation Studies
	Slide 13: Robustness Analysis
	Slide 14: Generalizing to Other Tasks
	Slide 15: Generalizing to Other Tasks
	Slide 16: Generalizing to Other Tasks
	Slide 17: Why will smaller models not work?
	Slide 18: Limitations and Future Work
	Slide 19: Conclusion
	Slide 20: Beyond Conclusion

	Self-Consistency
	Slide 21: Content
	Slide 22: Self-Consistency Improves Chain of Thought Reasoning in Language Models
	Slide 23: Self-consistency method
	Slide 24: Question
	Slide 25: The self-consistency method three steps
	Slide 26: Question
	Slide 27: Different answer aggregation strategies
	Slide 28: Question
	Slide 29: Normalized weighted processing
	Slide 30: Question:
	Slide 31: Tasks and datasets
	Slide 32: Language models and prompts
	Slide 33: Language models and prompts
	Slide 34: Language models and prompts
	Slide 35: Language models and prompts
	Slide 36: Sampling scheme
	Slide 37: Arithmetic reasoning accuracy
	Slide 38: Question
	Slide 39: Question
	Slide 40: Arithmetic reasoning accuracy
	Slide 41: Question
	Slide 42: Self-Consistency Helps Chain-of-Thought
	Slide 43: Self-consistency VS Sample-and-Rank
	Slide 44: Self-consistency VS Beam Search
	Slide 45: Self-consistency VS Beam Search
	Slide 46: Self-consistency VS Sample-and-Rank
	Slide 47: Self-consistency VS Sample-and-Rank
	Slide 48: Robust: Sampling Strategies and Scaling
	Slide 49: Robust: Imperfect Prompts & zero-shot CoT
	Slide 50: Conclusion
	Slide 51: Question

	Self-Refine
	Slide 52: Content
	Slide 53: SELF-REFINE: Iterative Refinement with Self-Feedback
	Slide 54: The Problem
	Slide 55: The Core Idea: Learn from Humans
	Slide 56: Introducing SELF-REFINE
	Slide 57: How SELF-REFINE Works
	Slide 58: How SELF-REFINE Works
	Slide 59: The Algorithm in Action
	Slide 60: Evaluation Setup
	Slide 61: Key Results
	Slide 62: Analysis: What Makes It Work?
	Slide 63: Analysis: Key Questions
	Slide 64: Limitations
	Slide 65: Conclusion & Takeaways

	Scaling LLM
	Slide 66: Content
	Slide 67: Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
	Slide 68: Thinking Longer or Being Smarter
	Slide 69: Why Does This Matter?
	Slide 70: A Unified Framework: Proposer & Verifier
	Slide 71: The “Compute-Optimal” Strategy
	Slide 72: Experimental Setup
	Slide 73: Why Process Verifiers
	Slide 74: Process Verifiers (PRM) Training
	Slide 75: Answer aggregation
	Slide 76: Search Methods
	Slide 77: Search Methods
	Slide 78: Search Methods Performance
	Slide 79: Search Methods Performance
	Slide 80: Comparing search algorithms
	Slide 81: Comparing Compute-optimal Test-time
	Slide 82: Refining the Proposal Distribution
	Slide 83: The “Revision Model”: How It Works
	Slide 84: Key Finding: The Sequential vs. Parallel Tradeoff
	Slide 85: Key Finding: The Sequential vs. Parallel Tradeoff
	Slide 86: Takeaway: “Compute-Optimal Revisions”
	Slide 87: Pretraining vs. Test-Time Compute
	Slide 88: The “Exchange Rate”: When is it a Fair Trade?
	Slide 89: Key Finding: There is No Single Best Answer
	Slide 90: Key Finding: There is No Single Best Answer
	Slide 91: Conclusion & Overall Takeaways

	Q & A
	Slide 92: Q & A

