
The Evolution of In-Context 
Reasoning: From Chain-of-Thought 
to Iterative Self-Improvement
Yuxuan Long, Longhan Lin & Taumas Yang



Content

1. Discovery: We can unlock reasoning by prompting models to “show 
their work” (Chain-of-Thought).

2. Robustness: We can make this reasoning more reliable by exploring 
multiple reasoning paths and finding a consensus (Self-
Consistency).

3. Agency: We can go a step further and have the model critique and 
improve its own work in a loop (Self-Refine).

4. Meta-Analysis: All these methods fall under the umbrella of “test-
time compute.” How does spending more compute at inference 
compare to simply training a bigger model? (Scaling LLM Test-Time 
Compute).
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Chain-of-Thought Prompting 
Elicits Reasoning in Large 
Language Models
Jason Wei et al. (2022)



The Challenge: Complex Reasoning in a Single 
Step
Why did it fail?

• The model likely latched onto the 
numbers (23, 20, 6) and performed a 
plausible but incorrect operation (e.g., 
23 - 20 = 3; 23 + (6-something) ≈ 27? 
Or just 20+6+initial confusion ≈ 27).

• It tried to solve a multi-step problem 
(subtract, then add) in a single, 
intuitive leap.

• This approach is not robust and has a 
flat scaling curve–making the model 
bigger doesn’t reliably fix this kind of 
error.



Prior Solutions and Limitations

• Method 1: Finetuning with Rationales
• Train a model on a large dataset of problems and human-written 

explanations.

• Limitation: Requires creating massive, expensive, and high-quality datasets.

• Method 2: Standard Few-Shot Prompting
• Give a few questions → Answer examples in the prompt.

• Limitation: As we saw, this doesn’t work well for reasoning tasks.



The Solution: Chain-of-Thought Prompting

• It’s a few-shot prompting 
technique where the exemplars 
given to the model don’t just 
show the final answer but also 
include the intermediate 
reasoning steps used to get 
there.

• Show the process.



Why Might CoT Work?

• Decomposition: Allows the model to break a multi-step problem into 
smaller, manageable steps.

• Allocation of Computation: The model can spend more “thought” 
(i.e., generate more tokens) on more complex problems.

• Interpretability: Provides a window into the model’s “thought 
process,” allowing for debugging.

• Generality: Applicable to any task that can be solved via language.



Experimental Setup

• Arithmetic: GSM8K, SVAMP, etc. (Math problems)

• Commonsense: StrategyQA, CSQA (Everyday logic)

• Symbolic: Last Letter Concatenation, Coin Flip (Abstract manipulation)

• Models: GPT-3, LaMDA, PaLM, UL2 20B, Codex

• Method: Few-shot prompting (e.g., 8 exemplars)



Key Result #1: Gains in Arithmetic Reasoning

• The huge performance gap 
between standard prompting 
(black) and CoT prompting (blue) 
for large models.

• For PaLM 540B on GSM8K, 
performance jumps from 17.9% 
to 56.9%.

• A CoT-prompted model can 
outperform a specially finetuned 
model.



Key Result #2: Reasoning is an Emergent 
Ability of Scale
• For smaller models (under ~100B parameters), 

CoT provides no benefit.



Ablation Studies

• Equation only: Just providing the 
math equation isn't enough. The 
natural language steps are key.

• Variable compute only (...): It‘s 
not just about letting the model 
“think longer.” The content of 
the thoughts matters.

• Reasoning after answer: The 
reasoning must happen before 
the answer to guide the model.



• Question: Is CoT sensitive to the 
prompt?

• Different Annotators: Works even 
when different people write the 
reasoning steps.

• Different Exemplars: Works with 
different examples, even from 
other datasets.

• Different Order: Relatively robust 
to the order of examples in the 
prompt.

Robustness Analysis



Generalizing to Other Tasks



Generalizing to Other Tasks

• Increased commonsense reasoning abilities



Generalizing to Other Tasks

• Increased symbolic reasoning 
abilities



Why will smaller models not work?

• Generation of Illogical Chains of Thought

• Failure on Simple Symbolic Tasks

• Inherently Weaker Arithmetic Abilities

• Inability to Produce Parsable Answers

• “In summary, the success of chain-of-thought reasoning as a result of 
model scale is a complicated phenomenon that likely involves a 
variety of emergent abilities (semantic understanding, symbol 
mapping, staying on topic, arithmetic ability, faithfulness, etc).”



• Fallible Reasoning: The generated chain of thought is not guaranteed 
to be factually or logically correct.

• Scale Requirement: This powerful technique is currently only 
accessible for massive, computationally expensive models.

• New Lower Bound: Standard prompting should be seen as a lower 
bound on LLM capabilities. How we interact with models can unlock 
latent abilities.

• Zero-shot CoT (e.g., just adding “Let’s think step by step”).

• Automating CoT generation.

• Inducing reasoning in smaller, more efficient models.

Limitations and Future Work



Conclusion

1. Chain-of-Thought prompting is a simple method to unlock complex 
reasoning in LLMs.

2. It works by showing the model how to reason step-by-step in few-
shot examples.

3. This ability is an emergent property of model scale.

4. CoT establishes new state-of-the-art results on reasoning 
benchmarks, even outperforming finetuned models.



Beyond Conclusion

• Chain-of-Thought doesn’t prove that LLMs “reason” in the conscious, 
abstract, human sense.

• It demonstrates that they can move beyond simple input-output 
pattern matching to imitate a reasoning process.

• This procedural imitation is so effective that it becomes a powerful 
tool for solving complex problems.

• Constraining the solution space increases the chance of a correct 
answer.
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Self-Consistency Improves Chain 
of Thought Reasoning in 
Language Models
Xuezhi Wang et al. (2023)



Self-consistency method



Question

• They explore multiple reasoning paths to select the most common 
answer and improve QA accuracy. They mention that this results in a 
large computational cost as most of the benefit comes from 5-10 
replicates. Could a more restrictive beam search approach be used 
here to improve compute cost? 

• NO, the way to generate is multiple answers, no matter how these 
answer are similar, more distinct, more accurate. 

• How can it be ensured that the different reasoning paths identified by 
self-consistency represent diverse methodologies, as opposed to 
various restatements of a uniform reasoning method? 

• This is Generative large models, Logical large model, we don’t know. 



The self-consistency method three steps

• Prompt a language model using chain-of-thought (CoT) prompting

• Replace the “greedy decode” in CoT prompting by sampling from the 
language model’s decoder to generate a diverse set of reasoning 
paths

• Marginalize out the reasoning paths and aggregate by choosing the 
most consistent answer in the final answer set



Question

• Could only reasoning paths sufficiently dissimilar from the other 
paths be included in the final aggregation step? 

• No, all the result will be sum, no matter how they same both result or 
token set.



Different answer aggregation strategies

GSM8K MultiArith AQuA SVAMP CSQA ARC-c

Greedy decode 56.5 94.7 35.8 79.0 79.0 85.2

Weighted avg 
(unnormalized)

56.3 ± 0.0 90.5 ± 0.0 35.8 ± 0.0 73.0 ± 0.0 74.8 ± 0.0 82.3 ± 0.0

Weighted avg 
(normalized)

22.1 ± 0.0 59.7 ± 0.0 15.7 ± 0.0 40.5 ± 0.0 52.1 ± 0.0 51.7 ± 0.0

Weighted sum 
(unnormalized)

59.9 ± 0.0 92.2 ± 0.0 38.2 ± 0.0 76.2 ± 0.0 76.2 ± 0.0 83.5 ± 0.0

Weighted sum 
(normalized)

74.1 ± 0.0 99.3 ± 0.0 48.0 ± 0.0 86.8 ± 0.0 80.7 ± 0.0 88.7 ± 0.0

Unweighted 
sum (majority 

vote)
74.4 ± 0.1 99.3 ± 0.0 48.3 ± 0.5 86.6 ± 0.1 80.7 ± 0.1 88.7 ± 0.1



Question

• Self-consistency improves LLMs' reasoning accuracy be sampling 
multiple reasoning paths and aggerating the answers. And in the 
paper, they show that this strategy can improve the performance on 
multiple benchmarks. The first thing that I have not fully captured is, 
what does "weighted average" in Section 2 mean?

• See, next. weights come from the conditional probability of each 
generated output



Normalized weighted processing

• 𝒓𝑖 An additional latent variable

• 𝒂𝑖 The generated answers

• log 𝑝() The log probability

• 𝐾 Total number of tokens

• 𝑘 k-th token

𝑝 𝒓𝑖 , 𝒂𝑖 prompt, question = exp
1

𝐾
෍

𝑘=1

𝐾

log𝑃 𝑡𝑘 prompt, question, 𝑡1, … , 𝑡𝑘−1



Question:

• For self-consistency, why the conditional probability of the response 
is a suitable way to evaluate?

• response (i.e. series of tokens) is actually a conditional probability 
chain （How to generate a large language model）

• quality of the response = the product of the conditional probabilities 
of each token, larger, more "trusted“

• Underflow, solve Log Addition; long sentence log smaller, solve 
Normalization; last solve log, use exp. 



Tasks and datasets

• Arithmetic reasoning:
• Math Word Problem Repository(AddSub, MultiArith, ASDiv)

• AQUA-RAT (GSM8K, SVAMP)

• Commonsense reasoning:
• CommonsenseQA

• StrategyQA

• AI2 Reasoning Challenge (ARC)

• Symbolic Reasoning:
• Last letter concatenation

• Coinflip



Language models and prompts

• UL2
• 20-billion parameters

• ≥ GPT3 on  zero-shot

• compute-friendly



Language models and prompts

• GPT-3
• 175-billion parameters

• two public engines
• code-davinci-001

• code-davinci-002



Language models and prompts

• LaMDA-137B
• 137-billion parameters

• dense left-to-right

• decoder-only 

• pre-trained web documents



Language models and prompts

• PaLM-540B
• 540-billion parameters

• dense left-to-right

• decoder-only 

• pre-trained 780 billion tokens 



Sampling scheme

• UL2-20B & LaMDA-137B
• temperature sampling

• T = 0.5

• Top k (k = 40)

• PaLM-540B
• T = 0.7

• k = 40

• GPT-3
• T = 0.3

• without k



Arithmetic reasoning accuracy

Method AddSub MultiArith ASDiv AQuA SVAMP GSM8K

Previous SoTA 94.9a 60.5a 75.3b 37.9c 57.4d 35e / 55g

UL2-20B
CoT-prompting 18.2 10.7 16.9 23.6 12.6 4.1

Self-consistency 24.8 (+6.6) 15.0 (+4.3) 21.5 (+4.6) 26.9 (+3.3) 19.4 (+6.8) 7.3 (+3.2)

LaMDA-137B
CoT-prompting 52.9 51.8 49.0 17.7 38.9 17.1

Self-consistency 63.5 (+10.6) 75.7 (+23.9) 58.2 (+9.2) 26.8 (+9.1) 53.3 (+14.4) 27.7 (+10.6)

PaLM-540B
CoT-prompting 91.9 94.7 74.0 35.8 79.0 56.5

Self-consistency 93.7 (+1.8) 99.3 (+4.6) 81.9 (+7.9) 48.3 (+12.5) 86.6 (+7.6) 74.4 (+17.9)

GPT-3Code-
davinci-001

CoT-prompting 57.2 59.5 52.7 18.9 39.8 14.6

Self-consistency 67.8 (+10.6) 82.7 (+23.2) 61.9 (+9.2) 25.6 (+6.7) 54.5 (+14.7) 23.4 (+8.8)

GPT-3Code-
davinci-002

CoT-prompting 89.4 96.2 80.1 39.8 75.8 60.1

Self-consistency 91.6 (+2.2) 100.0 (+3.8) 87.8 (+7.6) 52.0 (+12.2) 86.8 (+11.0) 78.0 (+17.9)



Question

• Under what conditions is self-consistent majority voting most 
effective?

• ASDiv question, GPT-3Code-davinci-002 : 100 Accuracy 



Question

• In the paper, the authors show that self-consistency significantly 
improves performance on math word problems like GSM8K. Why is 
this type of task particularly suitable for demonstrating the benefits 
of self-consistency?

• Author :In Table 9, we further show that self-consistency is quite 
robust to different sets of input prompts. We manually wrote 3 
different sets of chain-of-thought as prompts to the model. Across all 
sets of prompts, self-consistency yields consistent gains over the 
original CoT approach.

• Robust, More redundant information, more tokens, see the 
Temperature sampling.



Arithmetic reasoning accuracy

Method CSQA StrategyQA ARC-e ARC-c Letter (4) Coinflip (4)

Previous SoTA 91.2𝑎 73.6𝑏 86.4𝑐 75.0𝑐 N/A N/A

UL2-20B CoT-prompting 51.4 53.3 61.6 42.9 0.0 50.4

Self-consistency 55.7 (+4.3) 54.9 (+1.6) 69.8 (+8.2) 49.5 (+6.8) 0.0 (+0.0) 50.5 (+0.1)

LaMDA
-137B

CoT-prompting 57.9 65.4 75.3 55.1 8.2 72.4

Self-consistency 63.1 (+5.2) 67.8 (+2.4) 79.3 (+4.0) 59.8 (+4.7) 8.2 (+0.0) 73.5 (+1.1)

PaLM
-540B

CoT-prompting 79.0 75.3 95.3 85.2 65.8 88.2

Self-consistency 80.7 (+1.7) 81.6 (+6.3) 96.4 (+1.1) 88.7 (+3.5) 70.8 (+5.0) 91.2 (+3.0)

GPT-3
Code-davinci

-001

CoT-prompting 46.6 56.7 63.1 43.1 7.8 71.4

Self-consistency 54.9 (+8.3) 61.7 (+5.0) 72.1 (+9.0) 53.7 (+10.6) 10.0 (+2.2) 75.9 (+4.5)

GPT-3
Code-davinci

-002

CoT-prompting 79.0 73.4 94.0 83.6 70.4 99.0

Self-consistency 81.5 (+2.5) 79.8 (+6.4) 96.0 (+2.0) 87.5 (+3.9) 73.4 (+3.0) 99.5 (+0.5)



Question

• Another thing I am interested in is, what is the relationship between 
the base model's capability and the improvement that Self-
consistency can bring? If the base model is weak or a problem is too 
hard, can self-consistency actually improve the performance?

• No, although the base performance not well, self-consistency could 
still have improve.



Self-Consistency Helps Chain-of-Thought

ANLI R1 / R2 / R3 e-SNLI RTE BoolQ
HotpotQA 
(EM/F1)

Standard-
prompting (no-

rationale)
69.1 / 55.8 / 55.8 85.8 84.8 71.3 27.1 / 36.8

CoT-
prompting (Wei 

et al., 2022)
68.8 / 58.9 / 60.6 81.0 79.1 74.2 28.9 / 39.8

Self-consistency 78.5 / 64.5 / 63.4 88.4 86.3 78.4 33.8 / 44.6

Cause: CoT forces a “chain of reasoning”
Reason: introduce errors or noise
Result: worse than a direct answer

https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib58


Self-consistency VS Sample-and-Rank

GPT-3 code-davinci-001

1. Multiple sequences are 
sampled from the decoder 

2. Ranked according to each 
sequence’s log probability

Result: As the number of samples 
increases, Sample-and-rank is 
indeed better than greedy

The improvement is much smaller 
than Self-consistency



Self-consistency VS Beam Search

Beam size / Self-
consistency paths

1 5 10 20 40

AQuA

Beam search 
decoding (top 
beam)

23.6 19.3 16.1 15.0 10.2

Self-consistency 
using beam 
search

23.6 19.8 ± 0.3 21.2 ± 0.7 24.6 ± 0.4 24.2 ± 0.5

Self-consistency 
using sampling

19.7 ± 2.5 24.9 ± 2.6 25.3 ± 1.8 26.7 ± 1.0 26.9 ± 0.5

MultiArith

Beam search 
decoding (top 
beam)

10.7 12.0 11.3 11.0 10.5

Self-consistency 
using beam 
search

10.7 11.8 ± 0.0 11.4 ± 0.1 12.3 ± 0.1 10.8 ± 0.1

Self-consistency 
using sampling

9.5 ± 1.2 11.3 ± 1.2 12.3 ± 0.8 13.7 ± 0.9 14.7 ± 0.3



Self-consistency VS Beam Search

• The number of beams increases accuracy, even decreases
• Beam search tends to be deterministic
• Generated paths lack diversity

• Beam search as a sampling method
• Result better than only beam search

• Self-consistency using sampling still the best

• Diversity is key. Beam search lacks diversity
• Limits SC effectiveness

• Random sampling leads to more dispersed paths, which makes voting 
more reliable.



Self-consistency VS Sample-and-Rank

GSM8K MultiArith SVAMP ARC-e ARC-c

CoT (Wei et al., 
2022)

17.1 51.8 38.9 75.3 55.1

Ensemble (3 sets 
of prompts)

18.6 ± 0.5 57.1 ± 0.7 42.1 ± 0.6 76.6 ± 0.1 57.0 ± 0.2

Ensemble (40 
prompt 
permutations)

19.2 ± 0.1 60.9 ± 0.2 42.7 ± 0.1 76.9 ± 0.1 57.0 ± 0.1

Self-Consistency 
(40 sampled 
paths)

27.7 ± 0.2 75.7 ± 0.3 53.3 ± 0.2 79.3 ± 0.3 59.8 ± 0.2

https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib58


Self-consistency VS Sample-and-Rank

• Prompt ensemble: changing the prompt
• A little diversity is added

• Still essentially limited to the greedy decoding

• Effect is limited

• Self-consistency:  GOOD! GOOD! GOOD!
• A little diversity is added

• Self-ensemble ≥ self-ensemble, change prompt, change model



Robust: Sampling Strategies and Scaling



Robust: Imperfect Prompts & zero-shot CoT

Prompt with correct chain-of-thought 17.1

LaMDA-137B

Prompt with imperfect chain-of-thought 14.9

+ Self-consistency (40 paths) 23.4

Prompt with equations 5.0

+ Self-consistency (40 paths) 6.5

PaLM-540B
Zero-shot CoT (Kojima et al., 2022) 43.0

+ Self-consistency (40 paths) 69.2

https://ar5iv.labs.arxiv.org/html/2203.11171#bib.bib33


Conclusion

• Simple and effective
• Significantly improving the accuracy of arithmetic and common-sense 

reasoning

• Higher computational cost: multiple reasoning paths
• 5–10 paths

• Use Self-consistency to generate high-quality supervised data styles
• Fine-tune: single-shot inference can also be more accurate

• Improve the quality of reasoning chains
• Avoid “nonsense” reasoning



Question

• How do you use your self-consistency method towards open ended 
questions?

• I also think they should have investigated the time-cost of self-
consistency vs chain of thought. 
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SELF-REFINE: Iterative 
Refinement with Self-Feedback
Aman Madaan et al. (2023)



The Problem

LLMs often don't produce the best output on their first try.

• Generating optimal responses for complex tasks is difficult.
• Examples: Writing engaging dialogue, optimizing code, and creative writing.

• Traditional improvement methods are expensive and complex.
• Require large supervised training datasets.

• Involve extra training phases or reinforcement learning (RL).

• Need costly human annotations or reward models.

Question: Can we improve an LLM's output without extra training or 
data?



The Core Idea: Learn from Humans

Humans improve their work through iterative refinement.

1. Draft: Create an initial version (e.g., write an email, code a 
function).

2. Feedback: Review the draft and identify areas for improvement 
(“This sounds rude,” “This code is inefficient”).

3. Refine: Edit the draft based on the feedback.

4. Repeat: Continue the cycle until the work is satisfactory.

The main idea: Can we make an LLM follow this same process, using 
itself for feedback and refinement?



Introducing SELF-REFINE

A simple, training-free approach 
to improve LLM outputs.

One Model, Three Roles: The 
same LLM is used as the

1. Generator: Creates the initial 
output.

2. Feedback Provider: Critiques 
its own output.

3. Refiner: Improves the output 
based on its own feedback.

Key Advantages:

• No supervised training data 
needed.

• No reinforcement learning.

• No additional models required.

• Works “out-of-the-box” with 
capable LLMs (like GPT-3.5 and 
GPT-4).



How SELF-REFINE Works



How SELF-REFINE Works

The process is a simple, iterative loop guided by few-shot prompts.

1. Generate: The LLM creates an initial output for a given input.

2. Feedback: The LLM is prompted to provide specific and actionable 
feedback on that output.

3. Refine: The LLM receives the original input, its previous output, and 
the new feedback, and generates an improved version.

4. Iterate: The Feedback → Refine loop repeats until a stopping 
condition is met (e.g., max iterations, or the model says “no more 
changes needed”).



The Algorithm in Action

Example: Code Optimization

1. Input: “Generate sum of 1, ..., 
N”

2. Initial Generation (y₀):

def sum(n):

    res = 0

    for i in range(n+1):

        res += i

    return res

3. Feedback (fb₀): "This code is 
slow as it uses brute force. A 
better approach is to use the 
formula ... (n(n+1))/2."

4. Refine (y₁):

def sum_faster(n):

    return (n * (n+1)) // 2



Evaluation Setup

Goal: Does SELF-REFINE actually 
improve the performance of strong 
base LLMs?
Models Used:
• GPT-3.5 (text-davinci-003)
• ChatGPT (gpt-3.5-turbo)
• GPT-4
• Codex (for code tasks)
Diverse Tasks (7 Total):
• Dialogue Response Generation
• Code Optimization & Readability

• Math Reasoning
• Sentiment Reversal
• Acronym Generation
• Constrained Generation
Metrics:
• Task-specific automated metrics 

(e.g., solve rate for math).
• Human preference (A/B testing).
• GPT-4 as a proxy for human 

preference.



Key Results

SELF-REFINE consistently improves 
performance across all tasks and 
models.

Average improvement is ~20% 
(absolute) across all tasks.

Task Base GPT-4 GPT-4 + SELF-
REFINE

Improvement

Sentiment 
Reversal

3.8% 36.2% +32.4%

Dialogue 
Response

25.4% 74.6% +49.2%

Code 
Optimization

27.3% 36.0% +8.7%

Constrained 
Generation

15.0% 45.0% +30.0%



Analysis: What Makes It Work?

1. Feedback Quality is Crucial
1. Specific, actionable feedback (e.g., “Avoid repeated calculations in the for 

loop”) works best.

2. Generic feedback (e.g., “Improve the efficiency”) is less helpful.

3. No feedback (just iterating) performs the worst.

2. Multiple Iterations Help
1. Performance generally increases with each FEEDBACK-REFINE cycle.

2. Most gains are seen in the first 1-2 iterations, with diminishing returns after 
that.



Analysis: Key Questions

Is this just better than generating multiple samples?

• Yes. A single, refined output from SELF-REFINE is consistently preferred by 
humans over all outputs from generating multiple (k=4) initial samples.

• This shows the value is in the refinement process, not just more attempts.

Does it work with weaker models?

• Not as well. The approach relies on the base LLM being strong enough to 
both provide useful feedback and follow refinement instructions.

• Experiments with Vicuna-13B showed it struggled to follow the 
feedback/refine prompts consistently.



Limitations

• Requires a Capable Base LLM: The method’s success is dependent on 
the underlying model's instruction-following and reasoning abilities.

• Closed-Source Models: The best results are demonstrated on 
powerful but proprietary models like GPT-4, making reproducibility a 
challenge.

• English-Only: All experiments were conducted in English. 
Performance in other languages is unknown.



Conclusion & Takeaways

SELF-REFINE is a simple and powerful method to improve LLM outputs at 
test-time.

• It operationalizes the human creative process of iterative refinement for 
LLMs.

• It requires no additional training, data, or models, making it highly 
accessible.

• The results show that even state-of-the-art models like GPT-4 are not at 
their performance ceiling and can be improved with the right prompting 
strategy.

• This opens up possibilities for more reliable and higher-quality generation 
across many complex tasks.
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Scaling LLM Test-Time Compute 
Optimally can be More Effective 
than Scaling Model Parameters
Charlie Snell et al. (2024)



Thinking Longer or Being Smarter

• Humans think longer on hard problems. Can LLMs do the same?

• Core Question: If an LLM has a fixed but non-trivial amount of extra 
compute at inference time, how can it best use that compute to 
improve its answer?



• Efficiency: Can we get better performance without training even 
bigger models?

• Accessibility: Enable smaller, on-device models to achieve the 
performance of larger, datacenter-scale models.

• Self-Improvement: A path towards agents that can improve their own 
outputs without constant human supervision.

Why Does This Matter?



A Unified Framework: Proposer & Verifier

Prompt

System

Proposer (LLM)
Generates potential 
answers

Verifier (Reward model)
Select the best answer

Self-Revision

Output

Search with a 
Process Reward 
Model



The “Compute-Optimal” Strategy

The Main Finding: The optimal way 
to allocate test-time compute 
depends critically on the prompt's 
difficulty.

Strategy:

• Estimate the difficulty of a prompt 
(e.g., using verifier scores on initial 
samples).

• Based on difficulty, choose the best 
strategy (e.g., beam search vs. 
Best-of-N, or sequential vs. parallel 
revisions).



Experimental Setup

• Datasets
• high-school competition-level math problems

• 12k train and 500 test questions

• Models
• PaLM 2-S*

• LLM

• good at Math



Why Process Verifiers

• Which answers are correct?

• Which steps went wrong?

• Without any signal: 
• Best-of-N
• Random sampling

• Reward Model (ORM):
• Only focus on the final answer
• Not resistant to deviations: result is right, but the process is all wrong
• Tree search/beam search needs to decide the way midway

• Process Verifiers:
• Each process success probability: Like value function in RL
• Early Stopping, guide, and Score-weighted voting



Process Verifiers (PRM) Training

• First use GPT4 PRM training data, but easy to exploit

• Do a supervised PRM

• Monte Carlo rollout



Answer aggregation

1. Aggregate each individual answer’s per-step scores
• Use the last step as the full answer score 

• Step-wise aggregation

2. Aggregate across answers to determine the best answer
• correctness scores of all correct answers

• Inter-answer aggregation



Search Methods



Search Methods

• Best-of-N samples N full answers and then selects the best answer 
according to the PRM final score.

• Beam search samples N candidates at each step, and selects the top 
M according to the PRM to continue the search from.

• lookahead-search extends each step in beam-search to utilize a k-step 
lookahead while assessing which steps to retain and continue the 
search from. Thus, lookahead-search needs more computation.



Search Methods Performance



Search Methods Performance

• Low generation budgets
• Beam search performs best

• Budgets improve
• Below the best-of-N baseline

• Easier problems (bins 1 and 2)
• Best-of-N

• Beam search over-optimization

• Medium difficulty problems (bins 3 and 4)
• Beam search better



Comparing search algorithms

• Maximum budget 256

• Best-of-N

• Beam search
• Beam width set: 𝑁; N is the generation budget

• Fixed beam width of 4

• Lookahead steps
• k = 3, both settings 1) and 2)

• k = 1, beam-search setting 1).



Comparing Compute-optimal Test-time

• Smaller budgets
• Beam search >> Best-of-N

• Larger budgets
• Beam search >> Best-of-N

• Lookahead search
• The worst overall performance

• The best choice of search 
strategy can vary drastically as a 
function of this difficulty 
statistic.



Refining the Proposal Distribution

• Core Idea: Can we improve a model’s answer by letting it think 
sequentially?

• Traditional Method (Parallel): “Best-of-N”– Generate N independent 
answers and pick the best one. This is like a broad, shallow search.

• This Paper's Method (Sequential): “Revisions”– Generate an answer, 
then generate a revision of that answer, and so on.

• Analogy: Instead of asking 16 different people for an answer 
(parallel), you ask one person to spend 16 minutes refining their 
single best answer (sequential).



Challenge: Standard LLMs are not good at self-correction on complex 
reasoning tasks.

Solution: Finetuning a Specialist Model

• Data Generation: The authors created a special dataset by pairing a correct 
answer with a sequence of up to four related but incorrect answers.

• Finetuning: They trained a PaLM 2-S* model on this data. The goal was to 
teach it: “Given these previous incorrect attempts, produce the correct 
answer.”

• Inference: At test time, the model can generate a chain of revisions, with 
each new attempt informed by the previous one. As shown in the paper, 
accuracy gradually improves with each revision step.

The “Revision Model”: How It Works



Key Finding: The Sequential vs. Parallel 
Tradeoff
The Main Question: What's the best way to spend a fixed computing 
budget?
• Purely Parallel? (e.g., 16 samples)
• Purely Sequential? (e.g., 1 chain of 16 revisions)
• A mix of both? (e.g., 4 parallel chains of 4 revisions each)
The Answer: It depends on the question's difficulty!
• Easy Questions: Benefit most from purely sequential revisions. The model’s 

first guess is likely close, so refining it is the most efficient path to the 
correct answer.

• Hard Questions: Benefit most from a hybrid approach. The model needs to 
explore different high-level strategies (parallel) and also refine the 
promising ones (sequential).



Key Finding: The Sequential vs. Parallel 
Tradeoff



Takeaway: “Compute-Optimal Revisions”

The Strategy:

1. First, estimate the difficulty of a given question.

2. Then, allocate the compute budget to the optimal sequential/parallel 
ratio for that difficulty level.

The Result:

• This adaptive, “compute-optimal” strategy significantly outperforms the 
standard parallel best-of-N baseline.

• It can achieve the same or better accuracy while using up to 4x less test-
time compute.

Conclusion: How you use your inference compute matters. Adapting the 
strategy to the problem's difficulty yields massive efficiency gains.



The Ultimate Question: If you have more FLOPs (total computing 
power), where should you spend them?

• Option A – Scale Pretraining: Use the FLOPs to train a bigger, more 
powerful model from the start (e.g., moving from a 7B to a 100B 
parameter model).

• Option B – Scale Test-Time Compute: Use a smaller model, but give it 
more time and computation at inference to search, revise, and refine 
its answers using the optimal strategies from the previous sections.

Pretraining vs. Test-Time Compute



The “Exchange Rate”: When is it a Fair Trade?

The paper establishes a FLOPs-matched comparison.

It depends heavily on the ratio of inference tokens to pretraining 
tokens (R).

• R << 1 (Low Inference Load): A research setting, where you generate 
a few high-quality samples to improve the model.

• R >> 1 (High Inference Load): A production setting (like a chatbot), 
where the model serves billions of requests.



Key Finding: There is No Single Best Answer



Key Finding: There is No Single Best Answer

The analysis shows a clear tradeoff:

Test-Time Compute is Better When:

• The questions are easy or medium difficulty. A smaller model already 
has the needed knowledge; it just needs time to "think."

• The inference load is low (R << 1).

Scaling the Pretrained Model is Better When:

• The questions are very challenging. The smaller model may lack the 
core knowledge to solve the problem, no matter how much time it 
gets.

• The inference load is high (R >> 1).



Conclusion & Overall Takeaways

1. Thinking Sequentially Matters: Iteratively revising answers is a 
powerful way to use test-time compute, often outperforming 
parallel sampling.

2. Adaptivity is Key: The best strategy for using test-time compute 
depends on the problem’s difficulty. A “compute-optimal” approach 
can be up to 4x more efficient.

3. It’s a Tradeoff: Test-time compute and pretraining compute are not 
1-to-1 exchangeable.

4. Future Implication: This suggests a future where we might train 
smaller, more efficient models and rely on intelligent, adaptive test-
time computation to achieve top-tier performance.



Q & A
Thank you for listening
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