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What kind of large language models do we want?

* The Prompt (User Request): "Explain gravity to a 6-year-old."

Output from a Base Language Model (Pre-trained): Output from an Instruct Model (After RLHF):
"Gravity is a fundamental force of nature by which all "Imagine the Earth is a giant trampoline! Because

things with mass or energy—including planets, stars, galaxies, it's so big, it pulls everything toward its middle. This

and even light—are attracted to one another. In general pulling power is called gravity. It’s what keeps your feet

relativity, gravity is described as a consequence of the on the floor so you don't float away, and it’s what makes

curvature of spacetime caused by the uneven distribution of an apple fall down from a tree instead of up!"

mass..."

Factually correct. Directly follows the instruction.

BUT... it ignores the instruction "to a 6-year-old." )¢ Aligned with what the user actually wanted. [4



What kind of large language models do we want?

* This scale-up cannot automatically align with human preferences.

TriviaQA
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The Solution: A 3-Step Alignment Process

* Reinforcement Learning from Human Feedback (RLHF)

Step 1: Supervised Fine-Tuning (SFT)

Step 2: Train a Reward Model (RM)

Step 3: Optimize Policy using RL (PPO)
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Collect demonstration data,
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Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
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the outputs from
best to worst.

This data is used
to train our
reward model.
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Step 1: Collect Demonstrations & Train SFT Policy

* Goal: Teach the model the desired style of answering instructions.

Input: Sampled prompts from: (1) Prompts written by 40
oo coliyiisci® human labelers and (2) Prompts submitted via the OpenAl API.

@ Action: A human labeler demonstrates the desired,

> high-quality output behavior for that prompt.
Some pe(;ple went
o hemoen- Output: This creates a dataset of human demonstrations
(approx. 13k prompts).
SFT
A

P Training: This curated dataset is used to fine-tune the

pre-trained GPT-3 model using standard supervised learning.

22



Step 2: Collect Comparisons & Train Reward Model

* Goal: Train a "judge" (the RM) to learn what humans prefer.

Explain the moon
landing to a 6 year old

0-0-0-0

Input: Sample a prompt and use the SFT model to generate multiple (K=4 to K=9)
different outputs for that single prompt.

Human Action: A labeler is shown all K outputs and ranks them from best to
worst.

Output: A new dataset of human preference data (33k training prompts). This
data is structured as comparisons (e.g., for Prompt X, Output A is preferred >
Output C).

Training: Train a separate Reward Model (RM). The RM takes any output and
returns a "reward" predicting how much a human would prefer that output.



Step 3: Optimize Policy via Reinforcement Learning (PPO)

* Goal: Use the "judge" (RM) to teach the SFT model how to generate
better answers.

™
Write a story
about frogs
Action: The policy (SFT model) receives a new unseen prompt from the
. dataset and generates an output.
@, @
o/omo =
D
Reward: The Reward Model analyzes the prompt and the policy's
Onee upona time.. response. It calculates a scalar reward score for that response.
RM
L Learning: This reward signal is fed back to the policy. The policy's weights

are then updated using the PPO (Proximal Policy Optimization) algorithm
to maximize the reward it receives from the RM.



Step 3.5: Proximal Policy Optimization (PPO)

* The Role of PPO:

Constrained Optimization & Preventing Reward Hacking

* How PPO Solves This (The KL Constraint)?:

Maximize the score from the Reward Model, BUT do not become too different
from the original SFT model.

* The Final Objective:
Final Score = (Reward_from_RM) - (KL_Penalty_Score)
Be helpful Stay sane and coherent

objective (6) =E(e,y)~b, . [ro(@,9) = Blog (T (y | 2)/75 7 (y | )]



Step 4: Final Model -- PPO-ptx (InstructGPT)

* "Alignment Tax":

The model lost capability in order to "buy" alignment. It was forgetting some of its general
knowledge.

*"PPO-ptx" Solution:

"mixed in" the gradients from the original pre-training dataset (the general internet text
GPT-3 was first trained on).

* The Final Objective:
Final Score = (Reward_from_RM) - (KL_Penalty_Score) + (Pre-training Objective Bonus)
Be helpful Stay sane and coherent Don't forget general knowledge

objective (¢) =E(u.ymp_y. [ro(@,y) — Blog (5 (y | 2)/"7(y | 2))] +

[ YE 2~ Dy [108(75 " ()] ]




Main Result 1: Humans Vastly Prefer InstructGPT
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» Key Result: Outputs from the 1.3B InstructGPT model were preferred by
labelers over outputs from the 175B GPT-3 model.

* Alignment training is significantly more effective and parameter-efficient
than simply scaling the model size.



Main Result 2: Improvements in Helpfulness & Honesty
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More Helpful (Following Instructions):
*More likely to attempt the correct instruction.
*Better at following explicit constraints given in the prompt (e.g., "Write this in two paragraphs").

*More likely to use language appropriate for a customer assistant.

More Honest (Fewer Hallucinations):
*On closed-domain tasks (like summarization), the base GPT-3 model "hallucinates" over 40% of the time.

*The alignment process cut this hallucination rate.



Main Result 3: Improvements in Truthfulness
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*On the TruthfulQA benchmark, which tests a model's tendency to mimic human falsehoods,

the InstructGPT were significantly more truthful than GPT-3.

Harmlessness (Toxicity):

*On the RealToxicityPrompts dataset, models were tested for toxic output generation.

*When instructed to be "respectful," InstructGPT generated about 25% fewer toxic outputs

than the base GPT-3 model.



Q&A

* This seems hard to scale because it requires so much human labeling.
Can we just train an "Al feedback model" and learn from that?
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Overview of Framework

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
i el | label rewards i orii
— >| — » reward model LM policy === =¥ final LM
preference data maximum ' sample completionsﬁ preference data maximum

likelihood reinforcement learning likelihood

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.



RLHF Preliminaries: Reward Modeling

e Reward Modelling Phase in RLHF:

) &

(ylay2) ~ WSFT(U | $)

o Bradley-Terry (BT) model

exp (T* (xv yl))
€xXp (T*(ZL‘, yl)) + exp (T* (SE, yQ)) .

P (1 - y2 | @) = (1)



RLHF Preliminaries: Policy Optimization

e PPO objective function

max By p ymmy (yla) 16 (2, 9)] = Bk [mo(y | 2) || mer(y | )], (3)



Deriving the DPO Objective

e Following prior work, the optimal solution to Eq. 3 is:

wolly | <) = %m(y | w)exp (%m,m) |

Z(2) = T, mely | @) exp (3r(z,1))

e Reparameterizing the reward function in terms of the policy:

m-(y | T)
Tret(Y | )

r(z,y) = Blog + Blog Z(x).

(4)

)



Deriving the DPO Objective

€xXp (T* (LU, yl))
exp (r*(z,y1)) + exp (r*(z, y2))

r(z,y) = Blog % + Blog Z(x). P (n>y2|x)=

1
*(y2|x) * (1| )
1+ exp (5 log 7—2zy — Blog wref(ylllw)>

Py =2 |x) = (6)

7o (Yw | ) mo(y | x)
; Tref) = —IK x ~ 1 I — Al . g



Experimental Setup: Tasks & Metrics

e Dataset
o IMDb Sentiment Generation
o TL;DR Summarization
o  Anthropic Helpful & Harmless (HH)
e [Evaluation
o IMDb: Reward-KL Frontier.
o TL;DR summarization: win rate vs. human-written summaries, using GPT-4 as the
evaluator.
o HH dialogue: win rate vs. the chosen response baseline, evaluated by GPT-4.



Experimental Setup: Base Models

e Base model:
o IMDb: GPT-2-large.
o TL;DR: an SFT model fine-tuned on human-written forum post summaries.
o HH: Pythia-2.8B



Results: Sentiment & Summarization

e DPO is a more efficient optimizer than PPO, achieving a better reward-KL tradeoff on the sentiment task.
e  On summarization, DPO not only achieves a higher peak win rate but is also significantly more robust to

changes in sampling temperature.
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Figure 2: Left. The frontier of expected reward vs KL to the reference policy. DPO provides the highest expected
reward for all KL values, demonstrating the quality of the optimization. Right. TL;DR summarization win
rates vs. human-written summaries, using GPT-4 as evaluator. DPO exceeds PPO’s best-case performance on
summarization, while being more robust to changes in the sampling temperature.



Results: Dialogue Task

e DPO is the only efficient method that improves upon the dataset's preferred responses, matching the

performance of the computationally expensive "Best of 128" baseline.
e The training process is highly stable, with DPO converging quickly to its peak performance and maintaining it

throughout training. Anthropic-HH Dialogue Win Rate vs Chosen Dialogue Win Rate Evolution
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Figure 3: Left. Win rates computed by GPT-4 for Anthropic-HH one-step dialogue; DPO is the only method
that improves over chosen summaries in the Anthropic-HH test set. Right. Win rates for different sampling
temperatures over the course of training. DPO’s improvement over the dataset labels is fairly stable over the
course of training for different sampling temperatures.



Results: Generalization & Evaluator Agreement

e DPO demonstrates better generalization than PPO, maintaining a higher win rate on an out-of-distribution
dataset.

e The use of GPT-4 as an evaluator is validated, as its judgments show a high level of agreement with human

preferences.
DPO SFT PPO-1

Win rate vs. ground truth N respondents 272 122 199

GPT-4 (S) win % 47 27 13

Alg. TempO Temp 0.25 GPT4(C)win% 54 32 12

Human win % 58 43 17

DPO 0.36 0.31 GPT-4 (S)-Hagree 70 77 86

GPT-4 (C)-H agree 67 79 85

PPO  0.26 0.23 GFH O I
. Table 2: Comparing human and GPT-4 win rates
Table 1: GPT-4 win rates vs. gr()und and per-judgment agreement on TL;DR summariza-
. . : . tion samples. Humans agree with GPT-4 about as
truth summaries for out-of-distribution much as they agree with each other. Each experi-
CNN /D allyM all input artl Cl es ment compares a summary from the stated method

with a summary from PPO with temperature 0.



Q&A

Q: Is there a downside to DPO's simplicity? Since it learns directly from human feedback, is it more likely to
copy errors in that data.

o Yes, its simplicity creates trade-offs. DPQO's direct fitting approach makes it sensitive to noise and biases
in the preference data, as it can directly propagate these errors into the policy. While its gradient
weighting offers some mitigation, it doesn't solve the issue. Performance also critically depends on the
quality of the reference policy and the tuning of f3.

Q: How sensitive is DPO to violations of the Bradley—Terry assumption and to the choice of reference/3

o  The DPO loss is derived from the Bradley-Terry model, so significant violations of this assumption can
misspecify the objective and bias the results.

o  Performance is very sensitive to the choice of m_ref, making a high-quality, distribution-matched
reference policy essential.

o  The B is critical as it controls the KL-regularization strength: a large B results in a conservative policy
close to the reference, while a small B allows more aggressive fitting to preferences, risking drift and
overfitting.
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Motivation: Overcoming the Limitations of DPO

e Motivations
o  DPO's reliance on a reference model creates computational overhead and a mismatch between
the training objective and the inference-time generation metric.
o  There is a need to align the reward formulation directly with the model's generation metric
(average log-likelihood) to improve performance and efficiency.

e (Contributions
o  SimPO: A simple, reference-free preference optimization algorithm.
o Length-Normalized Reward: A novel reward formulation to prevent length bias.
o  Target Reward Margin: A mechanism to enhance the model's ability to distinguish between
winning and losing responses.



SimPQO's Core Idea: Length-Normalized Reward

e The reward is directly aligned with the generation metric: average log-likelihood.

1 1 ly|

poly | @) = [ rlogma(y | ) = 1 D Zlome vi | ,y<i). (3)
3 ly|
rsimpo (Z,y) = mlog mo(y | x) | | Zlog mo(yi | x,y<i), 4)

1=1



The SimPO Objective: Enforcing a Reward Margin

e A target reward margin, ¥ >0, is added to the Bradley-Terry objective.
e This encourages the winning response's reward to exceed the loser's by at least y, which improves
generalization.

PWw =y | x) =0 (r(z,yuw) —r(x,0) — 7). (5)

Lsimpo(70) = —E(z,y,,,y)~D [loga (lyil log 76 (Yw|x) — % log o (y1|x) — 7)} . (6)



DPO vs. SimPO

Across both AlpacaEval 2 (LC) and Arena-Hard benchmarks, SimPO consistently and significantly

outperforms DPO across all tested models and setups.
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Figure 1: SimPO and DPO mainly differ in their reward formulation, as indicated in the shaded box.
SimPO outperforms DPO significantly across a range of settings on AlpacaEval 2 and Arena-Hard.



Experiment Setup: The Base Configuration

e (Goal: To test performance starting from a standard pre-trained model.

e Models:
o Llama-3-8B
o  Mistral-7B
e Datasets & Pipeline:
o  Step 1 : Fine-tune the base model on UltraChat-200K to create a supervised fine-tuned (SFT) model.
o  Step 2 : Perform preference optimization (e.g., SimPO, DPO) on the SFT model using the
UltraFeedback dataset.



Experiment Setup: The Instruct Configuration

e (Goal: To test performance starting from a powerful, instruction-tuned model.

e Models:

o Llama-3-8B-Instruct
o  Mistral-7B-Instruct-v0.2
e Dataset & On-Policy Generation:

o To mitigate distribution shift, a new preference dataset is generated "on-policy".

o Process:

Use the Instruct models to generate 5 responses for each prompt from UltraFeedback.
Use an external reward model (PairRM) to score the 5 responses.
The highest-scoring response becomes the 'winner' (y ) and the lowest-scoring
w
becomes the 'loser’ (y)).



Evaluation: Benchmarks & Metrics

® Models are assessed on three benchmarks.

Table 2: Evaluation details for AlpacaEval 2 [55], Arena-Hard [54], and MT-Bench [99]. The baseline
model refers to the model compared against. GPT-4 Turbo corresponds to GPT-4-Preview-1106.

# Exs. Baseline Model Judge Model Scoring Type Metric
AlpacaEval 2 805 GPT-4 Turbo GPT-4 Turbo Pairwise comparison LC & raw win rate
Arena-Hard 500 GPT-4-0314 GPT-4 Turbo Pairwise comparison Win rate

MT-Bench 80 - GPT-4/GPT-4 Turbo Single-answer grading  Rating of 1-10




Main Results: SimPO Consistently Outperforms Baselines

e In all four settings, SimPO achieves the highest performance on the benchmarks of AlpacaEval 2 and
Arena-Hard, significantly surpassing DPO and other preference optimization methods.

Table 4: AlpacaEval 2 [55], Arena-Hard [54], and MT-Bench [99] results under the four settings.
LC and WR denote length-controlled and raw win rate, respectively. We train SFT models for Base
settings on the UltraChat dataset. For Instruct settings, we use off-the-shelf models as the SFT model.

Mistral-Base (7B) Mistral-Instruct (7B)
Method AlpacaEval 2 Arena-Hard  MT-Bench AlpacaEval 2 Arena-Hard  MT-Bench
LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4 LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4
SFT 8.4 6.2 1.3 4.8 63 17.1 147 12.6 6.2 75
RRHF [91] 11.6 102 5.8 54 6.7 253 248 18.1 6.5 7.6
SLiC-HF [96] 109 8.9 7.3 58 74 241 246 18.9 6.5 7.8
DPO [66] 151 125 10.4 59 73 268 249 16.3 6.3 7.6
PO [6] 11.8 94 7.5 5.5 72 203 203 16.2 6.4 7.8
CPO [88] 9.8 8.9 6.9 54 6.8 238 288 22.6 6.3 7.5
KTO [29] 3.1 9.1 5.6 54 70 245 236 17.9 6.4 7.7
ORPO [42] 147 122 7.0 5.8 73 245 249 20.8 6.4 7.7
R-DPO [64] 174 128 8.0 59 74 273 245 16.1 6.2 7:5
SimPO 215 208 16.6 6.0 73 321 348 21.0 6.6 7.6
Llama-3-Base (8B) Llama-3-Instruct (8B)
Method AlpacaEval 2 Arena-Hard ~ MT-Bench AlpacaEval 2 Arena-Hard MT-Bench
LC(%) WR(%) WR(%) GPT-4Turbo GPT-4 LC(%) WR(%) WR(%)  GPT-4Turbo GPT-4

SFT 6.2 4.6 33 52 6.6 260 253 22.3 6.9 8.1
RRHF [91] 12.1  10.1 6.3 58 7.0 313 284 26.5 6.7 79
SLiC-HF [96] 123 13.7 6.0 6.3 76 269 275 26.2 6.8 8.1
DPO [66] 182 155 159 6.5 77 403 379 32.6 7.0 8.0
1PO [6] 144 142 17.8 6.5 74 356 356 30.5 7.0 8.3
CPO [88] 10.8 8.1 5.8 6.0 74 289 322 28.8 7.0 8.0
KTO [29] 142 124 12,5 6.3 7.8 33.1 318 26.4 6.9 8.2
ORPO [42] 122 10.6 10.8 6.1 76 285 274 25.8 6.8 8.0
R-DPO [64] 17.6 144 17.2 6.6 75 41.1 378 33.1 7.0 8.0

SimPO 220 203 234 6.6 77 447 405 33.8 7.0 8.0




Ablation Study

e Confirm that both of SImPQO's key design choices are crucial. Removing length normalization (w/o LN) causes
the most significant performance drop, while setting the reward margin y to 0 also degrades performance.

Table 5: Ablation studies under Mistral-Base and Mistral-Instruct settings. We ablate each key design
of SimPO: (1) removing length normalization in Eq. (4) (i.e., w/o LN); (2) setting target reward
margin 7 to be 0 in Eq. (6) (i.e., v = 0).

Mistral-Base (7B) Setting Mistral-Instruct (7B) Setting
Method AlpacaEval 2 Arena-Hard  MT-Bench AlpacaEval 2 Arena-Hard  MT-Bench
LC (%) WR(%) WR(%) GPT-4Turbo GPT-4 LC (%) WR(%) WR(%)  GPT-4Turbo GPT-4
DPO 15.1 125 10.4 59 73 268 249 16.3 6.3 7.6
SimPO 215 2038 16.6 6.0 7.3 32,1 348 21.0 6.6 7.6
w/oLN 119 132 94 3.5 73 191 197 16.3 6.4 7.6

vy=0 168 143 11.7 5.6 69 309 342 20.5 6.6 Tk




Analysis of Length Normalization

e [ength normalization (LN) successfully prevents the model from learning a spurious correlation between

response length and reward.
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Figure 2: Effect of length normalization (LN). (a) Relationship between reward margin and length
difference between winning and losing responses. (b) Spearman correlation between average log
probability and response length for SimPO. (¢) Spearman correlation for SImPO without LN.



The Impact of Target Reward Margin (y)

Increasing y improves the model's ability to correctly rank responses.
However, an excessively large margin can degrade overall generation quality, indicating a trade-off between
reward separation and maintaining a well-calibrated model.
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Figure 3: Study of the margin v. (a) Reward accuracy and AlpacaEval2 LC win rate under different

v values. (b) Reward difference distribution under different y values. (c) Log likelihood distribution
on chosen responses under different ~y values.



SimPO vs. DPO on Efficiency & Stability

SimPO is significantly more compute and memory efficient than DPO due to its reference-free design.
Although without KL regularization term, SimPQ's policy remains stable and does not diverge excessively
from the initial model when using a small learning rate
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Figure 5: Comparison between SimPO and DPO (continued). (a) With different 5 in DPO and
SimPO, KL divergence from the policy model to the reference model on y,,. (b) AlpacaEval2 LC
win rate of DPO and SimPO with different /3. (c) Runtime and memory usage for DPO and SimPO.



Q&A

e (Q: Why does SimPO requires a much larger beta than DPO?
O  SimPO uses a length-normalized average log-likelihood as reward and removes the reference model, so

reward gaps and per-example gradients are much smaller in scale; a larger B is therefore needed to bring the
Bradley—Terry logits into a useful range. In contrast, DPO multiplies by a log-ratio to a reference policy (and
B also controls the KL strength), so practical B values are much smaller.
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State-of-the-art Al is built on...

'

Pre-training

Task A
Task B
Task C

Instruction tuning

RLHF



RLHF

Step 1: Collect preference feedback and train  Step 2: Fine-tune the policy LM against the
a reward model reward models using RL
Prompt:

What are the 3 most common gasses in earth’s atmosphere?

Sampled Prompt: Does water boil quicker at high altitudes?

LM outputs: P P 9 9

The atmosphere of Earth is a The atmosphere is commonly v : :
Q layer of gases retained by 0 known as air. The top gases It takes Ionger for water to boil at h'gh

Earth’s gravity... by volume that dry air ... @ 5 altitudes. The reason is that water boils at

a lower temperature at higher altitudes.

The air that surrounds the The atmosphere of Earth is PPO P 9
e planet Earth contains various the layer of gases, generally Preference Reward: - 0.35

gases. Nitrogen... known as air...

A
]Update policy with rewards ]

Human Feedback

@ 0>-0:=0-0 — %PreferenceRM



Problem 1: Challenging overall quality comparation

Hard to compare LM outputs with a mixture of diverse undesired behaviors

Output A:
* Sentence 1 - Factual [good] but informative [bad]

* Sentence 2 - ... Unreliable human

feedback
Output B:

* Sentence 1 - Informative [good] but verifiable [bad]

* Sentence 2 - ...



Problem 2: Sparse reward for training

Sampled Prompt: Does water boil quicker at high altitudes?

l

\é"

It takes longer for water to boil at high
@ -5 altitudes. The reason is that water boils at

ailower tmperatue at hiphesaltitudes: Single holistic reward for the full output

PPO
Preference Reward: - 0.35

A
]_Update policy with rewards |

Unreliable RL training



Fine-grained feedback is more explicit and reliable

Prompt:
What are the 3 most common gasses in earth’s atmosphere?

LM output:
The atmosphere of Earth is a layer of gases retained by Earth’s Localizing
gravity. The most common gas, by dry air volume, is nitrogen. |:> feedback /reward
The second most is oxygen. The third most is carbon dioxide.
Fine-Grained Human Feedback
% Relevance RM
Irrelevant / Redundant
Unverifiable / Untruthful @ i % Factuality Hi |:> Categorizmg
feedback/reward
Missing The third most is Argon. @ termation
; Completeness RM




Fine-grained feedback is more explicit and reliable

Step 1: Collect fine-grained feedback and Step 2: Refine the policy LM against the
train reward model reward model using RL
Prompt:
What are the 3 most common gasses in earth’s atmosphere? Sampled Prompt: Does water boil quicker at high altitudes?
LM output: 1/ Belevant: + 0.3 Factual: - 0.5‘}
The atmosphere of Earth is a layer of gases retained by Earth’s It takes \longer for water to boil at high
gravity. The most common gas, by dry air volume, is nitrogen. —> altitudes.'The reason is that water boils at
The second most is oxygen. The third most is carbon dioxide. PPO a lower temperature at higher altitudes.

A (Relevant: + 0.3 Factual: + 0.5 Info. complete: + 0.3

Fine-Grained Human Feedback | ,
@ Relevance RM | Update policy with rewards |

Irrelevant / Redundant

Unverifiable / Untruthful

Information
Missing The third most is Argon. %
g v Completeness RM



Task 1: Detoxification

* Explore learning with dense (sentence-level) reward compared to holistic
reward from a single reward model that measures toxicity (O-1).

* Use perspective APl as reward model.

e Data: RealToxicityPrompts (prompts known to easily elicit problematic LM
generations)

* Initial policy model: GPT2-large



Result

* The toxicity score is reported as the max score among 4 sampled model
outputs, averaged over all test input prompts.

Max Toxicity
Perplexity (PPL)

GPT-2  Hol. RLHF  F.G. RLHF GPT-2  Hol. RLHF  F.G. RLHF



Task 2: Long-form QA

* Task input: A question and a set of knowledge passages
e Data: QA-FEEDBACK (based on ASQA)

* Initial policy model: T5-large supervised fine-tuned with 1K examples (SFT)



Human evaluation

Cl: irrelevance, repetition, and incoherence error C2: incorrect or unverifiable facts
0.58 0.22
0.204
0.56 0.556 0.2

0.165

0.148

Pref. RLHF |F.G. RLHF

Error Rate

0.541
0.54 0.18
0.52 0.16
0.5 0.14
0.48

Pref. RLHF | F.G. RLHF 0:12

C3: information completeness

FGRLHFvs. | Win | Tie  Lose Fine-grained RLHF outperforms SFT and

SFT 23.0% | 655% 11.5% preference RLHF on all error type
Pref. RLHF | 19.5% | 71.0%  9.5%




Summary

* Fine-grained RLHF enables LM training and learning from dense rewards
associated with different feedback types.

* Learning with fine-grained reward functions leads to improved performance
in long-form generation and allows LM behavior customization.

Question

* |f segment-level rewards and multi-aspect heads are trained on human-annotated spans,
how robust is the method to label sparsity and annotator disagreement, and can the
model learn to generate its own proxy spans (via uncertainty/attribution) that improve the
reward models without additional human labels?

* How do conflicts between fine-grained reward models (e.g., relevance vs. completeness)
affect the stability and generalization of the trained LM ?



