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What kind of large language models do we want?

•The Prompt (User Request): "Explain gravity to a 6-year-old."

Output from a Base Language Model (Pre-trained):

"Gravity is a fundamental force of nature by which all 

things with mass or energy—including planets, stars, galaxies, 

and even light—are attracted to one another. In general 

relativity, gravity is described as a consequence of the 

curvature of spacetime caused by the uneven distribution of 

mass..."

Factually correct.  

BUT... it ignores the instruction "to a 6-year-old." ❌ 

Output from an Instruct Model (After RLHF):

"Imagine the Earth is a giant trampoline! Because 

it's so big, it pulls everything toward its middle. This 

pulling power is called gravity. It’s what keeps your feet 

on the floor so you don't float away, and it’s what makes 

an apple fall down from a tree instead of up!"

Directly follows the instruction.

Aligned with what the user actually wanted.  ✅



What kind of large language models do we want?
•This scale-up cannot automatically align with human preferences.



The Solution: A 3-Step Alignment Process

•Reinforcement Learning from Human Feedback (RLHF)

Step 1: Supervised Fine-Tuning (SFT) 

Step 2: Train a Reward Model (RM) 

Step 3: Optimize Policy using RL (PPO) 



Step 1: Collect Demonstrations & Train SFT Policy

•Goal: Teach the model the desired style of answering instructions.

Input: Sampled prompts from: (1) Prompts written by 40 
human labelers and (2) Prompts submitted via the OpenAI API. 

Action: A human labeler demonstrates the desired, 
high-quality output behavior for that prompt.

Output: This creates a dataset of human demonstrations 
(approx. 13k prompts).

Training: This curated dataset is used to fine-tune the 
pre-trained GPT-3 model using standard supervised learning.



Step 2: Collect Comparisons & Train Reward Model
•Goal: Train a "judge" (the RM) to learn what humans prefer.

Input: Sample a prompt and use the SFT model to generate multiple (K=4 to K=9) 
different outputs for that single prompt.

Human Action: A labeler is shown all K outputs and ranks them from best to 
worst.

Output: A new dataset of human preference data (33k training prompts). This 
data is structured as comparisons (e.g., for Prompt X, Output A is preferred > 
Output C).

Training: Train a separate Reward Model (RM). The RM takes any output and 
returns a "reward" predicting how much a human would prefer that output.



Step 3: Optimize Policy via Reinforcement Learning (PPO)
•Goal: Use the "judge" (RM) to teach the SFT model how to generate 

better answers.

Action: The policy (SFT model) receives a new unseen prompt from the 
dataset and generates an output.

Reward: The Reward Model analyzes the prompt and the policy's 
response. It calculates a scalar reward score for that response.

Learning: This reward signal is fed back to the policy. The policy's weights 
are then updated using the PPO (Proximal Policy Optimization) algorithm 
to maximize the reward it receives from the RM.



Step 3.5: Proximal Policy Optimization (PPO)

•The Role of PPO: 
Constrained Optimization & Preventing Reward Hacking

•How PPO Solves This (The KL Constraint)?:
Maximize the score from the Reward Model, BUT do not become too different 

from the original SFT model.

•The Final Objective:
Final Score = (Reward_from_RM) - (KL_Penalty_Score) 
                                Be helpful          Stay sane and coherent



Step 4: Final Model -- PPO-ptx (InstructGPT) 

• "Alignment Tax": 
The model lost capability in order to "buy" alignment. It was forgetting some of its general 
knowledge.

• "PPO-ptx" Solution:
"mixed in" the gradients from the original pre-training dataset (the general internet text 
GPT-3 was first trained on).

•The Final Objective:
Final Score = (Reward_from_RM) - (KL_Penalty_Score) + (Pre-training Objective Bonus)
                                Be helpful                   Stay sane and coherent        Don't forget general knowledge



Main Result 1: Humans Vastly Prefer InstructGPT

• Key Result: Outputs from the 1.3B InstructGPT model were preferred by 
labelers over outputs from the 175B GPT-3 model.

• Alignment training is significantly more effective and parameter-efficient 
than simply scaling the model size.



Main Result 2: Improvements in Helpfulness & Honesty

More Helpful (Following Instructions):

•More likely to attempt the correct instruction.

•Better at following explicit constraints given in the prompt (e.g., "Write this in two paragraphs").

•More likely to use language appropriate for a customer assistant.

More Honest (Fewer Hallucinations):

•On closed-domain tasks (like summarization), the base GPT-3 model "hallucinates" over 40% of the time.

•The alignment process cut this hallucination rate.



Main Result 3: Improvements in Truthfulness 
& Harmlessness

Honesty (Truthfulness):

•On the TruthfulQA benchmark, which tests a model's tendency to mimic human falsehoods, 

the InstructGPT were significantly more truthful than GPT-3.

Harmlessness (Toxicity):

•On the RealToxicityPrompts dataset, models were tested for toxic output generation.

•When instructed to be "respectful," InstructGPT generated about 25% fewer toxic outputs 

than the base GPT-3 model.



Q & A

• This seems hard to scale because it requires so much human labeling. 
Can we just train an "AI feedback model" and learn from that?





Overview of Framework



RLHF Preliminaries: Reward Modeling

● Reward Modelling Phase in RLHF:

○ Bradley-Terry (BT) model



RLHF Preliminaries: Policy Optimization

● PPO objective function



Deriving the DPO Objective

● Following prior work, the optimal solution to Eq. 3 is:

● Reparameterizing the reward function in terms of the policy:



Deriving the DPO Objective



Experimental Setup: Tasks & Metrics

● Dataset
○ IMDb Sentiment Generation
○ TL;DR Summarization
○ Anthropic Helpful & Harmless (HH)

● Evaluation
○ IMDb: Reward-KL Frontier.
○ TL;DR summarization: win rate vs. human-written summaries, using GPT-4 as the 

evaluator.
○ HH dialogue: win rate vs. the chosen response baseline, evaluated by GPT-4.



Experimental Setup: Base Models

● Base model:
○ IMDb: GPT-2-large.
○ TL;DR: an SFT model fine-tuned on human-written forum post summaries.
○ HH: Pythia-2.8B



Results: Sentiment & Summarization

● DPO is a more efficient optimizer than PPO, achieving a better reward-KL tradeoff on the sentiment task.
● On summarization, DPO not only achieves a higher peak win rate but is also significantly more robust to 

changes in sampling temperature.



Results: Dialogue Task

● DPO is the only efficient method that improves upon the dataset's preferred responses, matching the 
performance of the computationally expensive "Best of 128" baseline.

● The training process is highly stable, with DPO converging quickly to its peak performance and maintaining it 
throughout training.



Results: Generalization & Evaluator Agreement

● DPO demonstrates better generalization than PPO, maintaining a higher win rate on an out-of-distribution 
dataset.

● The use of GPT-4 as an evaluator is validated, as its judgments show a high level of agreement with human 
preferences.



Q & A

● Q: Is there a downside to DPO's simplicity? Since it learns directly from human feedback, is it more likely to 
copy errors in that data.
○ Yes, its simplicity creates trade-offs. DPO's direct fitting approach makes it sensitive to noise and biases 

in the preference data, as it can directly propagate these errors into the policy. While its gradient 
weighting offers some mitigation, it doesn't solve the issue. Performance also critically depends on the 
quality of the reference policy and the tuning of β.

● Q: How sensitive is DPO to violations of the Bradley–Terry assumption and to the choice of reference/β
○ The DPO loss is derived from the Bradley-Terry model, so significant violations of this assumption can 

misspecify the objective and bias the results. 
○ Performance is very sensitive to the choice of π_ref, making a high-quality, distribution-matched 

reference policy essential. 
○ The β is critical as it controls the KL-regularization strength: a large β results in a conservative policy 

close to the reference, while a small β allows more aggressive fitting to preferences, risking drift and 
overfitting.





Motivation: Overcoming the Limitations of DPO

● Motivations
○ DPO's reliance on a reference model creates computational overhead and a mismatch between 

the training objective and the inference-time generation metric.
○ There is a need to align the reward formulation directly with the model's generation metric 

(average log-likelihood) to improve performance and efficiency.
● Contributions

○ SimPO: A simple, reference-free preference optimization algorithm.
○ Length-Normalized Reward: A novel reward formulation to prevent length bias.
○ Target Reward Margin: A mechanism to enhance the model's ability to distinguish between 

winning and losing responses.



SimPO's Core Idea: Length-Normalized Reward

● The reward is directly aligned with the generation metric: average log-likelihood.



The SimPO Objective: Enforcing a Reward Margin

● A target reward margin, 𝛾 >0, is added to the Bradley-Terry objective.
● This encourages the winning response's reward to exceed the loser's by at least γ, which improves 

generalization.



DPO vs. SimPO

● Across both AlpacaEval 2 (LC) and Arena-Hard benchmarks, SimPO consistently and significantly 
outperforms DPO across all tested models and setups.



Experiment Setup: The Base Configuration

● Goal: To test performance starting from a standard pre-trained model.
● Models:

○ Llama-3-8B
○ Mistral-7B

● Datasets & Pipeline:
○ Step 1 : Fine-tune the base model on UltraChat-200K to create a supervised fine-tuned (SFT) model.
○ Step 2 : Perform preference optimization (e.g., SimPO, DPO) on the SFT model using the 

UltraFeedback dataset.



Experiment Setup: The Instruct Configuration

● Goal: To test performance starting from a powerful, instruction-tuned model.
● Models:

○ Llama-3-8B-Instruct
○ Mistral-7B-Instruct-v0.2

● Dataset & On-Policy Generation:
○ To mitigate distribution shift, a new preference dataset is generated "on-policy".
○ Process:

■ Use the Instruct models to generate 5 responses for each prompt from UltraFeedback.
■ Use an external reward model (PairRM) to score the 5 responses.
■ The highest-scoring response becomes the 'winner' (yw) and the lowest-scoring 

becomes the 'loser' (yl).



Evaluation: Benchmarks & Metrics

● Models are assessed on three benchmarks.



Main Results: SimPO Consistently Outperforms Baselines

● In all four settings, SimPO achieves the highest performance on the benchmarks of AlpacaEval 2 and 
Arena-Hard, significantly surpassing DPO and other preference optimization methods.



Ablation Study

● Confirm that both of SimPO's key design choices are crucial. Removing length normalization (w/o LN) causes 
the most significant performance drop, while setting the reward margin γ to 0 also degrades performance.



Analysis of Length Normalization

● Length normalization (LN) successfully prevents the model from learning a spurious correlation between 
response length and reward.



The Impact of Target Reward Margin (γ)

● Increasing γ improves the model's ability to correctly rank responses. 
● However, an excessively large margin can degrade overall generation quality, indicating a trade-off between 

reward separation and maintaining a well-calibrated model.



SimPO vs. DPO on Efficiency & Stability

● SimPO is significantly more compute and memory efficient than DPO due to its reference-free design.
● Although without KL regularization term, SimPO's policy remains stable and does not diverge excessively 

from the initial model when using a small learning rate



Q & A

● Q: Why does SimPO requires a much larger beta than DPO?
○ SimPO uses a length-normalized average log-likelihood as reward and removes the reference model, so 

reward gaps and per-example gradients are much smaller in scale; a larger β is therefore needed to bring the 
Bradley–Terry logits into a useful range. In contrast, DPO multiplies β by a log-ratio to a reference policy (and 
β also controls the KL strength), so practical β values are much smaller.





State-of-the-art AI is built on…

Pre-training Instruction tuning RLHF



RLHF

Step 1: Collect preference feedback and train 
a reward model

Step 2: Fine-tune the policy LM against the 
reward models using RL



Problem 1: Challenging overall quality comparation

Hard to compare LM outputs with a mixture of diverse undesired behaviors

Output A:

• Sentence 1 - Factual [good] but informative [bad]

• Sentence 2 - …

Output B:

• Sentence 1 - Informative [good] but verifiable [bad]

• Sentence 2 - …

Unreliable human 

feedback



Problem 2: Sparse reward for training

Single holistic reward for the full output

Unreliable RL training



Fine-grained feedback is more explicit and reliable

Localizing 
feedback/reward

Categorizing 
feedback/reward



Fine-grained feedback is more explicit and reliable

Step 1: Collect fine-grained feedback and 
train reward model

Step 2: Refine the policy LM against the 
reward model using RL



Task 1: Detoxification

• Explore learning with dense (sentence-level) reward compared to holistic 
reward from a single reward model that measures toxicity (O-1).

• Use perspective API as reward model.

• Data: RealToxicityPrompts (prompts known to easily elicit problematic LM 
generations)

• Initial policy model: GPT2-large



Result

• The toxicity score is reported as the max score among 4 sampled model 
outputs, averaged over all test input prompts.



Task 2: Long-form QA

• Task input: A question and a set of knowledge passages

• Data: QA-FEEDBACK (based on ASQA)

• Initial policy model: T5-large supervised fine-tuned with 1K examples (SFT)



Human evaluation

Fine-grained RLHF outperforms SFT and 
preference RLHF on all error type



Summary

• Fine-grained RLHF enables LM training and learning from dense rewards 
associated with different feedback types.

• Learning with fine-grained reward functions leads to improved performance 
in long-form generation and allows LM behavior customization.

Question
• If segment-level rewards and multi-aspect heads are trained on human-annotated spans, 

how robust is the method to label sparsity and annotator disagreement, and can the 
model learn to generate its own proxy spans (via uncertainty/attribution) that improve the 
reward models without additional human labels?

• How do conflicts between fine-grained reward models (e.g., relevance vs. completeness) 
affect the stability and generalization of the trained LM？


