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Reinforcement Learning from Verified Rewards (RLVR)

e Definition: RL where reward signals come from automatic verification (e.g.,
math correctness, code unit tests, output format).
e This session — Four Perspectives:

(@)

(@)
(@)
(@)

DeepSeek-R1: RLVR alone can drive emergent reasoning and enable distillation
DAPO: An open-source RLVR system to improve reproducibility

Yue et al.: RLVR mainly re-weights existing abilities rather than creating new ones
Chu et al.: Compares SFT vs RLVR -> RLVR generalizes better
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Paper Overview

e Goal: Enhance reasoning in large language
models

e Key Contributions
o DeepSeek R1-Zero: RL alone — emergent reasoning
o DeepSeek R1: Cold Start + multi-stage RL — usable
model
o Distillation: Transfer reasoning to smaller models




Core Algorithm: Group Relative Policy Optimization
(GRPO)

e GRPO vs PPO Toaro® =€~ PQ. (0]~ (O19)
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DeepSeek-R1-Zero: RL on Base Model (No SFT)

e Training Setup: Base model trained with RL only, no supervised fine-tuning

e Algorithm: GRPO (no critic, group-based rewards)

e Tasks: Mix of math (AIME 2024, MATH), coding challenges (Codeforces,
LiveCodeBench), and QA benchmarks — all with automatically checkable
answers (for reward signals)

e Reward Modeling

o Accuracy: correct final answer / passed test cases
m Rewards only depend on final answer — model must explore its own reasoning steps
o Format: reasoning inside <think>...</think>, final answer in <answer>...</answer>



DeepSeek-R1-Zero: Performance

DeepSeek-R1-Zero AIME accuracy during training

e Steady Improvement (Figure 2)
o 15.6% — 71% pass@1

e Majority Voting Boost (Table 2)
o 86.7% (surpasses OpenAl 01-0912)
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Figure 2: AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample 16 responses
and calculate the overall average accuracy to ensure a stable evaluation.
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Table 2: Comparison of DeepSeek-R1-Zero and OpenAl o1 models on reasoning-related benchmarks.




DeepSeek-R1-Zero: Observations

e Emergent Behaviors
o Longer “thinking chains” (self-extended reasoning length)
o “Aha moments”: stop, reflect, restart with a new path

e Limitations
o Poor readability (messy reasoning steps)

o Language mixing (Chinese + English in the same response)
o Not user-friendly — motivates DeepSeek-R1 with Cold Start



DeepSeek-R1: Adding “Cold Start” + Multi-Stage RL

e Motivation: Improve readability & alignment beyond R1-Zero
e Stage 1: Cold Start

o Fine-tune base model with curated long CoT samples
o Advantages: Readability & Potential

e Stage 2: RL for Reasoning
o Rewards: accuracy + language consistency
e Stage 3: Rejection Sampling + SFT
o Generate reasoning data via RL checkpoints
o Filter & retain only correct outputs
o Combine with curated non-reasoning tasks (QA, writing, translation)
o Scale: ~800k total samples — 2 epochs fine-tuning
e Stage 4: RL for All Scenarios
o Extend beyond reasoning to general helpfulness & harmlessness
o Refines overall alignment + reasoning capability
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Table 4: Comparison between DeepSeek-R1 and other representative models.




Distillation

e Supervised fine-tuning of smaller models using outputs generated by
DeepSeek-R1 (671B)

e Data Source: ~800K samples (reasoning + non-reasoning) distilled from
DeepSeek-R1

e Target Models: Qwen (1.5B—32B) and Llama (8B, 70B) models.

e Key idea: small models fine-tune on R1’s reasoning + answers — inherit
reasoning at lower cost and higher stability



Distilled Model Evaluation
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Table 5: Comparison of DeepSeek-R1 distilled models and other comparable models on reasoning-related
benchmarks.




Significance of Distillation

Efficiency: avoids costly RL

Effectiveness: distilled > direct RL (Qwen-32B: 72.6% vs 47.0%)
Transferability: Works across multiple families (Qwen, Llama, Gemma)
Stability: SFT more reliable than RL

Limitations: reasoning focus, uncertain generalization



Q&A



litl ByteDance | Seed AiR 1444 wwerwwmsn

DAPO: An Open-Source LLM Reinforcement Learning
System at Scale

'ByteDance Seed “Institute for Al Industry Research (AIR), Tsinghua University
*The University of Hong Kong
*SIA-Lab of Tsinghua AIR and ByteDance Seed

Full author list in Contributions




Problem Background &
Motivation



Why Reinforcement Learning for LLM Reasoning?

Test-time scaling (e.g., OpenAl 01, DeepSeek R1) enables longer chain-of-thought
(CoT) reasoning.

Core driver: Large-scale Reinforcement Learning (RL).

RL elicits complex behaviors: self-verification, iterative refinement, reflective

reasoning.
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The Reproducibility Challenge

Problem: Key technical details of state-of-the-art RL systems are not disclosed.
OpenAl 01 and DeepSeek R1 reports omit critical training recipes.

Community faces difficulty reproducing results even with similar base models.




Limitations of Naive GRPO/PPO

Naive GRPO/PPO baselines struggle
on long-CoT tasks:

o Entropy collapse — loss of

exploration

o Reward noise — unstable training
Zero-gradient cases when all samples
are correct/incorrect

o Training instability overall

Trained

Frozen
Models

Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.




The Motivation for DAPO

e Need a reproducible, open-source RL recipe for reasoning LLMs.
e Must directly address four system-level issues:
o Entropy collapse
o Reward noise
o Zero-gradient prompts
o Instability with long CoT
e Goal: Develop an open, scalable RL algorithm that solves these problems.

BytedTsinghua-SIA/
DAPO

An Open-source RL System from ByteDance Seed
and Tsinghua AIR

A5
Contributors
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Issues Stars Forks




Preliminary: PPO & GRPO



PPO: A Classic RL Algorithm

Uses clipped surrogate objective to stabilize training.

Constraints updates with € clipping range.

Works well in general RLHF, but struggles in long-CoT reasoning.
Key limitation: leads to entropy collapse in reasoning tasks

PPO [21] introduces a clipped surrogate objective for policy optimization. By constraining the policy updates
within a proximal region of the previous policy using clip, PPO stabilizes training and improves sample
efficiency. Specifically, PPO updates the policy by maximizing the following objective:
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where (g,a) is a question-answer pair from the data distribution D, ¢ is the clipping range of importance
sampling ratio, and A; is an estimator of the advantage at time step ¢. Given the value function V and the
reward function R, A; is computed using the Generalized Advantage Estimation (GAE) [22]:
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GRPO: Group Relative Policy Optimization

Removes value function, computes advantages relative to group rewards.
For each prompt, sample G outputs and normalize rewards.

Simpler, effective in some settings.

Limitation: still faces zero-gradient issues and training instability

Compared to PPO, GRPO eliminates the value function and estimates the advantage in a group-relative
manner. For a specific question-answer pair (g, a), the behavior policy mg,,, samples a group of ¢ individual
responses {o; }$_,. Then, the advantage of the i-th response is calculated by normalizing the group-level
rewards {R;}L,:

ri = mean({R;}<,)

Ay = ,
¥ std({R:}€.,)

(4)

Similar to PPO, GRPO adopts a clipped objective, together with a directly imposed KL penalty term:
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Two More Design Choices

e Removing KL Divergence:
o In reasoning, model distribution can diverge significantly from base model.
o KL penalty is unnecessary, so DAPO drops it.

e Rule-based Reward Modeling:

o Instead of learned reward models (prone to reward hacking), use task accuracy as reward.
o For math: reward = +1 if correct, —1 if wrong

The use of reward model usually suffers from the reward hacking problem [24-29|. Instead, we directly use
the final accuracy of a verifiable task as the outcome reward., computed using the following rule:

—1. otherwise

1. is_equivalent(7.y)
R(.y) = { -eq (¥.y)



DAPO Algorithm Overview



From GRPO to DAPO

e GRPO (Group Relative Policy Optimization):
o Samples G outputs per prompt.
o Normalizes rewards within the group to compute advantage.
e Problem: Still suffers from entropy collapse, zero gradients, and instability in
long-CoT RL
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Core Idea of DAPO

Decoupled Clip: separate lower and higher clipping bounds (¢_low, € high).
Dynamic Sampling: filter out zero-gradient prompts (all correct or all wrong).
Token-Level Loss: assign gradient at token level, not just sequence level.
Overlong Reward Shaping: handle truncated outputs with filtering and soft
penalties
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(a) Mean up-clipped probability. (b) The proportion of samples with an accuracy of 1.

Figure 3 The mean up-clipped probability as well as the ratio of prompts with accuracy=1.



Algorithm Workflow

e Sample batch of prompts.
e For each prompt, sample G responses with old policy.
Compute rewards using rule-based correctness.
e Dynamic Sampling: keep only non-trivial samples (not all correct/incorrect).
e Compute token-level advantages.
e Update policy with decoupled clipping + reward shaping.
AT, DAPG Dassomie Cmp A Dy iaaia WAitpliog oty O ation
R T (SO (SR g ) se————————

1: for step = 1.....M do
2z Sample a batch D; from D

Update the old policy model 7g,,, + mg
Sample G outputs {0;}2, ~ 7g,,.(+|g) for each question g € D,

Compute rewards {r; }Z, for each sampled output o; by running R

Filter out 0; and add the remaining to the dynamic sampling buffer (Dynamic Sampling Equation (11))
if buffer size ny < N:
continue
For each o; in the buffer, compute .Al,', for the t-th token of o; (Equation (9))
10:  for iteration =1, ..., u do
11: Update the policy model 7y by maximizing the DAPO objective (Equation (8))
Output 7y




One-Sentence Summary

e DAPO = GRPO backbone + engineered fixes for long-CoT RL.
o Exploration preserved (Clip-Higher).
o Efficiency improved (Dynamic Sampling).
o Gradients assigned fairly (Token-Level Loss).
Stability ensured (Overlong Reward Shaping).



Four Key Technigues In
DAPO



Technique 1: Clip-Higher (Prevent Entropy Collapse)

e Problem: In PPO/GRPO, clipping ratio limits low-probability “exploration
tokens” more severely than high-probability tokens.
e Solution: Decouple clipping bounds:
o Keep ¢_low (stability).
o Raise € _high (allow exploration tokens to increase).
e Effect: Higher entropy, more diverse samples.
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Technique 2: Dynamic Sampling (Avoid Zero Gradients)

e Problem: If all G responses for a prompt are correct or incorrect — advantage
= 0, no learning signal.

e Solution: Oversample & filter to keep only prompts with mixed outcomes.

e [Effect: Every batch contains useful gradients.
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Technique 3: Token-Level Policy Gradient Loss

e Problem: GRPO averages loss per sequence, so long responses get diluted
signal; encourages gibberish and repetition.
e Solution: Compute loss at token level — each token’s impact counted directly.
o Effect:
e Long reasoning steps reinforced properly.
Redundant text penalized effectively.

We introduce a Token-level Policy Gradient Loss in the long-CoT RL scenario to address the above limitations:
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Technique 4: Overlong Reward Shaping

e Problem: Truncated outputs at max length get harsh penalties — introduces
reward noise.

e Solution:
o  Overlong Filtering: mask losses for truncated samples.
o Soft Punishment: apply gradual, length-aware penalty.
o Effect: Stable training, better AIME accuracy.
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Experiments & Ablations



Experimental Setup

Task: Mathematical reasoning (AIME 2024 benchmark).

Base model: Qwen2.5-32B.

Framework: verl (open-source RLHF/RL framework).

Evaluation: avg@32 (repeated sampling x32 for stability).

Training highlights:

Learning rate = 1e-6, AdamW optimizer.

Prompt batch size = 512, 16 responses per prompt.

Max generation length = 20,480 tokens (with 4,096-token soft cache)



Main Results

e DAPO reaches 50 points on AIME
2024, outperforming

Deepseek'R1 -ZerO (47) Table 1T Main results of progressive techniques applied to DAPO
e Achieves this with 50% fewer training _—
Model AIME24,, .5
Steps. DeepSeek-R1-Zero-Qwen-32B 17
. . -R1-Zero-Qwen- 7
e Starting from Naive GRPO (30 e _
. ) Naive GRPO 30
pOIntS)- t Overlong Filtering 36

o Overlong Filtering — 36
Clip-Higher — 38

Soft Overlong Punishment — 41
Token-Level Loss — 42

Dynamic Sampling (DAPQO) — 50

+ Clip-Higher 38
+ Soft Overlong Punishment 11
+ Token-level Loss 12
}

+ Dynamic Sampling (DAPO) 50

O
O
O
O



Training Dynamics

e Metrics monitored:
o Response length (exploration space).
o Reward score (training stability)
o  Generation entropy (exploration
balance)
o Mean probability (distribution
sharpness)

e Observation: DAPO maintains
stable upward trends across
metrics e
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Figure 7 The metric curves of response length, reward score, generation entropy, and the mean probability of DAPO,

which show the dynamics of RL training and serve as essential monitoring indicators to identify potential issues.



Dataset & Reproducibility



Dataset Construction

e Source: Web scraping + official math competition problems.

e Challenge: Math answers appear in diverse formats (fractions, radicals,
formulas).

e Solution: Answer transformation — convert outputs into integers for consistent
rule-based evaluation.

e Example:

e Original: 11-2611 - 2\sqrt{6}11-26

e Transformed: ask for k+m+nk+m+nk+m+n — final answer = 19



DAPO-Math-17K Dataset

Contains 17K prompts, each
with an integer-form answer.
Designed to minimize reward
hacking and parser errors.
Provides a clean benchmark
for mathematical reasoning
RL.

Released publicly for
community use.

Reproducibility &
Open-Source Release
Codebase: released via verl framework
DAPQO An Open-Source LLM Reinfor...
Dataset: DAPO-Math-17K available for
public use.

Training details fully disclosed
(hyperparameters, evaluation protocol).
Goal: lower the barrier for large-scale
LLM RL research.



Training Dynamics &
Emergent Behaviors



Training Dynamics: Key Metrics

Response length — exploration space for reasoning.

Reward score — stability of learning process.

Entropy — balance between exploration vs. exploitation.

Mean probability — sharpness of policy distribution.

Observation: DAPO maintains healthy upward trends across metrics



Emergent Reasoning
Behaviors

Early training: no reflection or
backtracking in reasoning.

Later training: model begins to
self-check and revise steps.
Indicates RL can induce new
reasoning modes, not present in
the base model.

Table Example: model gradually
learns reflection in solving
geometry problems

Question:

Given that the base ABC of the tetrahedron S — ABC is an equilateral triangle, the projection H
of point A on the face SBC is the orthocenter of BC, the dihedral angle H — AB - C' is 30°,
and SA = 2, find the volume of the tetrahedron. The answer is in the form ,% so give the value of
k +m.

Response:
Let us consider the given problem: We need to determine ...

Next, let S have coordinates (xg, Yy, ). Since SA = 2, the distance formula gives us
v ] y0)* + (20) 2, so we can write zj + yj + 25 = 4. Now, remember that H is
the orthogonal projection of

However, moment, let’s rethink about the dihedral angle involving planes in a more thoughtful

geometric way. Consider the plane oy = ABC, which lies entirely on the xy coordinate plane (as
z = 0). Let the plane o, = SBC. The point A projected perpendicularly to plane a, lands on H.
The line | = AB ...

Table 2 Emergence of Reflective Behavior in Reinforcement Learning




Conclusion & Takeaways



Key Contributions of DAPO

e Algorithm: Decoupled Clip & Dynamic Sampling Policy Optimization.

e Techniques: Four innovations — Clip-Higher, Dynamic Sampling,
Token-Level Loss, Overlong Reward Shaping.

e Performance: Achieves 50 points on AIME 2024 with 50% fewer steps than
DeepSeek-R1-Zero.

e Reproducibility: Fully open-sourced code, dataset, and training details



Broader Impact & Outlook

e Reinforcement learning for LLMs is both a research challenge and a systems
engineering problem.

e DAPO lowers the barrier for future research: math, code, theorem proving,
reasoning agents.

e Opens the door for the community to replicate, benchmark, and extend
reasoning-focused RL.

e DAPO = Areproducible recipe for scaling LLM reasoning with reinforcement
learning.



Q&A



Does Reinforcement Learning Really Incentivize Reasoning
Capacity in LLMs Beyond the Base Model?

Yang Yue'!*’, Zhiqi Chen'*, Rui Lu!, Andrew Zhao', Zhaokai Wang?, Yang Yue',
Shiji Song', and Gao Huang'*
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! LeapLab, Tsinghua University 2 Shanghai Jiao Tong University
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Introduction & Background



Motivation
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LLMs are increasingly applied to
reasoning tasks (math, coding, logical
reasoning).

Traditional instruction-tuning relies on
human annotations.

RL with Verifiable Rewards (RLVR):
scalable, automatic, reward-based
training.

Belief in the field: “RLVR enables LLMs
to develop novel reasoning patterns,
similar to how RL discovered new
strategies in AlphaGo.”



Research Question

e Key Question:
o Does RLVR actually create new reasoning abilities for LLMs?

o Or... does it only make models sample existing reasoning paths more
efficiently?

o Answering this requires examining the reasoning capacity boundary of
both base models and RLVR-trained models.




Methodology &
Experimental Setup



Evaluation Metric: pass@k

pass@k: A problem is considered solved if any of k sampled outputs is
correct.

Small k (e.g., k = 1): reflects average-case accuracy.

Large k (e.g., k = 128, 256): reveals the reasoning capacity boundary.
More robust than greedy decoding or best-of-N. y Omni-MATH-Train

/'
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Tasks & Benchmarks

Mathematics: GSM8K, MATH500, Minerva, Olympiad, AIME24, AMC23
Code Generation: HumanEval+, MBPP+, LiveCodeBench

Visual Reasoning: MathVista, MathVision

Covers multiple domains to rigorously test reasoning abilities.

N [l B

X+y=2 Visual
Math Programming Reasoning




Models & Algorithms

e Models: Qwen2.5 (7B, 14B, 32B), LLaMA-3.1 (8B)
e RL Algorithms: PPO, GRPO, Reinforce++, RLOO, ReMax, DAPO
o Setup:
o Base models vs RLVR-trained models
o Zero-shot prompts for fairness (no few-shot examples)
o Consistent hyperparameters (temp = 0.6, top-p = 0.95, max length

Table 1: Experimental setup for assessing RLVR’s effect on the reasoning boundaries of LLMs.

Task Start Model RL Framework RL Algorithm(s) Benchmark(s)

LLaMA-3.1-8B SimpleRLZoo GSMS8K, MATH500

Mathematics Qwen2.5-7B/14B /32B-Base Oat-Zero GRPO Minerva, Olympiad
Qwen2.5-Math-7B DAPO AIME24, AMC23
Qwen2.5-7B-Instruct Code-R1 LiveCodeBench

: S ) ‘ GRPO )
DeepSeek-R1-Distill-Qwen-14B DeepCoder HumanEval+

Visual Reasoning Qwen2.5-VL-7B EasyR1 GRPO MathVista

MathVision
Qwen2.5-7TB-Base PPO, GRPO Omni-Math-Rule
Deep Analysis Qwen2.5-7B-Instruct VeRL Reinforce++ M A..TI({SOO
DeepSeek-R1-Distill-Qwen-7B RLOO, ReMax, DAPO o -

Code Generation




Core Findings



RLVR boosts small-k but narrows reasoning boundary

e Atsmallk (e.g., k=1), RLVR-trained models outperform base models.
e Atlarge k (e.g., k=128/256), base models surpass RLVR-trained models.

e RLVR = more efficient sampling, but with reduced coverage of solvable
problems.

Base Model Omni-MATH-Train
More

Efficient Sampling

8 —i— Qwen2.5-7B
Reduced Scope of v K —*— GRPO-stepl50

>
/ Reasoning Capacity e —+—  GRPO-step300

/\ GRPO-step450

LA 2 4 8 16 32 64128256
0 0 Number of Samples k




Reasoning paths already exist in the base model

e Manual inspection: base models can already generate correct
chains-of-thought.

e Perplexity analysis: RLVR outputs lie within base model’s distribution.

e RLVR does not create new reasoning paths.
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Different RL algorithms show similar limitations

e Compared algorithms: PPO, GRPO, Reinforce++, RLOO, ReMax, DAPO.

e Defined metric: Sampling Efficiency Gap (ASE) = pass@1 (RL) — pass@256
(base).

e All algorithms — similar performance; ASE remains large.

e Conclusion: Current RL methods are far from optimal.

Omni-MATH-Train Omni-MATH-Test (In Domain) MATH500 (Out of Domain)
4 069 [F=T=1"T=T"T"T"T7 £ 097

i 067 | Agp=0.410 f 96 |3 Qwen2.5-7B
[f osesi H b GRPO

PPO
ReMax
RLOO

0.2 A [ Reinforce++
0.1 s 3 DAPO

1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64128256 1 2 4 8 16 32 64 128256
Number of Samples k Number of Samples k Number of Samples k

0.3y

Figure 8: Different RL algorithms. We use a folded y-azis range to better highlight the details at k = 1 and 256.
Unfolded version can be found in Figure 14. The detailed values for each point at pass@1 and pass@256 are provided
in Table 2 and Table 3.




Distillation genuinely expands reasoning ability

e RLVR: improves efficiency but bounded by
base model capacity.

e Distillation: transfers new reasoning patterns
from stronger teacher.

e Distilled models show higher pass@k curves
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across all k.
e Key difference: Distillation expands reasoning Base
RL
scope, RLVR does not. = Instruct

Distill

1 2 4 8 16 32 64 128
Number of Samples k

Figure 7: Coverage comparison
of base, Instruct, RLVR, and
distilled models.




Conclusion & Discussion



RLVR boosts small-k but narrows reasoning boundary

e RLVR improves sampling efficiency at small k.

e But it does not introduce novel reasoning
abilities.

e RLVR-trained models remain bounded by their
base models. but BOUNDED EXPANSIVE

e Key limitation: reduced reasoning boundary as -
training progresses.

EFFICIENT




Reasoning paths already exist in the base model

ROADMAP

STEP 1
Better Exploration

STEP 2

Continual Scaling

STEP 3
Multi-turn Interaction

STEP 4

Distillation Integration

Improved exploration strategies in the vast
language space.

Continual scaling of training to avoid capacity
collapse.

Multi-turn agent—environment interactions to
simulate real exploration.

Integration with distillation, which can expand
reasoning boundaries
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SFT Memorizes, RL Generalizes:
A Comparative Study of Foundation Model Post-training

Tianzhe Chu*” Yuexiang Zhai¥*" Jihan Yang® Shengbang Tong*
Saining Xie** Dale Schuurmans*¥ Quoc V. Le* Sergey Levine” YiMa*"




Problem Background &
Motivation



Background

Post-training is crucial for foundation models:

e Supervised Fine-Tuning (SFT) adapts to downstream tasks
e Reinforcement Learning (RL) aligns with outcomes/preferences

Their roles in memorization vs. generalization remain unclear, especially in rule-based and
vision-language reasoning.

Research Questions:

Does SFT mainly memorize training data instead of learning transferable rules?
Can RL drive genuine generalization across unseen tasks or domains?
Is SFT still necessary for RL training to be effective?
How does RL enhance the visual recognition capabilities of VLMs?
Does scaling inference-time computation (verification steps) further improve generalization?
Related Works:
e Prior studies typically focus only on SFT or RL, or on only LLMs or VLMs; few works directly
compare both methods across modalities

e Existing research improved VLMs mainly via SFT data/recipes or encoder design; our work
shows that RL also enhances visual perception and generalization

o s~ w0h =



Recap: Supervised Fine-Tuning (SFT)

What is it?
e Fine-tunes a pre-trained model using labeled data (prompt — expected answer)
Role

e Teaches the model how to adapt to downstream tasks (translation, summarization, QA, ...)
e Enforces consistent format and style in outputs

Strengths @ ) Sunﬁmarize

e Stabilizes output structure e (-
e FEasy to implement with curated dataset ’ ’{ s )/ Clossiy
Pre-training PLM e p - -

fine-tuning

e —— Pretrained Language

Limitations

J \ 3
C— \ ¢
I Model \ Task adapted model
- e \ Generate
- —— - .

~

e Prone to memorization of training examples
e Fails to generalize to unseen rules or domains \ | Annotated task

~ specific dataset
Large generic corpus

—>

=

Task adapted model




Recap: Reinforcement Learning (RL)
What is it?

e Trains the model with a reward signal, not fixed labels
e Example: correct answer -> +10 reward, wrong answer -> -1

Role

e Aligns the model with preferences or outcomes
e Encourages learning of transferable rules and strategies , action

i R!+l
Strengths i _S.. | Environment

e Promotes generalization across unseen tasks/domains
e Can improve underlying capabilities (e.g., visual recognition, reasoning)

A,

Limitations

e Unstable when applied directly (needs SFT as a foundation)
e Requires careful design of reward functions



Preliminaries

E 3

T 5
= arg maXycnn Enr [th() 7‘t] ,wherer: S x A - R

Standard RL Setup: S and A are state space and action space respectively

7" is horizon (max step per episode)

m(a|s) is probability policy that chooses action a in state s
RL for LLMs / VLMs with Verifier: Vocabulary space: V
Input Token: V™, Output Token: V"
State:

Ex: verified v would be "illegal number used oLLM: S — V™

e VLM: § = V™ x O, with O = image space
Action: A=V"
Verifier: VER (Vo t) = (Tt: Vyer,t)

Sequential Revision (multi-turn RL):

n

: : : er 1t .
At step t: v =of || [’UZ”‘, UM where v is system prompt

]k:()’

Each new input = prompt + all previous outputs & verifier feedback



General Points (Points24 Game)

Goal: Test rule generalization in arithmetic reasoning
Set up:

e Input: 4 cards (Text-only GP-L or Vision-Language GP-VL)
e Task: use all 4 cards exactly once to form an equation = 24
e Output: Valid equation string

Variants (for OOD tests):

Q: Compute 24 using these four cards: [5, 4, 10, 7]

e Rule Variations (Text OOD):
o Train: JJQ/K=10
o Test: J=11, Q=12, K=13

Visual Variations (Vision OOD):

e Train: Black suits (&, %)
e Test: Red suits (v, ¢)



General Points (Points24 Game

Q: Compute 24 using these four cards: [5, 4, 10, 7] Verifier Info: wrong illegal number correct answer
calculation used
0 ¢ e oo, alia &
* * Reward: -1 Reward: -5 Reward: +10
o Ah L a"a
"'*1‘ | | |
A2 LA 41 B AR 41 I 51 BT 1047+4+5 (7-4)*10-6 (7-5)¥10+4
/System Prompt (vil) )

[Task Description] You are an expert in {task name}, you are observing {purely language/vision-language
inputs + <image>}. You are currently at {state related info}. Please follow {tasks rules}.

[Output] Your response should be a valid json file in the following format:
{task related information and answer}

Appending previous model and verifier outputs to obtain v{“

(17 R out ver out ver out ver 1 ¢ O e in out ver|t—1
v = [vg", Vg™, v, VYT, .. L, v, v, > v;* = concat (vg, [vR™, v,
Model output (v{"") and Verifier Output (v}¢")

\Hkt\i\ related json outputs}, {You success/fail}. > v, = concat(v", v, 1‘,\”)/




V-IRL (Visual Navigation Task)

Defn: A real-world navigation task that focuses on the model’s spatial reasoning capabilities

Goal: Test spatial reasoning and visual generalization
Set up:

e Environment: Real-world street-view images + text navigation instructions
e Task: Navigate step by step to the target location

Input:

e Text-only instructions (V-IRL-L)
e Street-view images + text (V-IRL-VL) 1 “See Shuka on my right

Variants (for OOD tests):

e Rule Variations (Action Space OOD):
o Train: Absolute directions (west, east, northwest)

{4 by
_H é} i\\7 [OBSERVATION]
“See The Dutch on my right.”
“Left turn to northwest.”

[OBSERVATION]
o L

o Test: Relative directions (left, right, slightly left) [ onriec I
e Visual Variations (Domain OOD) % .l e

o Train: Routes in New York City 5 g
o Test: Routes in other cities (London, Milan, ...) : =




Results

GP = General Point

In-distribution

-L = Language (text)

V-IRL =
Navigation Task

-VL = visual +
language tasks

- - - = Initial
(Llama-3.2-Vision-11
=)

Out-of-distribution

It's Pretrained Model
+ SFT One epoch

Language-Only (Left): In-sample accuracy -> RL < SFT ; Out-sample accuracy -> RL > SFT
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Vision-Language (Right): In-sample accuracy -> SFT <= RL (RL higher robustness) ; Out-sample accuracy -> RL > SFT




Comparison of out-of-distribution performance under rule variants

GP-L VIRL-L GP-VL V-IRL-VL

[

| Il
Init| 11.5% ] 180.8% 11.2% | 35.7%

E O S S I

SFT 3.4% 1.3% 5.6% 2.5%

0O 3 6 9 12 15 0 20 40 60 80 100 0 4 8 12 16 20 0 10 20 30 40 50

RL Performance:

o GP-L: 11.5% -> 15%, VIRL-L: 80.8% -> 91.8%, GP-VL: 11.2% -> 14.2%, V-IRL-VL: 35.7% -> 45%
e All Outperform Initial Baseline!

SFT Performance:

o GP-L: 11.5% -> 3.4%, VIRL-L: 80.8% -> 1.3%, GP-VL: 11.2% -> 5.6%, V-IRL-VL: 35.7% -> 2.5%
e All Underperform Initial Baseline! Memorizes only, fails on OOD



Comparison of out-of-distribution performance for visual variants

V-IRL-VL

3
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2 2 7.5
GFLOPs 1e10

Initialization Previous SOTA

RL Performance:

e GP-VL: 23.6% -> 41.2%, V-IRL-VL: 16.7% -> 77.8%
e All Outperform Initial Baseline!

SFT Performance:

e GP-VL: 23.6% -> 13.7%, V-IRL-VL: 16.7% -> 11.1%
e All Underperform Initial Baseline! Shows that it memorizes only again, fails on OOD



Recognition vs. Success Rate: RL Improves, SFT Degrades (GP-VL)

Rule Variants Visual Variants
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e RL improves both recognition & success rate

o The blue curve shows that as training compute increases, RL improves both success rate and
recognition accuracy.

e SFT shows opposite effect

o The red curve shows that as training compute increases, it decreases both recognition accuracy and
recognition accuracy



RL experiments on GP-L without SFT initialization

SFT is still necessary !
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Key result:

o
(N

All RL runs fail when trained directly
from the base model without SFT
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Why?: The base Llama-3.2 model has poor
instruction-following ability. Without SFT,
it tends to produce long, irrelevant, and
unstructured outputs, which prevents
meaningful reward signals for RL

o
o

00 02 04 06 08 10 12
Computation (GFLOPs) 1e10

Figure 9: RL experiments on GP—-L without SFT initial-
ization. All trials fail due to poor instruction following
Different Learning Rate: all curves quickly capability of the base model.

drop toward zero success rate as
computation increases

SFT is necessary as a warm-up stage to make RL training feasible



More Verification Iterations — Better Generalization

What is Vlter?

It represents the maximum number of
times the model can use the verifier to
revise its output in one episode

e As computation increases(from
transparent to solid), the Both the
OOD Growth and IDG increases

e As viter increases, the curve shift
from left to right (blue to red) ->
OOD Growth increases

Takeaways:

Higher Viter allows the model to not only
remember rules but also adapt to new
ones
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Figure 10: In-distribution vs. OOD performance growth
on GP-L. We record RL experiments with different num-
ber of verification iterations (VlIter) as scaling up training
compute (color transparency).



Conclusion and key findings

SFT Memorizes, RL Generalizes
a. SFT increases in-distribution performance, but significantly degrades performance on OOD tasks
b. RL consistently boosts OOD performance across both rule-based and visual variations

RL Enhances Visual Recognition

a. Scaling RL improves both reasoning and recognition accuracy

b. SFT scaling harms recognition, showing overfitting to reasoning tokens
SFT is Necessary for RL Initialization

a. Without SFT, base models fail due to poor instruction following

b. SFT provides the structure needed for RL to work effectively
Verification Iterations Matter

a. More verification steps (multi-turn correction) — stronger OOD generalization
b. Iterative refinement is key to RL’s success



Wrap and summary

1.

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
a. RLVR (R1-Zero) alone already shows emergent reasoning with long, structured “thinking chains”
b. Multi-stage training (Cold Start (SFT) — RL — SFT — RL) stabilizes format, improves readability, and
keeps reasoning power
c. Large RL-trained R1 model distills its reasoning traces into smaller models, significantly boosting their
reasoning benchmarks compared to baseline small models
DAPO: An Open-Source LLM Reinforcement Learning System at Scale
a. Naive PPO/GRPO unstable on long chain-of-thought tasks
b. Contributions: Clip-Higher, Dynamic Sampling, Token-Level Loss, Overlong Reward Shaping
c. Results: Outperforms DeepSeek-R1-Zero-Qwen-32B on AIME with 50% fewer steps
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond

the Base Model?
a. RLVR boosts pass@1 (sampling efficiency), but not reasoning capacity
b. Atlarge k (pass@128/256), base models often surpass RLVR models
c. Reasoning paths already exist in base models; RLVR just samples them better
d. Distillation, not RLVR, expands reasoning boundary
SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training
a. SFT — improves in-distribution, but degrades OOD performance (memorization)
b. RL — consistently improves OOD generalization (rules & visual tasks)
c. SFT is necessary for RL initialization (warm-up for instruction following)



Thank You for listening !
Questions?



