
Post-training (III):
Reinforcement Learning from

Verified Rewards
Zheng Fang, Jayden Li, Liyi Chen

Reinforcement Learning from Verified Rewards (RLVR)

● Definition: RL where reward signals come from automatic verification (e.g.,
math correctness, code unit tests, output format).

● This session – Four Perspectives:
○ DeepSeek-R1: RLVR alone can drive emergent reasoning and enable distillation
○ DAPO: An open-source RLVR system to improve reproducibility
○ Yue et al.: RLVR mainly re-weights existing abilities rather than creating new ones
○ Chu et al.: Compares SFT vs RLVR -> RLVR generalizes better

Paper Overview

● Goal: Enhance reasoning in large language
models

● Key Contributions
○ DeepSeek R1-Zero: RL alone → emergent reasoning
○ DeepSeek R1: Cold Start + multi-stage RL → usable

model
○ Distillation: Transfer reasoning to smaller models

Core Algorithm: Group Relative Policy Optimization
(GRPO)
● GRPO vs PPO

○ PPO variant, no critic →
cheaper and simpler training

● Eq. (3): Relative Advantage
○ Reward compared to group

mean, normalized
● Eq. (1): Training Objective

○ Ratio × advantage, with
clipping for stability

● Eq. (2): KL Regularization
○ Keeps policy close to

reference, prevents drift

DeepSeek-R1-Zero: RL on Base Model (No SFT)

● Training Setup: Base model trained with RL only, no supervised fine-tuning
● Algorithm: GRPO (no critic, group-based rewards)
● Tasks: Mix of math (AIME 2024, MATH), coding challenges (Codeforces,

LiveCodeBench), and QA benchmarks – all with automatically checkable
answers (for reward signals)

● Reward Modeling
○ Accuracy: correct final answer / passed test cases

■ Rewards only depend on final answer → model must explore its own reasoning steps
○ Format: reasoning inside <think>…</think>, final answer in <answer>…</answer>

DeepSeek-R1-Zero: Performance

● Steady Improvement (Figure 2)
○ 15.6% → 71% pass@1

● Majority Voting Boost (Table 2)
○ 86.7% (surpasses OpenAI o1-0912)

DeepSeek-R1-Zero: Observations

● Emergent Behaviors
○ Longer “thinking chains” (self-extended reasoning length)
○ “Aha moments”: stop, reflect, restart with a new path

● Limitations
○ Poor readability (messy reasoning steps)
○ Language mixing (Chinese + English in the same response)
○ Not user-friendly → motivates DeepSeek-R1 with Cold Start

DeepSeek-R1: Adding “Cold Start” + Multi-Stage RL

● Motivation: Improve readability & alignment beyond R1-Zero
● Stage 1: Cold Start

○ Fine-tune base model with curated long CoT samples
○ Advantages: Readability & Potential

● Stage 2: RL for Reasoning
○ Rewards: accuracy + language consistency

● Stage 3: Rejection Sampling + SFT
○ Generate reasoning data via RL checkpoints
○ Filter & retain only correct outputs
○ Combine with curated non-reasoning tasks (QA, writing, translation)
○ Scale: ~800k total samples → 2 epochs fine-tuning

● Stage 4: RL for All Scenarios
○ Extend beyond reasoning to general helpfulness & harmlessness
○ Refines overall alignment + reasoning capability

DeepSeek-R1: Evaluation

● Reasoning: near o1-1217
● Math: AIME-24 79.8%, MATH-500 97.3%

○ Stronger than DeepSeek-V3, close to o1-1217
● Coding: Codeforces ~2029 rating

○ Competitive with o1-mini, above open baselines
● Knowledge: MMLU 90.8%, GPQA 71.5%

○ Solid results, near o1-1217
● Writing/QA: AlpacaEval2 87.6%, ArenaHard

92.3%
○ Outperforms DeepSeek-V3

● Limitations: prompt-sensitivity, safety
trade-offs

Distillation

● Supervised fine-tuning of smaller models using outputs generated by
DeepSeek-R1 (671B)

● Data Source: ~800K samples (reasoning + non-reasoning) distilled from
DeepSeek-R1

● Target Models: Qwen (1.5B–32B) and Llama (8B, 70B) models.
● Key idea: small models fine-tune on R1’s reasoning + answers → inherit

reasoning at lower cost and higher stability

Distilled Model Evaluation

● 7B (Qwen): AIME 55.5%,
surpasses GPT-4o-0513

● 14B (Qwen): AIME 69.7%, better
than QwQ-32B Preview

● 32B / 70B: AIME 72.6% / 70.0%,
competitive with o1-mini

● Comparison: RL on Qwen-32B
reaches only 47.0%, while
distillation lifts it to 72.6%, showing
that distillation is far more effective
than direct RL on smaller models

Significance of Distillation

● Efficiency: avoids costly RL
● Effectiveness: distilled > direct RL (Qwen-32B: 72.6% vs 47.0%)
● Transferability: Works across multiple families (Qwen, Llama, Gemma)
● Stability: SFT more reliable than RL
● Limitations: reasoning focus, uncertain generalization

Q&A

Problem Background &
Motivation

Why Reinforcement Learning for LLM Reasoning?

Test-time scaling (e.g., OpenAI o1, DeepSeek R1) enables longer chain-of-thought
(CoT) reasoning.

Core driver: Large-scale Reinforcement Learning (RL).

RL elicits complex behaviors: self-verification, iterative refinement, reflective
reasoning.

The Reproducibility Challenge

Problem: Key technical details of state-of-the-art RL systems are not disclosed.

OpenAI o1 and DeepSeek R1 reports omit critical training recipes.

Community faces difficulty reproducing results even with similar base models.

Limitations of Naive GRPO/PPO

● Naive GRPO/PPO baselines struggle
on long-CoT tasks:
○ Entropy collapse → loss of

exploration
○ Reward noise → unstable training

● Zero-gradient cases when all samples
are correct/incorrect
○ Training instability overall

The Motivation for DAPO

● Need a reproducible, open-source RL recipe for reasoning LLMs.
● Must directly address four system-level issues:

○ Entropy collapse
○ Reward noise
○ Zero-gradient prompts
○ Instability with long CoT

● Goal: Develop an open, scalable RL algorithm that solves these problems.

Preliminary: PPO & GRPO

PPO: A Classic RL Algorithm

● Uses clipped surrogate objective to stabilize training.
● Constraints updates with ε clipping range.
● Works well in general RLHF, but struggles in long-CoT reasoning.
● Key limitation: leads to entropy collapse in reasoning tasks

GRPO: Group Relative Policy Optimization

● Removes value function, computes advantages relative to group rewards.
● For each prompt, sample G outputs and normalize rewards.
● Simpler, effective in some settings.
● Limitation: still faces zero-gradient issues and training instability

Two More Design Choices

● Removing KL Divergence:
○ In reasoning, model distribution can diverge significantly from base model.
○ KL penalty is unnecessary, so DAPO drops it.

● Rule-based Reward Modeling:
○ Instead of learned reward models (prone to reward hacking), use task accuracy as reward.
○ For math: reward = +1 if correct, –1 if wrong

DAPO Algorithm Overview

From GRPO to DAPO

● GRPO (Group Relative Policy Optimization):
○ Samples G outputs per prompt.
○ Normalizes rewards within the group to compute advantage.

● Problem: Still suffers from entropy collapse, zero gradients, and instability in
long-CoT RL.

Core Idea of DAPO

● Decoupled Clip: separate lower and higher clipping bounds (ε_low, ε_high).
● Dynamic Sampling: filter out zero-gradient prompts (all correct or all wrong).
● Token-Level Loss: assign gradient at token level, not just sequence level.
● Overlong Reward Shaping: handle truncated outputs with filtering and soft

penalties.

Algorithm Workflow

● Sample batch of prompts.
● For each prompt, sample G responses with old policy.

Compute rewards using rule-based correctness.
● Dynamic Sampling: keep only non-trivial samples (not all correct/incorrect).
● Compute token-level advantages.
● Update policy with decoupled clipping + reward shaping.

One-Sentence Summary

● DAPO = GRPO backbone + engineered fixes for long-CoT RL.
○ Exploration preserved (Clip-Higher).
○ Efficiency improved (Dynamic Sampling).
○ Gradients assigned fairly (Token-Level Loss).

Stability ensured (Overlong Reward Shaping).

Four Key Techniques in
DAPO

 Technique 1: Clip-Higher (Prevent Entropy Collapse)

● Problem: In PPO/GRPO, clipping ratio limits low-probability “exploration
tokens” more severely than high-probability tokens.

● Solution: Decouple clipping bounds:
○ Keep ε_low (stability).
○ Raise ε_high (allow exploration tokens to increase).

● Effect: Higher entropy, more diverse samples.

Technique 2: Dynamic Sampling (Avoid Zero Gradients)

● Problem: If all G responses for a prompt are correct or incorrect → advantage
= 0, no learning signal.

● Solution: Oversample & filter to keep only prompts with mixed outcomes.
● Effect: Every batch contains useful gradients.

Technique 3: Token-Level Policy Gradient Loss

● Problem: GRPO averages loss per sequence, so long responses get diluted
signal; encourages gibberish and repetition.

● Solution: Compute loss at token level → each token’s impact counted directly.
● Effect:
● Long reasoning steps reinforced properly.

Redundant text penalized effectively.

Technique 4: Overlong Reward Shaping

● Problem: Truncated outputs at max length get harsh penalties → introduces
reward noise.

● Solution:
○ Overlong Filtering: mask losses for truncated samples.
○ Soft Punishment: apply gradual, length-aware penalty.
○ Effect: Stable training, better AIME accuracy.

Experiments & Ablations

Experimental Setup

● Task: Mathematical reasoning (AIME 2024 benchmark).
● Base model: Qwen2.5-32B.
● Framework: verl (open-source RLHF/RL framework).
● Evaluation: avg@32 (repeated sampling ×32 for stability).
● Training highlights:
● Learning rate = 1e-6, AdamW optimizer.
● Prompt batch size = 512, 16 responses per prompt.
● Max generation length = 20,480 tokens (with 4,096-token soft cache).

Main Results

● DAPO reaches 50 points on AIME
2024, outperforming
DeepSeek-R1-Zero (47).

● Achieves this with 50% fewer training
steps.

● Starting from Naive GRPO (30
points):

○ Overlong Filtering → 36
○ Clip-Higher → 38
○ Soft Overlong Punishment → 41
○ Token-Level Loss → 42
○ Dynamic Sampling (DAPO) → 50

Training Dynamics

● Metrics monitored:
○ Response length (exploration space).
○ Reward score (training stability)
○ Generation entropy (exploration

balance)
○ Mean probability (distribution

sharpness)
● Observation: DAPO maintains

stable upward trends across
metrics

Dataset & Reproducibility

Dataset Construction

● Source: Web scraping + official math competition problems.
● Challenge: Math answers appear in diverse formats (fractions, radicals,

formulas).
● Solution: Answer transformation → convert outputs into integers for consistent

rule-based evaluation.
● Example:
● Original: 11−2611 - 2\sqrt{6}11−26
● Transformed: ask for k+m+nk+m+nk+m+n → final answer = 19

DAPO-Math-17K Dataset

● Contains 17K prompts, each
with an integer-form answer.

● Designed to minimize reward
hacking and parser errors.

● Provides a clean benchmark
for mathematical reasoning
RL.

● Released publicly for
community use.

Reproducibility &
Open-Source Release

● Codebase: released via verl framework
DAPO An Open-Source LLM Reinfor…

● Dataset: DAPO-Math-17K available for
public use.

● Training details fully disclosed
(hyperparameters, evaluation protocol).

● Goal: lower the barrier for large-scale
LLM RL research.

Training Dynamics &
Emergent Behaviors

Training Dynamics: Key Metrics

● Response length → exploration space for reasoning.
● Reward score → stability of learning process.
● Entropy → balance between exploration vs. exploitation.
● Mean probability → sharpness of policy distribution.
● Observation: DAPO maintains healthy upward trends across metrics

Emergent Reasoning
Behaviors
● Early training: no reflection or

backtracking in reasoning.
● Later training: model begins to

self-check and revise steps.
● Indicates RL can induce new

reasoning modes, not present in
the base model.

● Table Example: model gradually
learns reflection in solving
geometry problems

Conclusion & Takeaways

Key Contributions of DAPO

● Algorithm: Decoupled Clip & Dynamic Sampling Policy Optimization.
● Techniques: Four innovations — Clip-Higher, Dynamic Sampling,

Token-Level Loss, Overlong Reward Shaping.
● Performance: Achieves 50 points on AIME 2024 with 50% fewer steps than

DeepSeek-R1-Zero.
● Reproducibility: Fully open-sourced code, dataset, and training details

Broader Impact & Outlook

● Reinforcement learning for LLMs is both a research challenge and a systems
engineering problem.

● DAPO lowers the barrier for future research: math, code, theorem proving,
reasoning agents.

● Opens the door for the community to replicate, benchmark, and extend
reasoning-focused RL.

● DAPO = A reproducible recipe for scaling LLM reasoning with reinforcement
learning.

Q&A

Introduction & Background

Motivation

● LLMs are increasingly applied to
reasoning tasks (math, coding, logical
reasoning).

● Traditional instruction-tuning relies on
human annotations.

● RL with Verifiable Rewards (RLVR):
scalable, automatic, reward-based
training.

● Belief in the field: “RLVR enables LLMs
to develop novel reasoning patterns,
similar to how RL discovered new
strategies in AlphaGo.”

Research Question

● Key Question:
○ Does RLVR actually create new reasoning abilities for LLMs?
○ Or… does it only make models sample existing reasoning paths more

efficiently?
○ Answering this requires examining the reasoning capacity boundary of

both base models and RLVR-trained models.

Methodology &
Experimental Setup

Evaluation Metric: pass@k
● pass@k: A problem is considered solved if any of k sampled outputs is

correct.
● Small k (e.g., k = 1): reflects average-case accuracy.
● Large k (e.g., k = 128, 256): reveals the reasoning capacity boundary.
● More robust than greedy decoding or best-of-N.

Tasks & Benchmarks

● Mathematics: GSM8K, MATH500, Minerva, Olympiad, AIME24, AMC23
● Code Generation: HumanEval+, MBPP+, LiveCodeBench
● Visual Reasoning: MathVista, MathVision
● Covers multiple domains to rigorously test reasoning abilities.

Models & Algorithms

● Models: Qwen2.5 (7B, 14B, 32B), LLaMA-3.1 (8B)
● RL Algorithms: PPO, GRPO, Reinforce++, RLOO, ReMax, DAPO
● Setup:

○ Base models vs RLVR-trained models
○ Zero-shot prompts for fairness (no few-shot examples)
○ Consistent hyperparameters (temp = 0.6, top-p = 0.95, max length

16,384)

Core Findings

RLVR boosts small-k but narrows reasoning boundary

● At small k (e.g., k=1), RLVR-trained models outperform base models.
● At large k (e.g., k=128/256), base models surpass RLVR-trained models.
● RLVR = more efficient sampling, but with reduced coverage of solvable

problems.

Reasoning paths already exist in the base model

● Manual inspection: base models can already generate correct
chains-of-thought.

● Perplexity analysis: RLVR outputs lie within base model’s distribution.
● RLVR does not create new reasoning paths.

Different RL algorithms show similar limitations

● Compared algorithms: PPO, GRPO, Reinforce++, RLOO, ReMax, DAPO.
● Defined metric: Sampling Efficiency Gap (ΔSE) = pass@1 (RL) – pass@256

(base).
● All algorithms → similar performance; ΔSE remains large.
● Conclusion: Current RL methods are far from optimal.

Distillation genuinely expands reasoning ability

● RLVR: improves efficiency but bounded by
base model capacity.

● Distillation: transfers new reasoning patterns
from stronger teacher.

● Distilled models show higher pass@k curves
across all k.

● Key difference: Distillation expands reasoning
scope, RLVR does not.

Conclusion & Discussion

RLVR boosts small-k but narrows reasoning boundary

● RLVR improves sampling efficiency at small k.
● But it does not introduce novel reasoning

abilities.
● RLVR-trained models remain bounded by their

base models.
● Key limitation: reduced reasoning boundary as

training progresses.

Reasoning paths already exist in the base model

● Improved exploration strategies in the vast
language space.

● Continual scaling of training to avoid capacity
collapse.

● Multi-turn agent–environment interactions to
simulate real exploration.

● Integration with distillation, which can expand
reasoning boundaries

Q&A

Problem Background &
Motivation

Post-training is crucial for foundation models:

● Supervised Fine-Tuning (SFT) adapts to downstream tasks
● Reinforcement Learning (RL) aligns with outcomes/preferences

Their roles in memorization vs. generalization remain unclear, especially in rule-based and
vision-language reasoning.

Background

Research Questions:
1. Does SFT mainly memorize training data instead of learning transferable rules?
2. Can RL drive genuine generalization across unseen tasks or domains?
3. Is SFT still necessary for RL training to be effective?
4. How does RL enhance the visual recognition capabilities of VLMs?
5. Does scaling inference-time computation (verification steps) further improve generalization?

Related Works:
● Prior studies typically focus only on SFT or RL, or on only LLMs or VLMs; few works directly

compare both methods across modalities
● Existing research improved VLMs mainly via SFT data/recipes or encoder design; our work

shows that RL also enhances visual perception and generalization

Recap: Supervised Fine-Tuning (SFT)

What is it?

● Fine-tunes a pre-trained model using labeled data (prompt → expected answer)

Role

● Teaches the model how to adapt to downstream tasks (translation, summarization, QA, ...)
● Enforces consistent format and style in outputs

Strengths

● Stabilizes output structure
● Easy to implement with curated dataset

Limitations

● Prone to memorization of training examples
● Fails to generalize to unseen rules or domains

Recap: Reinforcement Learning (RL)
What is it?

● Trains the model with a reward signal, not fixed labels
● Example: correct answer -> +10 reward, wrong answer -> -1

Role

● Aligns the model with preferences or outcomes
● Encourages learning of transferable rules and strategies

Strengths

● Promotes generalization across unseen tasks/domains
● Can improve underlying capabilities (e.g., visual recognition, reasoning)

Limitations

● Unstable when applied directly (needs SFT as a foundation)
● Requires careful design of reward functions

Preliminaries

Standard RL Setup:

RL for LLMs / VLMs with Verifier：

Ex: verified v would be "illegal number used"

Sequential Revision (multi-turn RL):

At step t:

Each new input = prompt + all previous outputs & verifier feedback

General Points (Points24 Game)
Goal: Test rule generalization in arithmetic reasoning

Set up:

● Input: 4 cards (Text-only GP-L or Vision-Language GP-VL)
● Task: use all 4 cards exactly once to form an equation = 24
● Output: Valid equation string

Variants (for OOD tests):

● Rule Variations (Text OOD):
○ Train: J/Q/K = 10
○ Test: J=11, Q=12, K=13

Visual Variations (Vision OOD):

● Train: Black suits (♠, ♣)
● Test: Red suits (♥, ♦)

General Points (Points24 Game)

V-IRL (Visual Navigation Task)
Defn: A real-world navigation task that focuses on the model’s spatial reasoning capabilities

Goal: Test spatial reasoning and visual generalization

Set up:

● Environment: Real-world street-view images + text navigation instructions
● Task: Navigate step by step to the target location

Input:

● Text-only instructions (V-IRL-L)
● Street-view images + text (V-IRL-VL)

Variants (for OOD tests)：

● Rule Variations (Action Space OOD):
○ Train: Absolute directions (west, east, northwest)
○ Test: Relative directions (left, right, slightly left)

● Visual Variations (Domain OOD)
○ Train: Routes in New York City
○ Test: Routes in other cities (London, Milan, …)

Results

Language-Only (Left): In-sample accuracy -> RL < SFT ; Out-sample accuracy -> RL > SFT

Vision-Language (Right): In-sample accuracy -> SFT <= RL (RL higher robustness) ; Out-sample accuracy -> RL > SFT

GP = General Point

-L = Language (text)

V-IRL =
Navigation Task

-VL = visual +
language tasks

- - - = Initial
(Llama-3.2-Vision-11
B)

It’s Pretrained Model
+ SFT One epoch

Comparison of out-of-distribution performance under rule variants

RL Performance:

● GP-L: 11.5% -> 15%, VIRL-L: 80.8% -> 91.8%, GP-VL: 11.2% -> 14.2%, V-IRL-VL: 35.7% -> 45%
● All Outperform Initial Baseline!

SFT Performance:

● GP-L: 11.5% -> 3.4%, VIRL-L: 80.8% -> 1.3%, GP-VL: 11.2% -> 5.6%, V-IRL-VL: 35.7% -> 2.5%
● All Underperform Initial Baseline! Memorizes only, fails on OOD

Comparison of out-of-distribution performance for visual variants

RL Performance:

● GP-VL: 23.6% -> 41.2%, V-IRL-VL: 16.7% -> 77.8%
● All Outperform Initial Baseline!

SFT Performance:

● GP-VL: 23.6% -> 13.7%, V-IRL-VL: 16.7% -> 11.1%
● All Underperform Initial Baseline! Shows that it memorizes only again, fails on OOD

Recognition vs. Success Rate: RL Improves, SFT Degrades (GP-VL)

● RL improves both recognition & success rate
○ The blue curve shows that as training compute increases, RL improves both success rate and

recognition accuracy.
● SFT shows opposite effect

○ The red curve shows that as training compute increases, it decreases both recognition accuracy and
recognition accuracy

SFT is still necessary !

Key result:

All RL runs fail when trained directly
from the base model without SFT

Why?: The base Llama-3.2 model has poor
instruction-following ability. Without SFT,
it tends to produce long, irrelevant, and
unstructured outputs, which prevents
meaningful reward signals for RL

Different Learning Rate: all curves quickly
drop toward zero success rate as
computation increases

RL experiments on GP-L without SFT initialization

SFT is necessary as a warm-up stage to make RL training feasible

More Verification Iterations → Better Generalization
What is VIter?

It represents the maximum number of
times the model can use the verifier to
revise its output in one episode

● As computation increases(from
transparent to solid), the Both the
OOD Growth and IDG increases

● As vlter increases, the curve shift
from left to right (blue to red) ->
OOD Growth increases

Takeaways:

Higher VIter allows the model to not only
remember rules but also adapt to new
ones

Conclusion and key findings

1. SFT Memorizes, RL Generalizes
a. SFT increases in-distribution performance, but significantly degrades performance on OOD tasks
b. RL consistently boosts OOD performance across both rule-based and visual variations

2. RL Enhances Visual Recognition
a. Scaling RL improves both reasoning and recognition accuracy
b. SFT scaling harms recognition, showing overfitting to reasoning tokens

3. SFT is Necessary for RL Initialization
a. Without SFT, base models fail due to poor instruction following
b. SFT provides the structure needed for RL to work effectively

4. Verification Iterations Matter
a. More verification steps (multi-turn correction) → stronger OOD generalization
b. Iterative refinement is key to RL’s success

Wrap and summary
1. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

a. RLVR (R1-Zero) alone already shows emergent reasoning with long, structured “thinking chains”
b. Multi-stage training (Cold Start (SFT) → RL → SFT → RL) stabilizes format, improves readability, and

keeps reasoning power
c. Large RL-trained R1 model distills its reasoning traces into smaller models, significantly boosting their

reasoning benchmarks compared to baseline small models
2. DAPO: An Open-Source LLM Reinforcement Learning System at Scale

a. Naive PPO/GRPO unstable on long chain-of-thought tasks
b. Contributions: Clip-Higher, Dynamic Sampling, Token-Level Loss, Overlong Reward Shaping
c. Results: Outperforms DeepSeek-R1-Zero-Qwen-32B on AIME with 50% fewer steps

3. Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond
the Base Model?
a. RLVR boosts pass@1 (sampling efficiency), but not reasoning capacity
b. At large k (pass@128/256), base models often surpass RLVR models
c. Reasoning paths already exist in base models; RLVR just samples them better
d. Distillation, not RLVR, expands reasoning boundary

4. SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training
a. SFT → improves in-distribution, but degrades OOD performance (memorization)
b. RL → consistently improves OOD generalization (rules & visual tasks)
c. SFT is necessary for RL initialization (warm-up for instruction following)

Thank You for listening !
Questions?

