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Reinforcement Learning from Verified Rewards (RLVR)

● Definition: RL where reward signals come from automatic verification (e.g., 
math correctness, code unit tests, output format).

● This session – Four Perspectives:
○ DeepSeek-R1: RLVR alone can drive emergent reasoning and enable distillation
○ DAPO: An open-source RLVR system to improve reproducibility
○ Yue et al.: RLVR mainly re-weights existing abilities rather than creating new ones
○ Chu et al.: Compares SFT vs RLVR -> RLVR generalizes better





Paper Overview

● Goal: Enhance reasoning in large language 
models

● Key Contributions
○ DeepSeek R1-Zero: RL alone → emergent reasoning
○ DeepSeek R1: Cold Start + multi-stage RL → usable 

model
○ Distillation: Transfer reasoning to smaller models



Core Algorithm: Group Relative Policy Optimization 
(GRPO)
● GRPO vs PPO

○ PPO variant, no critic → 
cheaper and simpler training

● Eq. (3): Relative Advantage
○ Reward compared to group 

mean, normalized
● Eq. (1): Training Objective

○ Ratio × advantage, with 
clipping for stability

● Eq. (2): KL Regularization
○ Keeps policy close to 

reference, prevents drift



DeepSeek-R1-Zero: RL on Base Model (No SFT)

● Training Setup: Base model trained with RL only, no supervised fine-tuning
● Algorithm: GRPO (no critic, group-based rewards)
● Tasks: Mix of math (AIME 2024, MATH), coding challenges (Codeforces, 

LiveCodeBench), and QA benchmarks – all with automatically checkable 
answers (for reward signals)

● Reward Modeling
○ Accuracy: correct final answer / passed test cases

■ Rewards only depend on final answer → model must explore its own reasoning steps
○ Format: reasoning inside <think>…</think>, final answer in <answer>…</answer>



DeepSeek-R1-Zero: Performance

● Steady Improvement (Figure 2)
○ 15.6% → 71% pass@1

● Majority Voting Boost (Table 2)
○ 86.7% (surpasses OpenAI o1-0912)

 



DeepSeek-R1-Zero: Observations

● Emergent Behaviors
○ Longer “thinking chains” (self-extended reasoning length)
○ “Aha moments”: stop, reflect, restart with a new path

● Limitations
○ Poor readability (messy reasoning steps)
○ Language mixing (Chinese + English in the same response)
○ Not user-friendly → motivates DeepSeek-R1 with Cold Start



DeepSeek-R1: Adding “Cold Start” + Multi-Stage RL

● Motivation: Improve readability & alignment beyond R1-Zero
● Stage 1: Cold Start

○ Fine-tune base model with curated long CoT samples
○ Advantages: Readability & Potential

● Stage 2: RL for Reasoning
○ Rewards: accuracy + language consistency

● Stage 3: Rejection Sampling + SFT
○ Generate reasoning data via RL checkpoints
○ Filter & retain only correct outputs
○ Combine with curated non-reasoning tasks (QA, writing, translation)
○ Scale: ~800k total samples → 2 epochs fine-tuning

● Stage 4: RL for All Scenarios
○ Extend beyond reasoning to general helpfulness & harmlessness
○ Refines overall alignment + reasoning capability



DeepSeek-R1: Evaluation

● Reasoning: near o1-1217
● Math: AIME-24 79.8%, MATH-500 97.3% 

○ Stronger than DeepSeek-V3, close to o1-1217
● Coding: Codeforces ~2029 rating 

○ Competitive with o1-mini, above open baselines
● Knowledge: MMLU 90.8%, GPQA 71.5%

○ Solid results, near o1-1217
● Writing/QA: AlpacaEval2 87.6%, ArenaHard 

92.3%
○ Outperforms DeepSeek-V3

● Limitations: prompt-sensitivity, safety 
trade-offs



Distillation

● Supervised fine-tuning of smaller models using outputs generated by 
DeepSeek-R1 (671B)

● Data Source: ~800K samples (reasoning + non-reasoning) distilled from 
DeepSeek-R1

● Target Models: Qwen (1.5B–32B) and Llama (8B, 70B) models.
● Key idea: small models fine-tune on R1’s reasoning + answers → inherit 

reasoning at lower cost and higher stability



Distilled Model Evaluation

● 7B (Qwen): AIME 55.5%, 
surpasses GPT-4o-0513

● 14B (Qwen): AIME 69.7%, better 
than QwQ-32B Preview

● 32B / 70B: AIME 72.6% / 70.0%, 
competitive with o1-mini

● Comparison: RL on Qwen-32B 
reaches only 47.0%, while 
distillation lifts it to 72.6%, showing 
that distillation is far more effective 
than direct RL on smaller models



Significance of Distillation

● Efficiency: avoids costly RL
● Effectiveness: distilled > direct RL (Qwen-32B: 72.6% vs 47.0%)
● Transferability: Works across multiple families (Qwen, Llama, Gemma)
● Stability: SFT more reliable than RL
● Limitations: reasoning focus, uncertain generalization



Q&A





Problem Background & 
Motivation



Why Reinforcement Learning for LLM Reasoning?

Test-time scaling (e.g., OpenAI o1, DeepSeek R1) enables longer chain-of-thought 
(CoT) reasoning.

Core driver: Large-scale Reinforcement Learning (RL).

RL elicits complex behaviors: self-verification, iterative refinement, reflective 
reasoning.



The Reproducibility Challenge

Problem: Key technical details of state-of-the-art RL systems are not disclosed.

OpenAI o1 and DeepSeek R1 reports omit critical training recipes.

Community faces difficulty reproducing results even with similar base models.



Limitations of Naive GRPO/PPO

● Naive GRPO/PPO baselines struggle 
on long-CoT tasks:
○ Entropy collapse → loss of 

exploration
○ Reward noise → unstable training

● Zero-gradient cases when all samples 
are correct/incorrect
○ Training instability overall



The Motivation for DAPO

● Need a reproducible, open-source RL recipe for reasoning LLMs.
● Must directly address four system-level issues:

○ Entropy collapse
○ Reward noise
○ Zero-gradient prompts
○ Instability with long CoT

● Goal: Develop an open, scalable RL algorithm that solves these problems.



Preliminary: PPO & GRPO



PPO: A Classic RL Algorithm

● Uses clipped surrogate objective to stabilize training.
● Constraints updates with ε clipping range.
● Works well in general RLHF, but struggles in long-CoT reasoning.
● Key limitation: leads to entropy collapse in reasoning tasks



GRPO: Group Relative Policy Optimization

● Removes value function, computes advantages relative to group rewards.
● For each prompt, sample G outputs and normalize rewards.
● Simpler, effective in some settings.
● Limitation: still faces zero-gradient issues and training instability



Two More Design Choices

● Removing KL Divergence:
○ In reasoning, model distribution can diverge significantly from base model.
○ KL penalty is unnecessary, so DAPO drops it.

● Rule-based Reward Modeling:
○ Instead of learned reward models (prone to reward hacking), use task accuracy as reward.
○ For math: reward = +1 if correct, –1 if wrong



DAPO Algorithm Overview



From GRPO to DAPO

● GRPO (Group Relative Policy Optimization):
○ Samples G outputs per prompt.
○ Normalizes rewards within the group to compute advantage.

● Problem: Still suffers from entropy collapse, zero gradients, and instability in 
long-CoT RL.



Core Idea of DAPO

● Decoupled Clip: separate lower and higher clipping bounds (ε_low, ε_high).
● Dynamic Sampling: filter out zero-gradient prompts (all correct or all wrong).
● Token-Level Loss: assign gradient at token level, not just sequence level.
● Overlong Reward Shaping: handle truncated outputs with filtering and soft 

penalties.



Algorithm Workflow

● Sample batch of prompts.
● For each prompt, sample G responses with old policy.

Compute rewards using rule-based correctness.
● Dynamic Sampling: keep only non-trivial samples (not all correct/incorrect).
● Compute token-level advantages.
● Update policy with decoupled clipping + reward shaping.



One-Sentence Summary

● DAPO = GRPO backbone + engineered fixes for long-CoT RL.
○ Exploration preserved (Clip-Higher).
○ Efficiency improved (Dynamic Sampling).
○ Gradients assigned fairly (Token-Level Loss).

Stability ensured (Overlong Reward Shaping).



Four Key Techniques in 
DAPO



 Technique 1: Clip-Higher (Prevent Entropy Collapse)

● Problem: In PPO/GRPO, clipping ratio limits low-probability “exploration 
tokens” more severely than high-probability tokens.

● Solution: Decouple clipping bounds:
○ Keep ε_low (stability).
○ Raise ε_high (allow exploration tokens to increase).

● Effect: Higher entropy, more diverse samples.



Technique 2: Dynamic Sampling (Avoid Zero Gradients)

● Problem: If all G responses for a prompt are correct or incorrect → advantage 
= 0, no learning signal.

● Solution: Oversample & filter to keep only prompts with mixed outcomes.
● Effect: Every batch contains useful gradients.



Technique 3: Token-Level Policy Gradient Loss

● Problem: GRPO averages loss per sequence, so long responses get diluted 
signal; encourages gibberish and repetition.

● Solution: Compute loss at token level → each token’s impact counted directly.
● Effect:
● Long reasoning steps reinforced properly.

Redundant text penalized effectively.



Technique 4: Overlong Reward Shaping 

● Problem: Truncated outputs at max length get harsh penalties → introduces 
reward noise.

● Solution:
○ Overlong Filtering: mask losses for truncated samples.
○ Soft Punishment: apply gradual, length-aware penalty.
○ Effect: Stable training, better AIME accuracy.



Experiments & Ablations



Experimental Setup

● Task: Mathematical reasoning (AIME 2024 benchmark).
● Base model: Qwen2.5-32B.
● Framework: verl (open-source RLHF/RL framework).
● Evaluation: avg@32 (repeated sampling ×32 for stability).
● Training highlights:
● Learning rate = 1e-6, AdamW optimizer.
● Prompt batch size = 512, 16 responses per prompt.
● Max generation length = 20,480 tokens (with 4,096-token soft cache).



Main Results

● DAPO reaches 50 points on AIME 
2024, outperforming 
DeepSeek-R1-Zero (47).

● Achieves this with 50% fewer training 
steps.

● Starting from Naive GRPO (30 
points):

○ Overlong Filtering → 36
○ Clip-Higher → 38
○ Soft Overlong Punishment → 41
○ Token-Level Loss → 42
○ Dynamic Sampling (DAPO) → 50



Training Dynamics

● Metrics monitored:
○ Response length (exploration space).
○ Reward score (training stability)
○ Generation entropy (exploration 

balance)
○ Mean probability (distribution 

sharpness)
● Observation: DAPO maintains 

stable upward trends across 
metrics



Dataset & Reproducibility



Dataset Construction

● Source: Web scraping + official math competition problems.
● Challenge: Math answers appear in diverse formats (fractions, radicals, 

formulas).
● Solution: Answer transformation → convert outputs into integers for consistent 

rule-based evaluation.
● Example:
● Original: 11−2611 - 2\sqrt{6}11−26 
● Transformed: ask for k+m+nk+m+nk+m+n → final answer = 19



DAPO-Math-17K Dataset

● Contains 17K prompts, each 
with an integer-form answer.

● Designed to minimize reward 
hacking and parser errors.

● Provides a clean benchmark 
for mathematical reasoning 
RL.

● Released publicly for 
community use.

Reproducibility & 
Open-Source Release

● Codebase: released via verl framework
DAPO An Open-Source LLM Reinfor…

● Dataset: DAPO-Math-17K available for 
public use.

● Training details fully disclosed 
(hyperparameters, evaluation protocol).

● Goal: lower the barrier for large-scale 
LLM RL research.



Training Dynamics & 
Emergent Behaviors



Training Dynamics: Key Metrics

● Response length → exploration space for reasoning.
● Reward score → stability of learning process.
● Entropy → balance between exploration vs. exploitation.
● Mean probability → sharpness of policy distribution.
● Observation: DAPO maintains healthy upward trends across metrics



Emergent Reasoning 
Behaviors
● Early training: no reflection or 

backtracking in reasoning.
● Later training: model begins to 

self-check and revise steps.
● Indicates RL can induce new 

reasoning modes, not present in 
the base model.

● Table Example: model gradually 
learns reflection in solving 
geometry problems



Conclusion & Takeaways



Key Contributions of DAPO

● Algorithm: Decoupled Clip & Dynamic Sampling Policy Optimization.
● Techniques: Four innovations — Clip-Higher, Dynamic Sampling, 

Token-Level Loss, Overlong Reward Shaping.
● Performance: Achieves 50 points on AIME 2024 with 50% fewer steps than 

DeepSeek-R1-Zero.
● Reproducibility: Fully open-sourced code, dataset, and training details



Broader Impact & Outlook

● Reinforcement learning for LLMs is both a research challenge and a systems 
engineering problem.

● DAPO lowers the barrier for future research: math, code, theorem proving, 
reasoning agents.

● Opens the door for the community to replicate, benchmark, and extend 
reasoning-focused RL.

● DAPO = A reproducible recipe for scaling LLM reasoning with reinforcement 
learning.



Q&A





Introduction & Background



Motivation

● LLMs are increasingly applied to 
reasoning tasks (math, coding, logical 
reasoning).

● Traditional instruction-tuning relies on 
human annotations.

● RL with Verifiable Rewards (RLVR): 
scalable, automatic, reward-based 
training.

● Belief in the field: “RLVR enables LLMs 
to develop novel reasoning patterns, 
similar to how RL discovered new 
strategies in AlphaGo.”



Research Question

● Key Question:
○ Does RLVR actually create new reasoning abilities for LLMs?
○ Or… does it only make models sample existing reasoning paths more 

efficiently?
○ Answering this requires examining the reasoning capacity boundary of 

both base models and RLVR-trained models.



Methodology & 
Experimental Setup



Evaluation Metric: pass@k
● pass@k: A problem is considered solved if any of k sampled outputs is 

correct.
● Small k (e.g., k = 1): reflects average-case accuracy.
● Large k (e.g., k = 128, 256): reveals the reasoning capacity boundary.
● More robust than greedy decoding or best-of-N.



Tasks & Benchmarks

● Mathematics: GSM8K, MATH500, Minerva, Olympiad, AIME24, AMC23
● Code Generation: HumanEval+, MBPP+, LiveCodeBench
● Visual Reasoning: MathVista, MathVision
● Covers multiple domains to rigorously test reasoning abilities.



Models & Algorithms

● Models: Qwen2.5 (7B, 14B, 32B), LLaMA-3.1 (8B)
● RL Algorithms: PPO, GRPO, Reinforce++, RLOO, ReMax, DAPO
● Setup:

○ Base models vs RLVR-trained models
○ Zero-shot prompts for fairness (no few-shot examples)
○ Consistent hyperparameters (temp = 0.6, top-p = 0.95, max length 

16,384)



Core Findings



RLVR boosts small-k but narrows reasoning boundary

● At small k (e.g., k=1), RLVR-trained models outperform base models.
● At large k (e.g., k=128/256), base models surpass RLVR-trained models.
● RLVR = more efficient sampling, but with reduced coverage of solvable 

problems.



Reasoning paths already exist in the base model

● Manual inspection: base models can already generate correct 
chains-of-thought.

● Perplexity analysis: RLVR outputs lie within base model’s distribution.
● RLVR does not create new reasoning paths.



Different RL algorithms show similar limitations

● Compared algorithms: PPO, GRPO, Reinforce++, RLOO, ReMax, DAPO.
● Defined metric: Sampling Efficiency Gap (ΔSE) = pass@1 (RL) – pass@256 

(base).
● All algorithms → similar performance; ΔSE remains large.
● Conclusion: Current RL methods are far from optimal.



Distillation genuinely expands reasoning ability

● RLVR: improves efficiency but bounded by 
base model capacity.

● Distillation: transfers new reasoning patterns 
from stronger teacher.

● Distilled models show higher pass@k curves 
across all k.

● Key difference: Distillation expands reasoning 
scope, RLVR does not.



Conclusion & Discussion



RLVR boosts small-k but narrows reasoning boundary

● RLVR improves sampling efficiency at small k.
● But it does not introduce novel reasoning 

abilities.
● RLVR-trained models remain bounded by their 

base models.
● Key limitation: reduced reasoning boundary as 

training progresses.



Reasoning paths already exist in the base model

● Improved exploration strategies in the vast 
language space.

● Continual scaling of training to avoid capacity 
collapse.

● Multi-turn agent–environment interactions to 
simulate real exploration.

● Integration with distillation, which can expand 
reasoning boundaries



Q&A





Problem Background & 
Motivation



Post-training is crucial for foundation models:

● Supervised Fine-Tuning (SFT) adapts to downstream tasks
● Reinforcement Learning (RL) aligns with outcomes/preferences

Their roles in memorization vs. generalization remain unclear, especially in rule-based and 
vision-language reasoning.

Background

Research Questions:
1. Does SFT mainly memorize training data instead of learning transferable rules?
2. Can RL drive genuine generalization across unseen tasks or domains?
3. Is SFT still necessary for RL training to be effective?
4. How does RL enhance the visual recognition capabilities of VLMs?
5. Does scaling inference-time computation (verification steps) further improve generalization?

Related Works:
● Prior studies typically focus only on SFT or RL, or on only LLMs or VLMs; few works directly 

compare both methods across modalities
● Existing research improved VLMs mainly via SFT data/recipes or encoder design; our work 

shows that RL also enhances visual perception and generalization



Recap: Supervised Fine-Tuning (SFT) 

What is it?

● Fine-tunes a pre-trained model using labeled data (prompt → expected answer)

Role

● Teaches the model how to adapt to downstream tasks (translation, summarization, QA, ...)
● Enforces consistent format and style in outputs

Strengths

● Stabilizes output structure
● Easy to implement with curated dataset

Limitations

● Prone to memorization of training examples
● Fails to generalize to unseen rules or domains



Recap: Reinforcement Learning (RL)
What is it?

● Trains the model with a reward signal, not fixed labels
● Example: correct answer -> +10 reward, wrong answer -> -1

Role

● Aligns the model with preferences or outcomes
● Encourages learning of transferable rules and strategies

Strengths

● Promotes generalization across unseen tasks/domains
● Can improve underlying capabilities (e.g., visual recognition, reasoning)

Limitations

● Unstable when applied directly (needs SFT as a foundation)
● Requires careful design of reward functions



Preliminaries

Standard RL Setup:

RL for LLMs / VLMs with Verifier：

Ex: verified v would be "illegal number used"

Sequential Revision (multi-turn RL):

At step t: 

Each new input = prompt + all previous outputs & verifier feedback



General Points (Points24 Game)
Goal: Test rule generalization in arithmetic reasoning

Set up: 

● Input: 4 cards (Text-only GP-L or Vision-Language GP-VL)
● Task: use all 4 cards exactly once to form an equation = 24
● Output: Valid equation string

Variants (for OOD tests):

● Rule Variations (Text OOD):
○ Train: J/Q/K = 10
○ Test: J=11, Q=12, K=13

Visual Variations (Vision OOD):

● Train: Black suits (♠, ♣)
● Test: Red suits (♥, ♦)



General Points (Points24 Game)



V-IRL (Visual Navigation Task)
Defn: A real-world navigation task that focuses on the model’s spatial reasoning capabilities

Goal: Test spatial reasoning and visual generalization

Set up:

● Environment: Real-world street-view images + text navigation instructions
● Task: Navigate step by step to the target location

Input:

● Text-only instructions (V-IRL-L)
● Street-view images + text (V-IRL-VL)

Variants (for OOD tests)：

● Rule Variations (Action Space OOD):
○ Train: Absolute directions (west, east, northwest)
○ Test: Relative directions (left, right, slightly left)

● Visual Variations (Domain OOD)
○ Train: Routes in New York City
○ Test: Routes in other cities (London, Milan, …)



Results

Language-Only (Left): In-sample accuracy -> RL < SFT ; Out-sample accuracy -> RL > SFT

Vision-Language (Right): In-sample accuracy -> SFT <= RL (RL higher robustness) ; Out-sample accuracy -> RL > SFT

GP = General Point

-L = Language (text)

V-IRL = 
Navigation Task

-VL = visual + 
language tasks

- - - = Initial 
(Llama-3.2-Vision-11
B)

It’s Pretrained Model 
+ SFT One epoch



Comparison of out-of-distribution performance under rule variants

RL Performance: 

● GP-L: 11.5% -> 15%, VIRL-L: 80.8% -> 91.8%, GP-VL: 11.2% -> 14.2%, V-IRL-VL: 35.7% -> 45% 
● All Outperform Initial Baseline!

SFT Performance:

● GP-L: 11.5% -> 3.4%, VIRL-L: 80.8% -> 1.3%, GP-VL: 11.2% -> 5.6%, V-IRL-VL: 35.7% -> 2.5%
● All Underperform Initial Baseline! Memorizes only, fails on OOD



Comparison of out-of-distribution performance for visual variants

RL Performance: 

● GP-VL: 23.6% -> 41.2%, V-IRL-VL: 16.7% -> 77.8% 
● All Outperform Initial Baseline!

SFT Performance:

● GP-VL: 23.6% -> 13.7%, V-IRL-VL: 16.7% -> 11.1%
● All Underperform Initial Baseline! Shows that it  memorizes only again, fails on OOD



Recognition vs. Success Rate: RL Improves, SFT Degrades (GP-VL)

● RL improves both recognition & success rate
○ The blue curve shows that as training compute increases, RL improves both success rate and 

recognition accuracy.
● SFT shows opposite effect

○ The red curve shows that as training compute increases, it decreases both recognition accuracy and 
recognition accuracy 



SFT is still necessary !

Key result: 

All RL runs fail when trained directly 
from the base model without SFT

Why?: The base Llama-3.2 model has poor 
instruction-following ability. Without SFT, 
it tends to produce long, irrelevant, and 
unstructured outputs, which prevents 
meaningful reward signals for RL

Different Learning Rate: all curves quickly 
drop toward zero success rate as 
computation increases

RL experiments on GP-L without SFT initialization

SFT is necessary as a warm-up stage to make RL training feasible



More Verification Iterations → Better Generalization
What is VIter?

It represents the maximum number of 
times the model can use the verifier to 
revise its output in one episode

● As computation increases(from 
transparent to solid), the Both the 
OOD Growth and IDG increases

● As vlter increases, the curve shift 
from left to right (blue to red) -> 
OOD Growth increases

Takeaways:

Higher VIter allows the model to not only 
remember rules but also adapt to new 
ones



Conclusion and key findings

1. SFT Memorizes, RL Generalizes
a. SFT increases in-distribution performance, but significantly degrades performance on OOD tasks
b. RL consistently boosts OOD performance across both rule-based and visual variations

2. RL Enhances Visual Recognition
a. Scaling RL improves both reasoning and recognition accuracy
b. SFT scaling harms recognition, showing overfitting to reasoning tokens

3. SFT is Necessary for RL Initialization
a. Without SFT, base models fail due to poor instruction following
b. SFT provides the structure needed for RL to work effectively

4. Verification Iterations Matter
a. More verification steps (multi-turn correction) → stronger OOD generalization
b. Iterative refinement is key to RL’s success



Wrap and summary 
1. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

a. RLVR (R1-Zero) alone already shows emergent reasoning with long, structured “thinking chains”
b. Multi-stage training (Cold Start (SFT) → RL → SFT → RL) stabilizes format, improves readability, and 

keeps reasoning power
c. Large RL-trained R1 model distills its reasoning traces into smaller models, significantly boosting their 

reasoning benchmarks compared to baseline small models
2. DAPO: An Open-Source LLM Reinforcement Learning System at Scale

a. Naive PPO/GRPO unstable on long chain-of-thought tasks
b. Contributions: Clip-Higher, Dynamic Sampling, Token-Level Loss, Overlong Reward Shaping
c. Results: Outperforms DeepSeek-R1-Zero-Qwen-32B on AIME with 50% fewer steps

3. Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond 
the Base Model?
a. RLVR boosts pass@1 (sampling efficiency), but not reasoning capacity
b. At large k (pass@128/256), base models often surpass RLVR models
c. Reasoning paths already exist in base models; RLVR just samples them better
d. Distillation, not RLVR, expands reasoning boundary

4. SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training
a. SFT → improves in-distribution, but degrades OOD performance (memorization)
b. RL → consistently improves OOD generalization (rules & visual tasks)
c. SFT is necessary for RL initialization (warm-up for instruction following)



Thank You for listening !
Questions?


