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History

* The idea of Freezing

* Model Tuning (Fine-
tuning): GPT and BERT
(update all parameters)

* Prompt Design: GPT-3

(freeze model, adapt via
handcrafted prompts)
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Efficient Multitask Serving

Strong Task Performance
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—8— Model Tuning —mM- Prompt Design
Model Tuning (Multi-task)  =x= Prompt Tuning

Prompt Tuning

90 X
* Freeze the entire pre-trained model,
do not change its weights

80 //
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* Prepending those tokens to the input 60 ;/ Z
08

* Learn only k tunable tokens per
downstream task

SuperGLUE Score

[
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text forming a soft prompt. /"—'

e
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Model Parameters
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Example Token

[ P1, P2, ..., P20, Input_1, Input_2, ...
Input_n ], matrix of 20 * 768 (vector
size = embedding dimension of model.

=3 WashU



Ablation-Prompt Length

* Increasing prompt length beyond 1 100
token generally gives large

-u- 1
- 5

improvement for most model sizes. 90 —e~ 20 3
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e XXL model still does reasonably well ~&~ 150 /.
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Ablation-Prompt Initialization

e Class Label initialization tends to
perform best, especially in smaller
and midsize models.

* Sampling vocab is middle ground.

e Differences in initialization diminish
for XXL model.

SuperGLUE Score
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Ablation: Pre-training Objective

* LM adaptions give higher
performance across model sizes.

* Adding sentinel to downstream
targets while using span corruption
yields little benefit.

 XXL models are more robust. Even
non-ideal settings produce good
results.
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Ablation-LM Adaptation Steps

* More adaptation steps equals better

performance, but up to a point.

* Thereis a diminishing return, which

the XXL model gets smaller gains.
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Domain Transfer

* Prompt tuning tends to outperform
model tuning under domain shift,
particularly when the shift is large.

Zero-shot Domain Transfer in Question Answering
Training: SQUAD
Testing: Out of domain datasets from MRQA 2019.

Zero-shot Domain Transfer in Paraphrase Detection
Training: Transfer Tested between community Q&A
pairs and MRPC, which is news sentence pairs.
Examine both transfer directions.

Dataset Domain | Model Prompt A
SQUAD Wiki 94.9 +0.2 94.8 +0.1 -0.1
TextbookQA Book 543 43.7 66.8+29 +12.5
BioASQ Bio 779404 79.1+03 +1.2
RACE Exam 59.8 +0.6 60.7 +£0.5 +0.9
RE Wiki 88.4+0.1 88.8+0.2 +0.4
DuoRC Movie 68.94+0.7 67.7+11 —12
DROP Wiki 68.9+1.7 671+19 —138
Train Eval Tuning | Accuracy F1
QQP  MRPC Model 73.14+09 812421
Prompt | 76.3 +0.1 84.3 +0.3
MRPC QQP  Model 49+1.3 70.9+1.2
Prompt | 75.44+0.8 69.7 £0.3
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Prompt Ensembling

* Ensembling gives gains over both

average and the best individual
prompt. Less storage cost than
ensembling full models.

Dataset Metric | Average Best Ensemble
BoolQ acc. 91.1 91.3 91.7

CB acc./F1 | 99.3/99.0 100.00/100.00 100.0/100.0
COPA acc. 98.8 100.0 100.0
MultiRC EM/F1,|657/887 66.3/89.0 67.1/89.4
ReCoRD EM/F1 |92.7/934  929/935 93.2/93.9
RTE acc. 92.6 93.5 93.5
WiC acc. 76.2 76.6 77.4
WSC acc. 95.8 96.2 96.2
SuperGLUE (dev) 90.5 91.0 91.3
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Interpretability

* Nearest neighbor analyses Learned prompt tokens cluster semantically.

 Class label initialization tends to preserve class label embeddings.
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Summary

* Scaling Effect
* Small models: prompt tuning lags behind full model tuning.
e Large models (billions of parameters): performance gap
disappears, prompt tuning matches full fine-tuning.
* Efficiency

* Performance
* Prompt-tuned small models can rival much larger GPT-3 models.
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Summary - Takeaway

e Good with domain shifts
* Boosted performance through prompt resembling

e Potential interpretability of task behavior
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Parameter-Efficient Transfer Learning for NLP

Neil Houlsby Andrei Giurgiu Stanistaw Jastrzebski
Bruna Morrone Quentin de Laroussilhe Andrea Gesmundo
Mona Attariyan Sylvain Gelly

Supplementary Material for Parameter-
Efficient Transfer Learning for NLP

Neil Houlsby Andrei Giurgiu Stanistaw Jastrzebski
Bruna Morrone Quentin de Laroussilhe Andrea Gesmundo
Mona Attariyan Sylvain Gelly
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JBackground & Motivation
JIMethod: Adapters
JExperiments & Results
JContributions & Limitations
JConclusion
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Background & Motivation

* Pretrained models (e.g., BERT) — strong performance but expensive to
fine-tune

* Each new task requires training & storing the full model
* Need parameter-efficient transfer learning alternatives

* Goal: reduce cost while retaining accuracy
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Method: Adapters

Part 1: Where to
Insert Adapters

2x Feed-forward
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Part 2: How
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Method (Part 1):
Where Adapters are Inserted

. b ) * Inserted after attention + feed-forward
’ [ Layer Norm ] ".‘. layers
: Tran?f rrrrr é E .
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Method (Part 2):
Adapter Architecture

* Down-project: reduce dimensionality
’Adapte é A (bOttleneCk)
Layer
QOO0 * Nonlinearity
[ Feedforward | i . . . .
L) | * Up-project: restore dimensionality
Noniinarit ; * Very few parameters compared to full layer
) | . :
C O
[ Feedforward ]
down-project
|
000000

o e
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Intuition

* Pretrained model provides general language knowledge
* Adapters act as small task-specific “plugins”

* Enable efficient transfer across many different tasks
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Experiments & Results

GLUE Benchmark
- Adapters achieve accuracy within 0.4% of full fine-tuning

- Require only 2—3% trainable parameters per task

| \pbox3cmTotal num
params \pbox3cmTrained
params / task CoLA SST | MRPC STS-B QQP MNLI,, MNLI,,;, QNLI RTE Total
BERT{ ARGE 9.0 x 100% 60.5 949 89.3 87.6 721  86.7 859 91.1 T
Adapters (8- 1.3 X 3.6% 99.5 94.0 89.5 86.9 71.8 84.9 85.1 90.7 T
256)
Adapters (64) | 1.2 x 2.1% 56.9 94.2 89.6 87.3 71.8 8.3 846 914 6t
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cy delta (%)

Experiments & Results

GLUE (BERT_ARGE)

Additional Tasks (BERTgasg)

Num trainable parameters / task

5 . PR
3
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== Fine-tune top layers 3]|*—* Adapters
—29 v . s . =—a Fine-tune top layers
10° 10° 10 10° 10" -4 - v
10 10

Num traina

ble parameters / tas

Efficiency

* Adapters: near full accuracy with

far fewer parameters
* Top-layers fine-tuning: poor
when parameters are limited

* Adapters clearly more
parameter-efficient
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Validation accuracy (%

Experiments & Results

Robustness

* Tested adapter placement across
Transformer layers

MNLI,(BERTgAsSE) CoLA (BERTgasE)

et _—_+~ | < Performance stable regardless of
/M - where adapters are mserted

 Shows method 1s robust and

T |‘ T T vy ‘I‘ L]
10 10° 10’ 10° 74+ - ' — — ﬂ 1
Num trainable parameters / task 10 10 10 10 1o eXl e
um traina arameters / tas
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Experiments & Results

Parameter/Performance Trade-off

* Investigated different adapter sizes (bottleneck dimension m)

* m = reduced hidden size in adapter (e.g., 64, 128, 256)

* Trade-off: smaller m — fewer parameters, but potential drop in performance
* Results: even with small m (e.g., 64), adapters achieve strong accuracy

* Demonstrates adapters remain effective across parameter scales
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Experiments & Results

SQuAD Extractive Question

Answering 95

* Tested adapters on the SQuAD v1.1 - .
dataset (reading comprehension)

* Compared with full fine-tuning % > Adapters

- Adapters achieve near-identical F1 and o go |/ ne:tune top lavers
EM scores while training ~3%
parameters i

* Confirms effectiveness beyond GLUE 70

L) L) T llllll L T L llllll L) T L) llllll T T T rTrTrTT
10° 10° 10’ 10° 10°
Num trainable parameters

— generalizable to QA tasks
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Experiments & Results

Analysis & Discussion

* Placement: inserting adapters in both attention & feed-forward layers works best
* Training cost: faster to train than full fine-tuning due to fewer parameters

* Robustness: stable performance across tasks and adapter configurations

* Limitation: inference still runs full model; each task requires an adapter
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Contributions & Limitations

* First to systematically study adapters for NLP
* Showed near full fine-tuning accuracy with only ~3% parameters
* Inference still requires the full model

* Each task needs a separate adapter
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Summary

» Adapters = small & efficient

» 2-3% parameters = full fine-tuning
 Efficient / stable / flexible

 Great for multi-task transfer




[LORA: LOW-RANK ADAPTATION OF LARGE L AN-
GUAGE MODELS
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Microsoft Corporation
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* Topic & Challenge

* Existing Solution

* LoORA-Proposed Solution

* Experimental Step&Key
Result

e Related Work
e Conclusion&Future Work
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1. Topic & Challenge

*Topic: Adapting large-scale pre-trained language models
(e.g., GPT-3) to downstream tasks.

*Challenge: Full fine-tuning(Traditional way to adapt)
requires retraining all parameters (175B for GPT-3), which
1s costly to store and deploy.
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2. Existing Solution and Limitation

* Adapter layers:

Add sequential modules — cause extra inference latency, especially in online/small-
batch scenarios.
* Prefix tuning:

Hard to optimize;

Reduces eftective sequence length;

Performance unstable.

Conclusion: Existing methods are inefficient or quality-limited in large-scale, latency-
sensitive settings.

All in all, exsiting solution ain't good enough
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3.LoRA — Proposed Solution

3.1 LOW-RANK-PARAMETRIZED UPDATE MATRICES Tt
Weights

h =W x+ AWx=W x+BAx (*)

* W, : The original weight matrix from the
pretramed model.
It 1s frozen during fine-tuning and does not
get updated.
Dimensions: W, ER%k

* x: The mnput vector.

* AW=BA: The LoRA-generated update term
used to adapt the model to a new task.

e BERY¥": low-rank matrix.

* AER™X: low-rank matrix.

* r<min(d,k)

much smaller——>
low-rank
decomposition——

> efficient and
lightly
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3.1 Comparision: LoRA vs Full-Fine-Tuning

Given an input vector XERK | and a weight matrix WERYk  the linear output
p g p

1S:

h=Wx
Parameter Update:
W W_nvw L(WX,Y)
Where:
* 1 1s the learning rate
« L(Wx,y)

° 1 loss functjon (e.g., cross-entro
In FSu -FQne-Tunin§ tlg)e Tv 0% V&need to i[)e Eggated(woincluded)
* vy 1S the target labe
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3.1 Comparision: LoRA vs Full-Fine-Tuning

Method Output Expression Is W,W,Updated?
Full Fine-Tuning h=Wx h = wx Yes — directly updated
LoRA h =W x+BAxh = wx + BAx No — kept frozen

In LoRA, only the small matrices A and B need to be trained, while the original

weight matrix W, remains frozen. -
=5 WashU




3.2 Apply LoRA To Transformer

In principle, we can apply LoRA to any subset of weight matrices 1n a neural
network to reduce the number of trainable parameters.

In the Transformer architecture, there are four weight matrices in the self-attention
module (W, Wy, W,, W) and two in the MLP module.

However, in this research, researchers limit their study on self-attention module for
both simplicity and parameter-efficiency
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3.3 Apply LoRA To Transformer

Which weight matrix in transformer should we apply LoRA to?
Validation accuracy on WikiSQL and MultiNLI after applying LoRA to
different types of attention weights in GPT-3, given the same number of

# of Trainable Parameters = 18M

Weight Type W, W, W, W, W,Wp W, W, W, Wy W, W,
Rank 7 8 8 8 8 4 4 2
WikiSQL (£0.5%) | 70.4 70.0 73.0 732  71.4 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 913 913 1.3 91.7

Note that putting all the parameters in AW _ or AW, results in
significantly lower performance, while adapting both W, and W,
yields the best result.

WashU



3.3 Apply LoRA To Transformer

What is the optimal rank r for LoORA?
Researchers Validation accuracy on WikiSQL and MultiNLI with different

Weight Type r=1 r=2 r=4 r=8 r=64

- ] % 688 696 705 704 700
=0 q

WikiSQL(0.5%) W, W, 734 733 737 138 T35
W, Wi W,. W, | 741 737 740 740 739
w, 90.7 909 91.I 907 907
MultiNLI (£0.1%) w,, W, 913 914 913 916 914
W, Wi Wy, W, | 912 917 917 915 914

LoRA doesn't really sensitive to r because LoRA already performs
competitively with a very small r.
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3.3 Apply LoRA To Transformer

How does the adaption Matrix AW compare to W ?

r=4
AW, W, Random

r = 64
AW, W, Random

IUTW, VTl =

0.32 21.67 0.02

1.90 37.71 0.33

Wl = 61.95

AW, || = 6.91

AW, ||F = 3.57

First, AW has a stronger correlation with W compared to a random
matrix, indicating that AW amplifies some features that are

already in W,

Secondly, instead of repeating the top singular directions of W, AW
only amplifies directions that are not emphasized in W,

WashU



4. Experimental Step & Key Result

Step1&2&3: Applyting different pre-training method on
different scale model, starting from small and expanding to much
larger, seeing the performance of LoRA and comparing to other

methods. Key Result:
Model & Method |# Trainable  LoRA perform really

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg. ..
RoBbase (FT)* 125.0M| 87.6 948 902 63.6 928 919 787 912 864 competltlvely on
RoBpae (BitFit)* 0.IM| 847 937 927 620 91.8 840 815 908 852 .
RoBpase (Adpt”)* 0.3M|[87.140 94.24, 885511, 60844 93.15, 90250 71.54,7 89.743 844 GLUEbenchmark in
RoBhpase (Adpt”)* 0.9M|87341 94743 8844+ 62649 93.042 90.6+0 759422 903+, 854 .
RoOBpase (LORA) 03M|[875+3 95142 89.7+7 634412 93343 908+, 86.6+7 91.5:, 87.2 dlfferent Scale mOdel
RoBiarge (FT)* 3550M| 90.2 964 909 680 947 922 866 924 889
RoBiurge (LORA) 0.8M[90.6+> 96245 90.911> 682119 94913 916+, 874105 92.65> 89.0 M

[ J

ROBjuee (Adpt™)t 3.0M|[90255 96145 90257 683.,0 94.8., 919, 83.8,,5 92.1,, 884 ore
ROBjyee (Adpt?)t 0.8M|90.51 3 96.6+> 89.74,, 678125 94.8.3 9174, 80.1429 9194 879 parameter( high er
RoBiarge (Adpt™)t 6.0M (89915 96.243 88.7129 665144 94.712 92.111 834411 91.0417 87.8
ROBiuge (Adpt'™)t 0.8M 90343 96345 87. 7417 663120 94.745 9155, 729459 91515 864 rank) LoRA tend to
ROBIarge (LDRA}‘* 0.8M 90.6:|:_3 962:|:5 90.2j:|_{) 68.2j:|_{) 94.8j:_3 gl.ﬁi_g SS.Zj:u 92-3i_5 88.6 ?
DeBxxr. (FT)* 15000M| 91.8 972 920 720 960 927 939 929 91.1 perform well and

DﬂBXXL (LORA) 4.7TM 91.9:|:_2 96.9:|:_2 92-6:&_6 72.4j:|.| 96-0i_| 92-9;t_| 94.9:|:_4 93.0i_2 91.3 ﬁnally g‘ d ﬁb
%w Qjeas



4. Experimental Step & Key Result

Step4&S: answering 1f LoRA still prevails on NLG models,
such as GPT-2 medium and large; and as a final test for LoRA,
researchers scale up to GPT-3 with 175 billion parameters and
see how LoRA matches.

Model & Method # Trainable E2E NLG Challenge
Parameters | BLEU NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 35492M | 68.2 8.62 46.2 71.0 247 .
GPT-2 M (Adapter-)* 037M | 66.3 8.41 45.0 69.8 2.40 Key Res ult °
GPT-2 M (Adapter™)* 11.09M | 68.9 8.71 46.1 71.3 247
GPT-2 M (Adapter'l) 11.09M | 6731 8504197 4601, 7071, 2444
GPT-2 M (FT™P?)* 25.19M | 68.1 8.59 46.0 70.8 241
GPT-2 M (PreLayer)* 035M | 69.7 8.81 46.1 71.4 2.49
GPT-2 M (Lf)eR;))fer 035M | 704, 885,90 468, 7184, 2.53. o2 [ LORA p erfO rm S b ette r
GPT-2 L (FT)* 774.03M | 68.5 8.78 46.0 69.9 245
GPT-2 L (Adapter™) 0.88M | 69.1:, 8.68.0; 463, 7144, 249, °
GPT-2 L (Adapter™) 23.00M 68.9; 8.70i_$ 46.1 i? 71.3L 2.455_;2 th an p I‘lO I‘ app I‘O aCheS ’
GPT-2 L (PreLayer)* 077M | 703 8.85 46.2 71.7 247
GPT-2 L (LoRA) 077M | 70.4:; 8899 468:> 72012 24710 ° ° °
including full fine-tunin
Model&Method # Trainable | WikiSQL MNLI-m SAMSum g g.
Parameters | Acc. (%) Acc. (%) R1/R2/RL °
GPT-3 (FT) 175,255.8M 73.8 89.5 52.0/28.0/44.5 LORA matCheS Or
GPT-3 (BitFit) 14.2M 71.3 91.0 51.3/27.4/43.5 o
GPT-3 (PreEmbed) 32M | 631 88.6  48.3/24.2/40.5 exceeds the ﬁne-tunlng
GPT-3 (PreLayer) 20.2M 70.1 89.5 50.8/27.3/43.5 b li GPT 3
GPT-3 (Adapter“) 7.1M 71.9 89.8 53.0/28.9/44 .8 -
GPT-3 (Adaptern) 40.1M 73.2 91.5 53.2/29.0/45.1 ase ne On
GPT-3 (LoRA) 47M 734 91.7 53.8/29.8/45.9
GPT-3 (LoRA) 37.7M 74.0 91.6 53.4/29.2/45.1
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5. Related Work

*Transformer Language Models. Transformer language models revolutionized
NLP by combining large-scale pretraining with task-specific fine-tuning, with larger
models like GPT-3 continuously pushing performance boundaries.

*Prompt Engineering and Fine-Tuning.While prompt engineering offers a
lightweight way to adapt GP'T-3 via careful input design, full fine-tuning—though
more effective—is often infeasible for very large models due to computational
constraints.

‘Parameter-Efficient Adaptation. LoRA builds on the 1dea of adapter-based fine-
tuning using a low-rank bottleneck, but differs by avoiding inference-time
overhead. Unlike prompt tuning methods, 1t does not consume sequence length and
has stronger scalability potential.

*Low-Rank Structures in Deep Learning. Low-rank structures are deeply rooted
in both empirical practices and theoretical studies of machine learning. LoRA
uniquely leverages this by applying low-rank updates to frozen pre-trained models
for efficient downstream adaptation—something not explored in prior work.
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6. Conclusion and Future Work

e Conclusion

Proposed LoRA: freeze pretrained weights, train low-rank matrices.
Achieves near/full FT performance with 0.01% tramable params.

No additional inference latency; easy task switching.
Validated across RoBERTa, DeBERTa, GPT-2, GPT-3.

e Future Work

Combine LoRA with other efficient tuning methods.
Deeper understanding of why LoRA works.
Systematic selection of which layers/matrices to adapt.
Explore rank deficiency in pretrained weights.
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Introduction — Motivation

Task emb

l

@)
Hypernetwork

l

AW

W

|

l

Target AW

> +

l

x— W

l

LD, y)

* Fine-tuning = expensive + slow

* Need separate LoRA per task

* Idea: Text-to-LoRA (T2L)

* Input: task description in natural
language

* Hypernetwork instantly
generates LORA weights

 Add to frozen base model — fast

task adaptation = WashU



Preliminaries

* Supervised Fine-Tuning (SFT)
* LoRA (Low-Rank Adaptation)
* Hypernetwork

=3 WashU



Preliminaries -LLoRA

* Freeze base model weights
* Add trainable low-rank matrices (AW = BAX)

* Efficient fine-tuning with fewer parameters

h=Wor+ AWz = Wyx + B! Az
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Preliminaries-Hypernetwork

* A neural network that generates parameters for another model
* Input: task description embedding

* Output: LoRA weights for the base model

* Enables task-specific adaptation 1n a single forward pass

Task Task .
Slsedtne Hypernetwork LoRA weights
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Motivation and Setup

* LoRA adapters are effective but costly to fine-
tune and store individually.

* The Goal: Use a hypernetwork thay, given a
task description in natural language, generates

LoRA weights directly.
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LoRA WEIGHTS

AW, , = ho(o,, ), with (3)
biny = concat [f(z'), E[m], E[l]], (4

AWn",L’L: The LoRA weights generated for task |, at module m, and layer | of the base
model.

hg: The hypernetwork that outputs LORA weights.
qb,ln,l: The input embedding given to the hypernetwork.

For each module and layer, the hypernetwork produces the corresponding LoRA
weight matrix. Then concatenation of all three embeddings into a single vector

D1
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Architectures (L,M,S)

e L (Large): Outputs both LoRA matrices A,B together. Highest parameter count,

best performance.

* M (Medium): Shared output layer for A or B. Smaller than L, but still effective.

e S (Small): Outputs only one rank at a time. Most parameter-efficient, with strong

inductive biases. {'M < A [ Rank
Task emb '. emb J l emb |
Lk »®—> MLP — MLP —»}-—» MLP —ui—.. MLP —» Head
encoder Y

Module emb ——

Depthemb ———

e ] m o ® )
I | |
| I
| Both AandB : AorB : Onerankof AorB |
| [2nd , I, d] | [d] |
e e e e o e — — — — — — — — — — ——— —— -




Training Objective for T2L

0 = argmin Epip i~z ﬁsrfr('Di._ v, h,{j((_,f}i)),
0

Input: task dataset D' and task description z'.

Output: hypernetwork-generated LoRA Aw'!
Loss: make the generated LoRA perform well on supervised training for that task.

We train the hypernetwork to output LoRA adapters such that the base model +
adapter minimizes the supervised loss on task data.
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Training Methods
Reconstruction Training E(Q? 9) — {"&W{’NQ ‘AW% o hﬁ,(qﬁ%)‘

* Train T2L to recreate existing LORAs.
* Pros: Simple, leverages existing LoRA libraries.
* Cons: Poor generalization to unseen tasks.

0 = argmin Epi.p ,izi Lspr(D', VY, hg(¢')).
v,
Supervised Fine-Tuning
* Train directly on task datasets with descriptions.
* Pros: Learns implicit clustering, better zero-shot generalization.
* Cons: Requires more training data.

=3 WashU



Experiments — LORA Compression

Setup: Mistral-7B-Instruct as base
model; LoRAs rank=38.

. ArcC ArcE BQ GSMSK HS O0OQA PIQA WG MBPP Avg.
Resu It 0 T2 L Ca n CO m p ress LORAS a n d (acc) (acc) (acc) (acc) (acc) (acc) (acc) (acc) (pass@1) | (9 tasks)
H Bas del 65.4 77.8 T7le 40.9 497 542 72.8 45.0 43.1 55.8
match (sometimes exceed) the e ol |
A Aa A r2L {Recon) L 76.4 800 804 538 926 850 69.7 51.2 526 734
performance of individually trained Gl [ %o 4 B2 s m0 oo M E | E
r2L (Recon) 8 75.2 88.8 874 50.9 89.1 756 839 581 48.1 73.0
LO RAS O Task Description E.
r2L {Recon) L 76.6 80.8 894 539 926 850 69.6 51.2 51.8 733
r2L {Recon) M 76.5 800 804 539 925 849 70.4 516 52.8 73.5
r2L (Recon) 8 75.4 88.8 878 49.1 89.7 767 84.2 56.9 48.0 73.0
Task-specific LoRAs  76.6 89.9 894 535 926  85.0 69.9 51.1 52.1 | 733

Observation: Compression acts like
regularization—sometimes improves
generalization (e.g., PIQA, WG)
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Experiments - Zero-Shot LoRA
Generation

Setup: T2L trained with 479 tasks from SNI dataset.
Result: Generates LoRAs for unseen tasks just from descriptions.

Performance: Beats multi-task LORA baselines and approaches task-specific
LoRA performance.

Example: T2L (L) achieved 73.9 avg. vs Multi-task LoRA 71.9
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Takeaways

e T2L = Hypernetwork + Task Descriptions = LoRAs.

* Trade-offs: Larger architectures (L) = better performance; smaller
ones (S) = efficiency.
* Three contributions
* Compress many LoRAs into one model.
* Generate new LoRAs from text descriptions (zero-shot).
* Achieve competitive results with efficient training.
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Ablations and Analyses

Does Increasing Training Compute Proportional to the Number of Training
Tasks effect the performance of T2L?

Researchers explores the scalability of T2L by increasing the number of training
tasks while proportionally increasing the compute budget, finding that generally,
the performance improves while increasing task but 1t has limited capicity

Number  Max | ArcC ArcE BQ GSMSK HS OQA PIQA WG  HE MBPP |
of tasks SGDsteps | (acc) (acc) (acc) (acc) (acc) (ace) (ace) (ace) (pass@1) (pass@1) ’

479 M 775 880 850 458 665 755 821 642 392 519 | 6774

- 256 640K | 773 881 843 460 645 757 819 640 398 521 | 67.4a

T2L (SFT) f 128 320K | 766 884 852 461 670 743 816 550 382 457 | 658V
64 160K | 755 880 845 439 655 707 805 595 398 51.7 66.0

479 M 772 890 843 452 651 761 818 640 413 505 | 6754

- 256 640K | 759 893 850 470 653 737 816 632 398 486 | 66.9 A

L2L(SFOME - he 30K | 749 883 855 449 648 728 807 61.6 429 435 | 66.0 A
64 160K | 736 877 845 432 646 705 799 560 407 51.4 65.2

479 IM 777 883 850 463 653 739 824 619 346 366 | 6527

o 256 640K | 760 887 838 473 680 716 823 610 390 412 | 6594

2L (SFT) (8 128 30K | 749 880 845 444 662 722 820 3593 390 473 | 65.8a
64 160K | 754 884 850 431 648 707 815 516 394 467 64.7
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Ablations and Analyses

Does the choice of text embedding model affect the quality of LoRA generated

by T2L?

Researchers compare 2 embedding model: gte-large-en-v1.5 and Mistral-7B-

Instruct

Conclusion:

* Both models yield high-quality LoRA adapters with similar performance.

* T2L 1s robust to the choice of task embedding model, showing good
generalization capabilities.

gte Mistral
Avg. Benchmark S M L S M L
performance 65.8 66.0 658 647 662 66.0
Avg. 65.9 65.6
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Ablations and Analyses

Does the quality or alignment of task descriptions affect the LoRA

performance generated by T2L?

Researchers use 4 types of task descriptions in traming;:
* Train — Original descriptions used in training

* Eval — New, unseen descriptions for the same task

* Train (random) — Descriptions from other tasks
 Random strings — Completely unrelated/random text

Aligned

Unaligned

Train Eval Train(random) Random strings

T2L M
T2L (S

73.3
73.5
73.0

73.6
70.2
72.9

49.1
49.5
55.7

68.2
68.5
53.9

Avg.

73.3

72.2

514

63.5

Conclusion:
T2L requires semantically aligned
task descriptions to perform well.
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Ablations and Analyses

two training strategies SFT and Reconstruction which one leads to better zero-shot
performance?

Recon SFT

Benchmark S M L S M L
performance 61.8 61.7 620 648 665 67.5

Avg. 61.8 66.3

SFT perform better obviously

Why?
Because pre-trained LoRA adapters for similar tasks may lie in very different parameter

spaces, making them harder to compress reliably. __
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Related Work

 Hypernetworks: Used in multi-task and continual learning, but typically rely
on task IDs and lack zero-shot ability.

» Zero-shot adaptation: Prior works like Hyperdecoders and Gisting are less
flexible.

* Contribution: First to achieve text-based LoRA generation and cross-task
generalization.
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Discussion & Limitations

*Discussion:
*Task descriptions generated automatically by GPT-40 mini to ensure quality.
*Approach is extendable to multimodal models (e.g., vision-language).
*Potential: train T2L with small models, transfer to larger models.
*Limitations:
*Only outputs LoRA as the adaptation space.
*Compression could be improved further.
*/Zero-shot performance still below dedicated single-task LoRAs.
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Conclusion

*T2L provides plug-and-play, low-cost adaptation using only natural language

descriptions.
*Unifies LORA compression and zero-shot task generation.
*Represents a step toward more automated and universal adaptation of large

models.
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