

History

• The idea of Freezing

• Model Tuning (Fine-
tuning): GPT and BERT
(update all parameters)

• Prompt Design: GPT-3
(freeze model, adapt via
handcrafted prompts)

Prompt Tuning

• Freeze the entire pre-trained model,
do not change its weights

• Learn only k tunable tokens per
downstream task

• Prepending those tokens to the input
text forming a soft prompt.

Example Token

• [P1, P2, …, P20, Input_1, Input_2, …
Input_n], matrix of 20 * 768 (vector
size = embedding dimension of model.

Ablation-Prompt Length

• Increasing prompt length beyond 1
token generally gives large
improvement for most model sizes.

• XXL model still does reasonably well
even with single token prompt.

Ablation-Prompt Initialization

• Class Label initialization tends to
perform best, especially in smaller
and midsize models.

• Sampling vocab is middle ground.

• Differences in initialization diminish
for XXL model.

Ablation: Pre-training Objective

• LM adaptions give higher
performance across model sizes.

• Adding sentinel to downstream
targets while using span corruption
yields little benefit.

• XXL models are more robust. Even
non-ideal settings produce good
results.

Ablation-LM Adaptation Steps

• More adaptation steps equals better
performance, but up to a point.

• There is a diminishing return, which
the XXL model gets smaller gains.

Domain Transfer

• Prompt tuning tends to outperform
model tuning under domain shift,
particularly when the shift is large.

Zero-shot Domain Transfer in Question Answering
Training: SQuAD
Testing: Out of domain datasets from MRQA 2019.

Zero-shot Domain Transfer in Paraphrase Detection
Training: Transfer Tested between community Q&A
pairs and MRPC, which is news sentence pairs.
Examine both transfer directions.

Prompt Ensembling

• Ensembling gives gains over both
average and the best individual
prompt. Less storage cost than
ensembling full models.

Interpretability

• Nearest neighbor analyses Learned prompt tokens cluster semantically.

• Class label initialization tends to preserve class label embeddings.

Summary

• Scaling Effect

• Small models: prompt tuning lags behind full model tuning.

• Large models (billions of parameters): performance gap
disappears, prompt tuning matches full fine-tuning.

• Efficiency

• Performance

• Prompt-tuned small models can rival much larger GPT-3 models.

Summary - Takeaway

• Good with domain shifts

• Boosted performance through prompt resembling

• Potential interpretability of task behavior

Jiayue Zhao

❑Background & Motivation

❑Method: Adapters

❑Experiments & Results

❑Contributions & Limitations

❑Conclusion

Background & Motivation

• Pretrained models (e.g., BERT) → strong performance but expensive to
fine-tune

• Each new task requires training & storing the full model

• Need parameter-efficient transfer learning alternatives

• Goal: reduce cost while retaining accuracy

Method: Adapters

Part 1：Where to
Insert Adapters

Part 2：How
AdaptersWork

Method (Part 1):
Where Adapters are Inserted

• Inserted after attention + feed-forward
layers

• Only adapters + layer norms + classifier are
trained

• Pretrained model parameters frozen

Method (Part 2):
Adapter Architecture

• Down-project: reduce dimensionality
(bottleneck)

• Nonlinearity

• Up-project: restore dimensionality

• Very few parameters compared to full layer

Intuition

• Pretrained model provides general language knowledge

• Adapters act as small task-specific “plugins”

• Enable efficient transfer across many different tasks

Experiments & Results
GLUE Benchmark

- Adapters achieve accuracy within 0.4% of full fine-tuning

- Require only 2–3% trainable parameters per task

- Comparable performance, much lower cost

Experiments & Results

Efficiency

• Adapters: near full accuracy with
far fewer parameters

• Top-layers fine-tuning: poor
when parameters are limited

• Adapters clearly more
parameter-efficient

Experiments & Results

Robustness

• Tested adapter placement across
Transformer layers

• Performance stable regardless of
where adapters are inserted

• Shows method is robust and
flexible

Experiments & Results

Parameter/Performance Trade-off

• Investigated different adapter sizes (bottleneck dimension m)

• m = reduced hidden size in adapter (e.g., 64, 128, 256)

• Trade-off: smaller m → fewer parameters, but potential drop in performance

• Results: even with small m (e.g., 64), adapters achieve strong accuracy

• Demonstrates adapters remain effective across parameter scales

Experiments & Results

SQuAD Extractive Question
Answering

• Tested adapters on the SQuAD v1.1
dataset (reading comprehension)

• Compared with full fine-tuning

• Adapters achieve near-identical F1 and
EM scores while training ~3%
parameters

• Confirms effectiveness beyond GLUE
→ generalizable to QA tasks

Experiments & Results

Analysis & Discussion

• Placement: inserting adapters in both attention & feed-forward layers works best

• Training cost: faster to train than full fine-tuning due to fewer parameters

• Robustness: stable performance across tasks and adapter configurations

• Limitation: inference still runs full model; each task requires an adapter

Contributions & Limitations

• First to systematically study adapters for NLP

• Showed near full fine-tuning accuracy with only ~3% parameters

• Inference still requires the full model

• Each task needs a separate adapter

Summary

• Adapters = small & efficient

• 2–3% parameters ≈ full fine-tuning

• Efficient / stable / flexible

• Great for multi-task transfer

Agenda

•Topic & Challenge

•Existing Solution

•LoRA-Proposed Solution

•Experimental Step&Key

Result

•Related Work

•Conclusion&Future Work

1. Topic & Challenge

•Topic: Adapting large-scale pre-trained language models

(e.g., GPT-3) to downstream tasks.

•Challenge: Full fine-tuning(Traditional way to adapt)

requires retraining all parameters (175B for GPT-3), which

is costly to store and deploy.

2. Existing Solution and Limitation
• Adapter layers:

Add sequential modules → cause extra inference latency, especially in online/small-

batch scenarios.

• Prefix tuning:

Hard to optimize;

Reduces effective sequence length;

Performance unstable.

Conclusion: Existing methods are inefficient or quality-limited in large-scale, latency-

sensitive settings.

All in all, exsiting solution ain't good enough

3.LoRA — Proposed Solution
3.1 LOW-RANK-PARAMETRIZED UPDATE MATRICES

h =W0x+ ΔWx=W0x+BAx (*)

• W0 : The original weight matrix from the

pretrained model.

It is frozen during fine-tuning and does not

get updated.

Dimensions: W0 ∈Rd×k

• x: The input vector.

• ΔW=BA: The LoRA-generated update term

used to adapt the model to a new task.

• B∈Rd×r: low-rank matrix.

• A∈Rr×k: low-rank matrix.

• r≪min(d,k)

much smaller——>
low-rank

decomposition——
> efficient and

lightly

3.1 Comparision: LoRA vs Full-Fine-Tuning

Given an input vector x∈Rk , and a weight matrix W∈Rd×k, the linear output

is:

h=Wx

Parameter Update:

W ← W−η⋅∇W L(Wx,y)

Where:

• η is the learning rate

• L(Wx,y)

• is the loss function (e.g., cross-entropy)

• y is the target label
In Full-Fine-Tuning, the whole W need to be updated(W0included)

3.1 Comparision: LoRA vs Full-Fine-Tuning

Method Output Expression Is W0𝑊0Updated?

Full Fine-Tuning h=Wx ℎ = 𝑊𝑥 Yes – directly updated

LoRA h =W0x+BAxℎ = 𝑊0𝑥 + 𝐵𝐴𝑥 No – kept frozen

In LoRA, only the small matrices A and B need to be trained, while the original

weight matrix W0 remains frozen.

3.2 Apply LoRA To Transformer

In principle, we can apply LoRA to any subset of weight matrices in a neural

network to reduce the number of trainable parameters.

In the Transformer architecture, there are four weight matrices in the self-attention

module (Wq, Wk, Wv, Wo) and two in the MLP module.

However, in this research, researchers limit their study on self-attention module for

both simplicity and parameter-efficiency

3.3 Apply LoRA To Transformer

Which weight matrix in transformer should we apply LoRA to?

Validation accuracy on WikiSQL and MultiNLI after applying LoRA to

different types of attention weights in GPT-3, given the same number of

trainable parameters.

Note that putting all the parameters in ∆Wq or ∆Wk results in

significantly lower performance, while adapting both Wq and Wv

yields the best result.

3.3 Apply LoRA To Transformer

What is the optimal rank r for LoRA?

Researchers Validation accuracy on WikiSQL and MultiNLI with different

rank r.

LoRA doesn't really sensitive to r because LoRA already performs

competitively with a very small r.

3.3 Apply LoRA To Transformer

How does the adaption Matrix ∆W compare to W ?

First, ∆W has a stronger correlation with W compared to a random

matrix, indicating that ∆W amplifies some features that are

already in W.

Secondly, instead of repeating the top singular directions of W, ∆W

only amplifies directions that are not emphasized in W.

4.Experimental Step & Key Result
Step1&2&3: Applyting different pre-training method on

different scale model, starting from small and expanding to much

larger, seeing the performance of LoRA and comparing to other

methods. Key Result:

• LoRA perform really

competitively on

GLUEbenchmark in

different scale model

• More

parameter(higher

rank), LoRA tend to

perform well and

finally go beyond FT

4.Experimental Step & Key Result
Step4&5: answering if LoRA still prevails on NLG models,

such as GPT-2 medium and large; and as a final test for LoRA,

researchers scale up to GPT-3 with 175 billion parameters and

see how LoRA matches.

Key Result:

•LoRA performs better

than prior approaches,

including full fine-tuning.

•LoRA matches or

exceeds the fine-tuning

baseline on GPT-3

5. Related Work
•Transformer Language Models. Transformer language models revolutionized

NLP by combining large-scale pretraining with task-specific fine-tuning, with larger

models like GPT-3 continuously pushing performance boundaries.

•Prompt Engineering and Fine-Tuning.While prompt engineering offers a

lightweight way to adapt GPT-3 via careful input design, full fine-tuning—though

more effective—is often infeasible for very large models due to computational

constraints.

•Parameter-Efficient Adaptation. LoRA builds on the idea of adapter-based fine-

tuning using a low-rank bottleneck, but differs by avoiding inference-time

overhead. Unlike prompt tuning methods, it does not consume sequence length and

has stronger scalability potential.

•Low-Rank Structures in Deep Learning. Low-rank structures are deeply rooted
in both empirical practices and theoretical studies of machine learning. LoRA
uniquely leverages this by applying low-rank updates to frozen pre-trained models
for efficient downstream adaptation—something not explored in prior work.

6. Conclusion and Future Work

• Conclusion
Proposed LoRA: freeze pretrained weights, train low-rank matrices.

Achieves near/full FT performance with 0.01% trainable params.

No additional inference latency; easy task switching.

Validated across RoBERTa, DeBERTa, GPT-2, GPT-3.

• Future Work
Combine LoRA with other efficient tuning methods.

Deeper understanding of why LoRA works.

Systematic selection of which layers/matrices to adapt.

Explore rank deficiency in pretrained weights.

Text-to-LoRA: Instant Transformer Adaption

All group member

Introduction — Motivation
• Fine-tuning = expensive + slow

• Need separate LoRA per task

• Idea: Text-to-LoRA (T2L)

• Input: task description in natural
language

• Hypernetwork instantly
generates LoRA weights

• Add to frozen base model → fast
task adaptation

Preliminaries

• Supervised Fine-Tuning (SFT)

• LoRA (Low-Rank Adaptation)

• Hypernetwork

Preliminaries -LoRA

• Freeze base model weights

• Add trainable low-rank matrices (ΔW = BAx)

• Efficient fine-tuning with fewer parameters

Preliminaries-Hypernetwork

• A neural network that generates parameters for another model

• Input: task description embedding

• Output: LoRA weights for the base model

• Enables task-specific adaptation in a single forward pass

Task
description

Task
embedding

Hypernetwork LoRA weights Base model

Motivation and Setup

• LoRA adapters are effective but costly to fine-
tune and store individually.

• The Goal: Use a hypernetwork thay, given a
task description in natural language, generates
LoRA weights directly.

LoRA WEIGHTS

Δ𝑊𝑚,𝐿
𝑖 : The LoRA weights generated for task I, at module m, and layer l of the base

model.
ℎ𝜃: The hypernetwork that outputs LoRA weights.

𝜙𝑚,𝑙
𝑖 : The input embedding given to the hypernetwork.

For each module and layer, the hypernetwork produces the corresponding LoRA
weight matrix. Then concatenation of all three embeddings into a single vector

𝜙𝑚,𝑙
𝑖

Architectures (L,M,S)
• L (Large): Outputs both LoRA matrices 𝐴,𝐵 together. Highest parameter count,

best performance.

• M (Medium): Shared output layer for 𝐴 or 𝐵. Smaller than L, but still effective.

• S (Small): Outputs only one rank at a time. Most parameter-efficient, with strong
inductive biases.

Training Objective for T2L

.

Input: task dataset 𝐷ⅈ and task description 𝑧ⅈ.
Output: hypernetwork-generated LoRA Δ𝑤ⅈ

Loss: make the generated LoRA perform well on supervised training for that task.

We train the hypernetwork to output LoRA adapters such that the base model +
adapter minimizes the supervised loss on task data.

Training Methods

Reconstruction Training
• Train T2L to recreate existing LoRAs.

• Pros: Simple, leverages existing LoRA libraries.

• Cons: Poor generalization to unseen tasks.

Supervised Fine-Tuning
• Train directly on task datasets with descriptions.

• Pros: Learns implicit clustering, better zero-shot generalization.

• Cons: Requires more training data.

Experiments – LoRA Compression

Setup: Mistral-7B-Instruct as base
model; LoRAs rank=8.

Result: T2L can compress LoRAs and
match (sometimes exceed) the
performance of individually trained
LoRAs.

Observation: Compression acts like
regularization—sometimes improves
generalization (e.g., PIQA, WG)

Experiments - Zero-Shot LoRA
Generation

Setup: T2L trained with 479 tasks from SNI dataset.

Result: Generates LoRAs for unseen tasks just from descriptions.

Performance: Beats multi-task LoRA baselines and approaches task-specific

LoRA performance.

Example: T2L (L) achieved 73.9 avg. vs Multi-task LoRA 71.9

Takeaways

• T2L = Hypernetwork + Task Descriptions → LoRAs.

• Trade-offs: Larger architectures (L) = better performance; smaller
ones (S) = efficiency.

• Three contributions

• Compress many LoRAs into one model.

• Generate new LoRAs from text descriptions (zero-shot).

• Achieve competitive results with efficient training.

Ablations and Analyses
Does Increasing Training Compute Proportional to the Number of Training

Tasks effect the performance of T2L?

Researchers explores the scalability of T2L by increasing the number of training

tasks while proportionally increasing the compute budget, finding that generally,

the performance improves while increasing task but it has limited capicity

Ablations and Analyses
Does the choice of text embedding model affect the quality of LoRA generated

by T2L?

Researchers compare 2 embedding model: gte-large-en-v1.5 and Mistral-7B-

Instruct

Conclusion:

• Both models yield high-quality LoRA adapters with similar performance.

• T2L is robust to the choice of task embedding model, showing good

generalization capabilities.

Ablations and Analyses
Does the quality or alignment of task descriptions affect the LoRA

performance generated by T2L?

Researchers use 4 types of task descriptions in training:

• Train – Original descriptions used in training

• Eval – New, unseen descriptions for the same task

• Train (random) – Descriptions from other tasks

• Random strings – Completely unrelated/random text

Conclusion:

T2L requires semantically aligned

task descriptions to perform well.

Ablations and Analyses
two training strategies SFT and Reconstruction which one leads to better zero-shot

performance?

SFT perform better obviously

Why?

Because pre-trained LoRA adapters for similar tasks may lie in very different parameter

spaces, making them harder to compress reliably.

Related Work

• Hypernetworks: Used in multi-task and continual learning, but typically rely

on task IDs and lack zero-shot ability.

• Zero-shot adaptation: Prior works like Hyperdecoders and Gisting are less

flexible.

• Contribution: First to achieve text-based LoRA generation and cross-task

generalization.

Discussion & Limitations

•Discussion:

•Task descriptions generated automatically by GPT-4o mini to ensure quality.

•Approach is extendable to multimodal models (e.g., vision-language).

•Potential: train T2L with small models, transfer to larger models.

•Limitations:

•Only outputs LoRA as the adaptation space.

•Compression could be improved further.

•Zero-shot performance still below dedicated single-task LoRAs.

Conclusion

•T2L provides plug-and-play, low-cost adaptation using only natural language

descriptions.

•Unifies LoRA compression and zero-shot task generation.

•Represents a step toward more automated and universal adaptation of large

models.

	Slide 1
	Slide 2: History
	Slide 3
	Slide 4: Prompt Tuning
	Slide 5: Ablation-Prompt Length
	Slide 6: Ablation-Prompt Initialization
	Slide 7: Ablation: Pre-training Objective
	Slide 8: Ablation-LM Adaptation Steps
	Slide 9: Domain Transfer
	Slide 10: Prompt Ensembling
	Slide 11: Interpretability
	Slide 12: Summary
	Slide 13: Summary - Takeaway
	Slide 14
	Slide 15:
	Slide 16: Background & Motivation
	Slide 17: Method: Adapters
	Slide 18: Method (Part 1): Where Adapters are Inserted
	Slide 19: Method (Part 2): Adapter Architecture
	Slide 20: Intuition
	Slide 21: Experiments & Results
	Slide 22: Experiments & Results
	Slide 23: Experiments & Results
	Slide 24: Experiments & Results
	Slide 25: Experiments & Results
	Slide 26: Experiments & Results
	Slide 27: Contributions & Limitations
	Slide 28: ​
	Slide 29
	Slide 30:
	Slide 31: Topic & Challenge
	Slide 32: 2. Existing Solution and Limitation
	Slide 33: 3.LoRA — Proposed Solution
	Slide 34: 3.1 Comparision: LoRA vs Full-Fine-Tuning
	Slide 35: 3.1 Comparision: LoRA vs Full-Fine-Tuning
	Slide 36: 3.2 Apply LoRA To Transformer
	Slide 37: 3.3 Apply LoRA To Transformer
	Slide 38: 3.3 Apply LoRA To Transformer
	Slide 39: 3.3 Apply LoRA To Transformer
	Slide 40: 4.Experimental Step & Key Result
	Slide 41: 4.Experimental Step & Key Result
	Slide 42: 5. Related Work
	Slide 43: 6. Conclusion and Future Work
	Slide 44: Text-to-LoRA: Instant Transformer Adaption
	Slide 45: Introduction — Motivation
	Slide 46: Preliminaries
	Slide 47: Preliminaries -LoRA
	Slide 48: Preliminaries-Hypernetwork
	Slide 49: Motivation and Setup
	Slide 50: LoRA WEIGHTS
	Slide 51: Architectures (L,M,S)
	Slide 52: Training Objective for T2L
	Slide 53: Training Methods
	Slide 54: Experiments – LoRA Compression
	Slide 55: Experiments - Zero-Shot LoRA Generation
	Slide 56: Takeaways
	Slide 57: Ablations and Analyses
	Slide 58: Ablations and Analyses
	Slide 59: Ablations and Analyses
	Slide 60: Ablations and Analyses
	Slide 61: Related Work
	Slide 62: Discussion & Limitations
	Slide 63: Conclusion

